2. Assignment: Arithmetic in $\mathbb{F}_{256}[y]$
(Due: Wednesday, 12 November 2008, 13:40, b-it bitmax)

Exercise 2.1 (MixColumns). (12 points)

The MixColumns-step of the AES-algorithm takes place in the ring

$$S = \mathbb{F}_{256}[y]/\langle y^4 + 1 \rangle.$$

(i) The ring S is not a field. In particular, there are nonzero elements in S without a multiplicative inverse. Give an example and explain how you could check that property.

(ii) The output b_3, b_2, b_1 and b_0 of the MixColumns-step for a column with entries a_3, a_2, a_1 and a_0 is determined by the product

$$b_3y^3 + b_2y^2 + b_1y + b_0 = (02 + 01y + 01y^2 + 03y^3) \cdot (a_3y^3 + a_2y^2 + a_1y + a_0).$$

Expand the product over $\mathbb{F}_{256}[y]$, reduce it modulo $y^4 + 1$ and collect the terms with equal powers of y to obtain equations for b_3, b_2, b_1 and b_0.

(iii) Find a 4×4-matrix M with entries from \mathbb{F}_{256} to express this multiplication as a matrix-vector product

$$\begin{pmatrix} b_0 \\ b_1 \\ b_2 \\ b_3 \end{pmatrix} = M \cdot \begin{pmatrix} a_0 \\ a_1 \\ a_2 \\ a_3 \end{pmatrix}.$$

(iv) Use this matrix-vector product to perform the MixColumns-operation on the following state of AES:

$$\begin{bmatrix} 00 & 00 & 00 & 00 \\ 7A & 00 & 00 & 00 \\ 01 & 00 & 01 & 00 \\ 00 & 00 & 00 & AA \end{bmatrix}$$

(v) The InvMixColumns-operation is the inverse of MixColumns. From exercise 1.3 (iii) you know that the product of $02 + 01y + 01y^2 + 03y^3$ with $0B y^3 + 0D y^2 + 09 y + 0E$ is 01 in S. Use this information to write down the InvMixColumns-operation on a column b in matrix-vector-notation.
Exercise 2.2 (Repeated-Squaring). (8 points)

For a given positive integer N we consider the set \mathbb{Z}_N of all residues modulo N, i.e.

$$\mathbb{Z}_N = \{0, 1, \ldots, N - 1\}.$$

On this set we can add, multiply and raise to powers, by simply performing the well-known corresponding operation on integers and reducing the result modulo N if necessary. We want to examine the operation of squaring and visualize the relations that are generated by repeated squaring.

This can be done by drawing a directed graph according to the following recipe:

1. Draw $N - 1$ vertices and label them $1, 2, \ldots, N - 1$.
2. Draw an arrow from every vertex to the one labeled by its square modulo N.
3. Arrange your picture well.

(i) As an example, the graph for $N = 19$ consists of the following three components:

![Graph for N = 19](image)

Use the information from this graph and the Repeated-Squaring-method to compute $15^{22} \text{ mod } 19$. How many multiplications are necessary?

(ii) Draw a graph for $N = 13$ and $N = 17$.

(iii) How many sources (i.e. vertices where no arrow is pointing to) does each of the graphs have.