Security on the Internet, winter 2008 Michael Nüsken, Daniel Loebenberger

6. Exercise sheet Hand in solutions until Monday, 08 December 2008, 11⁵⁹am (deadline!).

As usual: Any claim needs a proof or an argument.

Exercise 6.1 (Remainders).

(5+1 points)

+1

Consider rings \mathbb{Z}_{mn} with the following pairs (m, n). In each case make a table with \mathbb{Z}_m on one axis and \mathbb{Z}_n on the other, then write each number $a \in \mathbb{Z}_{mn}$ at position $(a \mod m, a \mod n)$ as in this example:

$$\frac{\mathbb{Z}_{2} \setminus \mathbb{Z}_{3}}{0} \frac{0}{0} \frac{1}{4} \frac{2}{2} \\
1 3 1 5 \\
(iii) (m, n) = (4, 6) \\
(iv) (m, n) = (3, 8)$$

- (i) (m, n) = (2, 4),
- (ii) (m, n) = (3, 5),
- (v) In which of the previous cases do the numbers fill the entire table? When do they not collide?
- (vi) Give a simple criterion on (m, n) to tell when the numbers fill the table.

Exercise 6.2 (Chinese remaindering and Pohlig-Hellman). (4 points)

The goal of this exercise is to understand the algorithm of Pohlig-Hellman. The numbers are deliberately small and the use of MuPAD or any other computer algebra system for this exercise is discouraged.

- (i) Let $G = \mathbb{Z}_p^{\times}$ with $p = 2 \cdot 3 \cdot 5 \cdot 7 + 1$, g = 2, y = 10. Compute the discrete 2 logarithm of y in base g using the Chinese remainder theorem.
- (ii) Let $G = \mathbb{Z}_p^{\times}$ with $p = 2^4 + 1$, g = 3, y = 7. Compute the discrete logarithm of y in base g using the idea by Pohlig-Hellman.