Security on the Internet, winter 2008
 Michael Nüsken, Daniel Loebenberger

4. Exercise sheet
 Hand in solutions until Monday, 24 November 2008, 11^{59} am (deadline!).

Any claim needs a proof or an argument.

Exercise 4.1 (Tool: Groups).
(8 points)
In this exercise you will get comfortable with the concept of a group. Always remember: Don't PANIC. Which of the following sets, together with the given operation form a group? Check for each property (Proper, Associative, Neutral, Inverse, Commutative) if it is well-defined, and if so if it is fulfilled or not:
(i) $(\mathbb{Z},-)$: The integers \mathbb{Z} with subtraction.
(ii) $\left(\mathbb{N} \backslash\{0\},{ }^{\wedge}\right)$: The positive integers $\mathbb{N} \backslash\{0\}$ with exponentiation.
(iii) (\mathbb{B}, \vee) : The set $\mathbb{B}:=\{\top, \perp\}$ with operation \vee (the logical OR), defined as:

\vee	T	\perp
T	T	T
\perp	T	\perp

(iv) (\mathbb{B}, \oplus) : The set \mathbb{B} with operation \oplus (the logical XOR), defined as:

\oplus	\top	\perp
\top	\perp	\top
\perp	T	\perp

(v) $(4 \mathbb{Z}+1, \cdot)$: The set $4 \mathbb{Z}+1:=\left\{z \in \mathbb{Z} \mid z=1\right.$ in $\left.\mathbb{Z}_{4}\right\}$ with multiplication.
(vi) $\left(\left\{\mathbb{Z}_{7} \rightarrow \mathbb{Z}_{7}\right\}\right.$, o): The set $\left\{\mathbb{Z}_{7} \rightarrow \mathbb{Z}_{7}\right\}:=\left\{f: \mathbb{Z}_{7} \rightarrow \mathbb{Z}_{7}\right\}$ with concatenation \circ of functions. An example: If $g_{1}, g_{2}: \mathbb{Z}_{7} \rightarrow \mathbb{Z}_{7}$ are two functions then $\left(g_{1} \circ\right.$ $\left.g_{2}\right)(x):=g_{1}\left(g_{2}(x)\right)$ for all $x \in \mathbb{Z}_{7}$.
(vii) The elliptic curve $E: y^{2}=x^{3}+x$ has four points over \mathbb{F}_{3}. Namely we have $E=\{(0,0),(-1,1),(-1,-1), \mathcal{O}\}$. We define an addition on E via the following table:

+	\mathcal{O}	$(0,0)$	$(-1,1)$	$(-1,-1)$
\mathcal{O}	\mathcal{O}	$(0,0)$	$(-1,1)$	$(-1,-1)$
$(0,0)$	$(0,0)$	\mathcal{O}	$(-1,-1)$	$(-1,1)$
$(-1,1)$	$(-1,1)$	$(-1,-1)$	$(0,0)$	\mathcal{O}
$(-1,-1)$	$(-1,-1)$	$(-1,1)$	\mathcal{O}	$(0,0)$

Exercise 4.2 (Diffie Hellman key exchange).

Perform a toy example of a Diffie Hellman key exchange: Fix $p=47$ and $g=2 \in$ \mathbb{Z}_{p}^{\times}.
(i) Show that the order of g is 23 , i.e. $g^{23}=1$ but $g^{k} \neq 1$ for $1 \leq k<23$. [If you are clever then you only need to calculate g^{23}.]

Exercise 4.5 (Birthday? Paradox.).
(ii) Choose $x \in \mathbb{Z}_{23}$ (take $x \notin\{0,1\}$ to get something interesting) and calculate $h_{A}:=g^{x}$.
(iii) Choose $y \in \mathbb{Z}_{23}$ (take $y \notin\{0,1, x\}$ to get something interesting) and calculate $h_{B}:=g^{y}$.
(iv) Now compute h_{B}^{x} and h_{A}^{y} and compare.

Exercise 4.3 (Beware of the group!).
(6 points)
The Joker proposes to perform the Diffie-Hellman key exchange in the group $\left(\mathbb{Z}_{p},+\right)$. Explain why this is insecure:
(i) Prove that the discrete logarithm problem is easy here.
(ii) Show that the above proposal makes the key exchange completely insecure.

Exercise 4.4 (Square and multiply - the fancy way).
(5 points)
Use paper and pencil for this exercise. How many multiplications do you need to compute x^{382} ?
(i) Find an algorithm that uses 14 multiplications.
(ii) Find an algorithm that uses 12 multiplications.
(iii) Can you find an algorithm that uses 11 multiplications?

Some side calculations: $382=101111110_{2}=112011_{3}=11332_{4}=3012_{5}=1434_{6}=$ $1054_{7}=576_{8}, 382=2 \cdot 191,190=2 \cdot 5 \cdot 19,189=7 \cdot 3^{3}$.

Compute the probability that in a group of 23 randomly chosen people, (at least) two have the same birthday. Provide a meaningful formula to justify your computation. (You may assume, that birthdays are uniformly distributed among 366 days in a year.)

