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Summer School
crypt@b-it 2008

JÉRÉMIE DETREY, DANIEL LOEBENBERGER, MICHAEL NÜSKEN

1. Preparation sheet

Exercise 1.1 (A family of groups).

Consider the group Z
×
p of units modulo a prime p. [Think of it as an object

oriented class consisting of the integers 1, 2, . . . , p − 1 with a method for mul-
tiplying two of them. The product is the integer product reduced modulo p.
Eg. 4 · 5 = 6 in Z

×
7 . This definition works for any number p ∈ N≥2, whether p is

prime or not.]

(i) Calculate the product of 13 and 17 in Z
×
29.

(ii) Calculate the inverse of 12 in Z
×
29. [. . . and explain how to do that in gen-

eral. Brute force is no solution!]

(iii) Check that a28 = 1 in Z
×
29 for any a ∈ Z

×
29. [This is an instance of Fermat’s

little theorem.]

(iv) Compute 21 234 567 in Z
×
29. Use as few multiplications in Z

×
29 as possible;

explain.

(v) Find the discrete logarithm x such that 2x = 17 in Z
×
29.

In general the discrete logarithm problem is considered to be difficult. No
general polynomial time solution is known at present.

(vi) The baby-step, giant-step method finds a discrete logarithm in Z
×
p with

only O(
√

p) operations. [Note that this is not polynomial in the input
size, which is Θ(log p).] Given a, b ∈ Z

×
p the problem is to find x ∈ Zp−1

such that ax = b in Z
×
p . Proceed as follows: Split the unkown x = x1r+x0

with r =
⌈√

p
⌉

, 0 ≤ x0 < r. Note that 0 ≤ x1 < p

r
. [Prove this!] Now

compute the giant steps ax1r for all possible values of x1, and the baby steps
a−x0b for all possible values of x0.
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◦ Prove that ax1r = a−x0b if and only if x is a solution to the equation
ax = b in Z

×
p .

◦ Show that you only need at most O(
√

p) operations (and memory)
to find x1 and x0.

Actually, one can show that for a ‘generic’ group (of prime order) this is close
to optimal. Yet, the groups Z

×
p are not generic and faster algorithms exist.

(vii) Reconsider 2x = 17 in Z
×
29. The equation implies that

24x = 174 27x = 177.

Since 228 = 1 in Z
×
29 the left equation determines x only modulo 7whereas

the right one determines x modulo 4. Baby-step giant-step needs only
“O(

√
7)” operations [Why the quotes?] to find that x = 0 in Z7 [ie. 24·0 =

174] and “O(
√

4)” operations x = 1 in Z4 [ie. 27·1 = 177].

Use the Chinese Remainder Theorem to determine x in Z28 and compare
to your previous solution of 2x = 17 in Z

×
29.

Exercise 1.2 (Finite fields).

We consider here the set of binary polynomials Z2[x], where Z2 = {0, 1} is the
set of integers modulo 2.

(i) What is the algebraic structure of Z2[x]?

In order to bound the number of elements in this set, we restrict ourselves to
polynomials of degree at most 2. We note this set asZ2[x](≤2). We transparently
represent each polynomial a(x) = a2x

2 + a1x + a0 as the bit-string a2a1a0. For
instance, 110 represents the polynomial x2 + x.

(ii) How many elements are there in this set? List them.

(iii) Describe how to compute the sum c(x) of two polynomials a(x) and
b(x) ∈ Z2[x](≤2). Give the corresponding addition table.

(iv) We now consider multiplication over this set. What is the degree of the
product c(x) of two polynomials a(x) and b(x) ∈ Z2[x](≤2)? Does c(x) still
lie in Z2[x](≤2)?
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(v) Describe a way of “trimming” c(x) so that the result of a multiplication
actually remains in Z2[x](≤2).

Taking f(x) = x3 + x + 1, which can be shown to be irreducible over Z2, we
consider Z2[x]/(f(x)), that is the set of binary polynomials modulo f(x).

(vi) Show that Z2[x]/(f(x)) and Z2[x](≤2) contain exactly the same elements.

(vii) Give the multiplication table over Z2[x]/(f(x)).

(viii) Verify from that table that every element a(x) ∈ Z2[x]/(f(x)), a(x) 6= 0,
has a multiplicative inverse a−1(x). Could we have expected that?

