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Security on the Internet, winter 2008
MICHAEL NÜSKEN, DANIEL LOEBENBERGER

3. Exercise sheet
Hand in solutions until

Monday, 17 November 2008, noon: 1200 (deadline!).

Any claim needs a proof or an argument.

Exercise 3.1 (More on the Extended Euclidean Algorithm). (14 points)

Integers: We can add, subtract and multiply them. And there is a division with
remainder: Given any a, b ∈ Z with b 6= 0 there is a quotient q ∈ Z and a remainder
r ∈ Z such that a = q · b + r and 0 ≤ r < |b|. (We write a quo b := q, a rem b :=
r ∈ Z. If we want to calculate with the remainder in its natural domain we write
a mod b := r ∈ Zb.) Using that we give an answer to the problem to find s, t ∈ Z

with sa + tb = 1. Allowed answers are: "There is no solution." or "A solution is
s = ... and t = ...." Any answer needs a proof (or at least a good argument).

We start with one example: Consider a = 35 ∈ Z and b = 22 ∈ Z. Our aim is to
find s, t ∈ Z such that sa + tb is positive and as small as possible. By taking s0 = 1
and t0 = 0 we get s0a + t0b = a (identity

0
) and by taking s1 = 0 and t1 = 1 we

get s1a + t1b = b (identity
1
). Given that we can combine the two identities with a

smaller outcome if we use a = q1b + r2 with r smaller than b (in a suitable sense);
namely we form 1(identity

0
) − q1(identity

1
) and obtain

(s0 − q1s1)
︸ ︷︷ ︸

=:s2

a + (t0 − q1t1)
︸ ︷︷ ︸

=:t2

b = a − q1b
︸ ︷︷ ︸

=r2

.

We arrange this in a table and continue with identity
1

and the newly found identity
2

until we obtain 0. This might be one step more than you think necessary, but the
last identity is very easy to check and so gives us a cross-check of the entire calcu-
lation. For the example we obtain:

i ri qi si ti comment
0 a = 35 1 0 1a + 0b = 35
1 b = 22 1 0 1 0a + 1b = 22, 35 = 1 · 22 + 13
2 13 1 1 −1 1a − 1b = 13, 22 = 1 · 13 + 9
3 9 1 −1 2 −1a + 2b = 9, 13 = 1 · 9 + 4
4 4 2 2 −3 2a − 3b = 4, 9 = 2 · 4 + 1
5 1 4 −5 8 −5a + 8b = 1, 4 = 4 · 1 + 0
6 0 22 −35 22a− 35b = 0, DONE, check ok!

We read off (marked in blue) that 1 = −5a + 8b and the greatest common divisor
of a and b is 1. This implies that 8 · 22 = 1 in Z35, in other words: the multiplicative
inverse of 22, often denoted 22−1 or 1

22
, in the ring Z35 of integers modulo 35 is

8. (Brute force is no solution! That is, guessing or trying all possibilities is not
allowed here!)

(i) Find s, t ∈ Z such that s · 17 + t · 35 = 1. 1

(ii) Find s, t ∈ Z such that s · 14 + t · 35 = 1. 1



Co
se

C

b-it

C
om

pu
te

r

S
e

C
u
ri

ty

2 Michael Nüsken, Daniel Loebenberger

Actually, there are other things which can be added, subtracted, multiplied, and
allow a division with remainder. For example, univariate polynomials with co-
efficients in a field form a euclidean ring. A concrete example is the ring F2[X ]
of univariate polynomials with coefficients in the two element field F2. (The ele-
ments of F2 are 0 and 1, addition and multiplication are modulo 2, so 1 + 1 = 0.
The expression 1 + X + X3 + X4 + X8 is a typical polynomial with coefficients in
F2; note that the coefficients know that ‘1 + 1 = 0’ where they live. It’s square is
1 + X2 + X6 + X8 + X16, any occurance of 1 + 1 during squaring yields 0.)

