Exercise 5.1 (Small Public Exponent RSA Cryptosystem). (4 points)

This exercise will show that, when using the RSA cryptosystem as a public key encryption scheme, small public exponents may be a real danger.

In a public domain the exponent \(e = 3 \) is used as public exponent, thus every user chooses a public modulus \(N \) such that \(\gcd(\varphi(N), 3) = 1 \) and computes his respective secret exponent \(d \) such that \((3 \cdot d) \mod \varphi(N) = 1 \). Suppose that the users \(A, B, C \) have the following public moduli:

\[
N_1 = 5000746010773, \quad N_2 = 5000692010527, \quad N_3 = 5000296004107.
\]

(i) ALICE sends a message \(m \) to \(A, B, C \) by encrypting: \(m_i = m^3 \mod N_i \). EVEn drops in and captures the following values:

\[
m_1 = 1549725913504, \quad m_2 = 2886199297672, \quad m_3 = 2972130153144.
\]

Show that EVEn can recover the value of \(m \) without factoring \(N_i \) and compute this value with a Computer Algebra System of your choice (Maple, MuPAD, Mathematica, SAGE, etc.). (Hint: Use the Chinese Remainder Theorem.)

(ii) Generalize the method used by EVEn above for a general public exponent \(e \). How many messages should EVEn intercept in order to recover the clear text message?

Exercise 5.2 (Diffie-Hellman key exchange in \(\mathbb{Z}_{20443}^\times \)). (5 points)

ALICE and BOB want to agree on a common key over an insecure channel. To do so, they perform a Diffie-Hellman key exchange in the group \(\mathbb{Z}_{20443}^\times \)

(i) To find a generator for the cyclic group \(\mathbb{Z}_{20443}^\times \), the following fact is used:
Theorem. An element \(a \in \mathbb{Z}_p^\times \) is a generator if and only if \(a^{(p-1)/t} \neq 1 \) (mod \(p \)) holds for all prime divisors \(t \) of \(p-1 \).

Use this to show that \(2 \) is a generator of \(\mathbb{Z}_{20443}^\times \).

(ii) Next, ALICE chooses her private key \(a = 257 \) and BOB chooses his private key \(b = 1280 \). What are the further steps, both sides have to perform, until they are both in possession of the common key, corresponding to their private keys? Do them.

Exercise 5.3 (Orders).

Let \(G \) be a (multiplicative) commutative group, \(a \) an element of order \(u \) and \(b \) an element of order \(v \). We want to investigate two questions:

- What is the order of \(a^2, a^3, \ldots \)?
- What are possible orders of \(ab \)?

First, let us look at an example: Take \(G = \mathbb{Z}_{1321}^\times \), \(a = 53 \) and \(b = 17 \). We have \(a^{33} = 1 \) and \(b^{24} = 1 \) in \(G \) and for all respective smaller positive exponents the result is not 1.

(i) Compute the order of \(a^2, a^3, a^9, a^{10}, a^{11} \).

(ii) Compute the order of \(ab, a^2b, a^3b \).

Now, we want to investigate the general case:

(iii) Show: The order of the power \(x^n \) of a group element \(x \in G \) is the order of \(x \) divided by the greatest common divisor of \(n \) and that order.

In short:

\[
\text{ord}(x^n) = \frac{\text{ord}(x)}{\gcd(n, \text{ord}(x))}.
\]

(Hint: Look at the special cases \(\gcd(n, \text{ord}(x)) = 1 \) and \(n|\text{ord}(x) \) and derive the general solution from there.)

(iv) Show: If the orders of two group elements \(x, y \in G \) are coprime, then the order of \(xy \) is actually equal to the the least common multiple of those orders.

In short:

\[
\text{If} \ \gcd(\text{ord}(x), \text{ord}(y)) = 1, \ \text{then} \ \text{ord}(xy) = \ellcm(\text{ord}(x), \text{ord}(y)).
\]