Security on the Internet, winter 2008 Michael Nüsken, Daniel Loebenberger

4. Exercise sheet Hand in solutions until Monday, 24 November 2008, 11⁵⁹am (deadline!).

Any claim needs a proof or an argument.

Exercise 4.1 (Tool: Groups).

(8 points)

1

1

1

1

1

1

In this exercise you will get comfortable with the concept of a group. Always remember: Don't PANIC. Which of the following sets, together with the given operation form a group? Check for each property (Proper, Associative, Neutral, Inverse, Commutative) if it is well-defined, and if so if it is fulfilled or not:

- (i) $(\mathbb{Z}, -)$: The integers \mathbb{Z} with subtraction.
- (ii) $(\mathbb{N} \setminus \{0\}, \hat{})$: The positive integers $\mathbb{N} \setminus \{0\}$ with exponentiation.
- (iii) (\mathbb{B}, \vee) : The set $\mathbb{B} := \{\top, \bot\}$ with operation \vee (the logical OR), defined as:

(iv) (\mathbb{B}, \oplus) : The set \mathbb{B} with operation \oplus (the logical XOR), defined as:

\oplus	H	L
T	L	Τ
\perp	Т	\perp

(v) $(4\mathbb{Z}+1, \cdot)$: The set $4\mathbb{Z}+1 := \{z \in \mathbb{Z} \mid z = 1 \text{ in } \mathbb{Z}_4\}$ with multiplication.

- (vi) $(\{\mathbb{Z}_7 \to \mathbb{Z}_7\}, \circ)$: The set $\{\mathbb{Z}_7 \to \mathbb{Z}_7\} := \{f : \mathbb{Z}_7 \to \mathbb{Z}_7\}$ with concatenation \circ of functions. An example: If $g_1, g_2 : \mathbb{Z}_7 \to \mathbb{Z}_7$ are two functions then $(g_1 \circ g_2)(x) := g_1(g_2(x))$ for all $x \in \mathbb{Z}_7$.
- (vii) The elliptic curve $E: y^2 = x^3 + x$ has four points over \mathbb{F}_3 . Namely we have $E = \{(0,0), (-1,1), (-1,-1), \mathcal{O}\}$. We define an addition on E via the following table:

1	+	\mathcal{O}	(0,0)	(-1, 1)	(-1, -1)
	O	0	(0, 0)	(-1, 1)	(-1, -1)
	(0, 0)	(0, 0)	O	(-1, -1)	(-1, 1)
	(-1,1)	(-1, 1)	(-1, -1)	(0, 0)	\mathcal{O}
	(-1, -1)	(-1, -1)	(-1, 1)	\mathcal{O}	(0,0)

Exercise 4.2 (Diffie Hellman key exchange). (6 points)

Perform a toy example of a Diffie Hellman key exchange: Fix p = 47 and $g = 2 \in \mathbb{Z}_p^{\times}$.

- (i) Show that the order of *g* is 23, i.e. $g^{23} = 1$ but $g^k \neq 1$ for $1 \le k < 23$. [If you are clever then you only need to calculate g^{23} .]
- (ii) Choose $x \in \mathbb{Z}_{23}$ (take $x \notin \{0,1\}$ to get something interesting) and calculate $h_A := g^x$.
- (iii) Choose $y \in \mathbb{Z}_{23}$ (take $y \notin \{0, 1, x\}$ to get something interesting) and calculate $h_B := g^y$.
- (iv) Now compute h_B^x and h_A^y and compare.

Exercise 4.3 (Beware of the group!).

(6 points)

1

1

The Joker proposes to perform the Diffie-Hellman key exchange in the group $(\mathbb{Z}_p, +)$. Explain why this is insecure:

- (i) Prove that the discrete logarithm problem is easy here.
- (ii) Show that the above proposal makes the key exchange completely insecure.

Exercise 4.4 (Square and multiply – the fancy way).

(5 points)

Use paper and pencil for this exercise. How many multiplications do you need to compute x^{382} ?

- (i) Find an algorithm that uses 14 multiplications.
- (ii) Find an algorithm that uses 12 multiplications.
- (iii) Can you find an algorithm that uses 11 multiplications?

Some side calculations: $382 = 101111110_2 = 112011_3 = 11332_4 = 3012_5 = 1434_6 = 1054_7 = 576_8, 382 = 2 \cdot 191, 190 = 2 \cdot 5 \cdot 19, 189 = 7 \cdot 3^3.$

Exercise 4.5 (Birthday? Paradox.).

(3 points)

Compute the probability that in a group of 23 randomly chosen people, (at least) two have the same birthday. Provide a meaningful formula to justify your computation. (You may assume, that birthdays are uniformly distributed among 366 days in a year.)

1

3

3

1

2

2

3