(iii) Find s, t ∈ F2[X ] such that s · (1 + X) + t · (1 + X + X3 + X4 + X8) = 1.4

To know why the EEA works prove the following statements. [Notation: We as-
sume that the first column contains remainders ri, the second column quotients qi

and the other two coefficients si and ti. The top row has i = 0, and the bottom
row (the first with ri = 0 and thus the last one) is row ℓ + 1. There is no q0 and
no qℓ+1, r0 = a, r1 = b. A division with remainder produces qi, ri+1 ∈ Z with
ri−1 = qiri + ri+1 with 0 ≤ ri+1 < |ri| (0 < i < ℓ).]

(iv) For any row in the scheme we have ri = sia + tib (0 ≤ i ≤ ℓ + 1).1

(v) For any two neighbouring rows in the scheme we have that the greatest2
common divisor of ri and ri+1 is the same (0 ≤ i ≤ ℓ). [A step leading there
is gcd(ri, ri+1) = gcd(ri−1, ri).]

(vi) The greatest common divisor of rℓ and 0 is rℓ.1

(vii) We have |ri+1| < |ri| (1 ≤ i ≤ ℓ), so the algorithm terminates.1

(viii) We have |ri+1| < 1

2
|ri−1| (2 ≤ i ≤ ℓ), so the algorithm is fast, ie. ℓ ∈ O(n)1

when a, b have at most n bits, ie. |a|, |b| < 2n.

(ix) Put everything together and prove:2

Theorem. The EEA computes given a, b ∈ Z with at most n bits with at
most O(n3) bit operations the greatest common divisor g of a and b and a
representation g = sa + tb of it. In case g = 1 we thus have a solution of the
equation 1 = sa + tb. In case g > 1 there is no such solution.

[Hint: A single multiplication or a single division with remainder of n bit
numbers needs at most O(n2) bit operations.]

Exercise 3.2 (Polynomials over F2). (14 points)

Let’s consider polynomials with coefficients in the field F2. (Remember that F2 =
Z2 since 2 is prime.)

(i) Take your student id, and write 1234567 + studentid =
∑

0≤k<24
sk2k with2
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sk ∈ {0, 1} ⊂ Z. Now interpret sk ∈ F2 and write down the polynomials

a =
∑

0≤k<8

skXk ∈ F2[X ],

b =
∑

0≤k<8

sk+8X
k ∈ F2[X ],

c =
∑

0≤k<8

sk+16X
k ∈ F2[X ],

d = a + bX8 =
∑

0≤k<16

skXk ∈ F2[X ].

If a = 0, b = 0, or deg c < 3 then add 2345678 to your real student id.

(ii) Compute a + b. 1

(iii) Compute a · b. 1

(iv) Compute the remainder of the division of d by c. 3

Some polynomials are a proper product of others. Some are not.

(v) Prove that X2 + X + 1 cannot be written as a proper product. We call such a 1
polynomial irreducible.

(vi) Write X8 + 1 as a product of irreducible polynomials (that cannot be written 2
as a product). [For verification only: the factors’ degrees are all 1.]

(vii) Write X9 + 1 as a product of irreducible polynomials. [For verification only: 4
the factors’ degrees are 1, 2, and 6.]

Exercise 3.3 (AES amputated). (9 points)

As we have already seen during the lectures, AES is an extremely simple cipher,
its description is very short. But still, can we make it even simpler, by hacking out
superfluous bits without impacting on its strength?

Considering the four steps (SubBytes, ShiftRows, MixColumns and AddRound-
Key) performed in each round, we want to see whether those steps are essential or
not to the security of the cipher.

(i) For instance, what would happen to AES should one remove the SubBytes 2
step in each round?

(ii) What if one were to remove the ShiftRows step? 2

(iii) What about the MixColumns step? 2

(iv) And the AddRoundKey step? 2

(v) Conclude. 1