(ix) What is the algebraic structure of Z2[x]/(f(x))?

Now let’s see what happens if we choose another irreducible polynomial of
degree 3. Namely, we take g(x) = x3 + x2 + 1.

(x) Verify that the element y(x) = x + 1 ∈ Z2[x]/(f(x)) is a solution of the
equation g(y) = y3 + y2 + 1 = 0.

(xi) Consider the set of binary polynomials in the variable y, modulo g(y),
noted Z2[y]/(g(y)). Express all the elements of this set in function of x.

Remark that each element a(y) of Z2[y]/(g(y)) can be mapped to an element
b(x) = a(x + 1) of Z2[x]/(f(x)). We note ϕ this mapping.

(xii) Given two polynomials a(y) and b(y) ∈ Z2[y]/(g(y)), verify that ϕ(a +
b) = ϕ(a) + ϕ(b), where the first addition is performed over Z2[y]/(g(y))
whereas the second one is performed over Z2[x]/(f(x)).

(xiii) Same question for the multiplication.

(xiv) Conclude.

Actually, one can show that finite fields like Z2[x]/(f(x)) are unique up to iso-
morphism. The choice of the irreducible polynomial only impacts on the rep-
resentation of the elements, but not on the intrinsic algebraic structure of the
set. This is why we will usually note it simply F23 or F8. It is an extension of
degree 3 of Z2, which is itself the finite field F2.
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Exercise 1.3 (Computing in F28).

We now consider the finite field with 256 elements F28 (also noted F256) as the
set of binary polynomials modulo f = x8 + x4 + x3 + x + 1. (Note that we omit
the (x) notation which is now superfluous since all polynomials are in x.)

Let a = x6+x4+x2+x+1 = 01010111 and b = x7+1 = 10000001, both elements
of F256. Compute

(i) a + b,

(ii) a · b, and

(iii) a−1.

Exercise 1.4 (Correlation).

The security of a block cipher like AES depends crucially on a sufficient amount
of nonlinearity. The following notion is an important measure of nonlinearity.

Given two functions h, ℓ : F256 → F2 we define their correlation

corr(h, ℓ) =
∑

a∈F256

(−1)h(a)+ℓ(a),

Thus we add 1 for every element where h and ℓ coincide and we subtract 1
for every element where they differ. The higher the value, the more h and ℓ
coincide. In fact

1

256
corr(h, ℓ) = 2prob(h(X) = ℓ(X)) − 1

= prob(h(X) = ℓ(X)) − prob(h(X) 6= ℓ(X)),

if X is uniformly distributed in F256; the correlation of h and ℓ is thus a direct
measure for the probability that h and ℓ coincide on a random input.

A field element a ∈ F256 can be represented in the form a = a7x
7 +a6x

6 +a5x
5 +

a4x
4 + a3x

3 + a2x
2 + a1x + a0 mod x8 + x4 + x3 + x + 1 ∈ F256.

(i) A function ℓ : F256 → F2 is linear if ℓ(a + b) = ℓ(a) + ℓ(b) for all a, b ∈ F256.
Show that a linear function ℓ is always of the form ℓ(a) =

∑

i ℓiai ∈ F2

with suitable ℓi ∈ F2.
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(ii) Compute all possible values of corr(h, ℓ), if h and ℓ are linear. Hint: With-
out loss of generatility you can assume that h is the zero function.

(iii) Use your favourite programming language to compute the correlations
corr(ℓi ◦ hj , ℓk) of the following functions. Compute a little matrix for
each hj.

◦ h−1(a) := a−1 for a 6= 0 and h−1(0) = 0,

◦ h1(a) := a,

◦ h2(a) := a2,

◦ h3(a) := a3,

◦ h∗(a) := (a7 + a6)x
7 + (a3 + a5)x

6 + (a6 + a5)x
5 + (a2 + a7 + a4)x

4 +
(a5 + a7 + a4 + a6)x

3 + (a1 + a5)x
2 + (a7 + a4 + a6)x + a6 + a0 + a4.

◦ ℓ0(a) := a0,

◦ ℓ1(a) := a0 + a1 + a2 + a3 + a4 + a5 + a6 + a7,

◦ ℓ2(a) := a0 + a4 + a7,

◦ ℓ3(a) := a5 + a7 + 1,

◦ ℓ4(a) := a5 + a7.

(iv) Draw conclusions from the results.


