Security on the Internet, winter 2008
 Michael NÜSken, Daniel Loebenberger

5. Exercise sheet Hand in solutions until Monday, 08 December 2008, $11{ }^{59}$ am (deadline!).

Note that on Wednesday, 3 December 2008 there is the Dies Academicus in Bonn and we will have no lecture/tutorial. We will thus on Tuesday, 2 December 2008 have a special session in the tutorial that repeats some of the major concepts regarding groups, rings, fields and other mathematical basics (or anything else you ask for).

As usual: Any claim needs a proof or an argument.

Exercise 5.1 (Exponentiation \& discrete logarithms). (15+3 points)

Suppose G is a group and g is an element of order ℓ. In the course we have defined exponentiation as a map from the integers \mathbb{Z} to some group G.
(i) Show that it makes sense to view it as a map
(ii) Let $G=\mathbb{Z}_{10001}^{\times}, g=42$. Write a procedure to compute $\exp _{g}$ efficiently. [Group operations are allowed as primitives. Other predefined procedures may not be used.]
(iii) Same for $G=\mathbb{Z}_{241576501}^{\times}, g=23$.
(iv) Now let $p=241576501$, and $g=23^{1500}=-46436978 \in \mathbb{Z}_{p}^{\times}$.
(a) Compute $g^{11^{4}}$ and $g^{11^{5}}$.
(b) Prove that the order of g is 11^{5}.
(c) Prepare a table with all powers of $h:=g^{11^{4}}=23^{(p-1) / 11}$ in \mathbb{Z}_{p}^{\times}.
(d) Compute the discrete logarithm x of $42^{1500}=105868544 \in \mathbb{Z}_{p}^{\times}$with respect to g. [Note that $(p-1)=1500 \cdot 11^{5}$ and consider $42^{1500 \cdot 11^{4}}=$ $g^{x \cdot 11^{4}} \ldots$]
(e) What does the result tell us about the discrete logarithm of $42 \in \mathbb{Z}_{p}^{\times}$with respect to the base $23 \in \mathbb{Z}_{p}^{\times}$?

Exercise 5.2 (High powers).
Compute $3^{98765432101}$ in \mathbb{Z}_{101}.

Exercise 5.3 (Pollard's ϱ method).
(9 points)
In class we discussed Pollard's ϱ method for computing the discrete logarithm in a group \mathbb{Z}_{p}^{\times}of size m. In particular we defined the algorithm in the following way: Assuming that we work on tuples $\left(\gamma, \delta, a g^{\gamma}, g^{\delta}\right)$ we looked at some in a sense randomly behaving function f that mapped such tuples to other ones. This however is not efficient enough. [Why?] Thus we consider instead tuples ($\gamma, \delta, a^{\gamma} g^{\delta}$) and the function f defined as follows:

$$
\begin{aligned}
\mathbb{Z}_{p-1} \times \mathbb{Z}_{p-1} \times \mathbb{Z}_{p}^{\times} & \longrightarrow \begin{array}{ll}
\mathbb{Z}_{p-1} \times \mathbb{Z}_{p-1} \times \mathbb{Z}_{p}^{\times} \\
f: & (\gamma, \delta, x)
\end{array} \\
& \longmapsto \begin{cases}\left(2 \gamma, 2 \delta, x^{2}\right) & x_{1}=x_{0} \\
(\gamma, \delta+1, g x) & x_{1} x_{0}=01 \\
(\gamma+1, \delta, a x) & x_{1} x_{0}=10\end{cases}
\end{aligned}
$$

(i) Compute the order of $b^{2}, b^{3}, b^{9}, b^{10}, b^{11}$.

Now we want to investigate the general case:
(ii) Show: The order of the power g^{k} of a group element $g \in G$ is the order of g divided by the greatest common divisor of k and that order, in formulae: $\operatorname{ord}\left(g^{k}\right)=\operatorname{ord}(g) / \operatorname{gcd}(k, \operatorname{ord}(g))$. [Hint: Look at the special cases $\operatorname{gcd}(k, \operatorname{ord}(g))=1$ and $k \mid \operatorname{ord}(g)$ and derive the general solution from there.]

Consider again the example:

(iii) Compute the order of $a b, a b^{2}, a b^{3}$.
\ldots. and back to the general case:
(iv) Show: The order of the product $x y$ of two group elements $g, h \in G$ in a commutative group G divides the least common multiple of the orders of g and h, in formulae: $\operatorname{ord}(g h) \mid \operatorname{lcm}(\operatorname{ord}(g), \operatorname{ord}(h))$.
(v^{*}) Show: If the orders of two group elements $g, h \in G$ are coprime, then the order of $x y$ is actually equal to the the least common multiple of those orders, in formulae: $\operatorname{gcd}(\operatorname{ord}(g), \operatorname{ord}(h))=1 \Rightarrow \operatorname{ord}(g h)=\operatorname{lcm}(\operatorname{ord}(g), \operatorname{ord}(h))$.
(vi*) Show that the following is true in general: If $\operatorname{ord}(g)=m s, \operatorname{ord}(h)=m t$ where s and t are coprime, then $s t \mid \operatorname{ord}(g h)$.
[Actually, st $=\operatorname{lcm}(\operatorname{ord}(g), \operatorname{ord}(h)) / \operatorname{gcd}(\operatorname{ord}(g), \operatorname{ord}(h))$.

