Security on the Internet, winter 2008
 Michael Nüsken, Daniel Loebenberger

9. Exercise sheet
 Hand in solutions until
 Monday, 12 January 2009, 11^{59} am (deadline!).

As usual: Any claim needs a proof or an argument.

Exercise 9.1 (ElGamal-signatures and hash functions).
Consider the ElGamal signature scheme with a hash function h. Assume that the attacker can find a collission of h, ie. find two documents $x \neq y$ with $h(x)=h(y)$. Prove that the attacker can then break the scheme. Conclude a theorem: "If ElGamalSign (h) is secure then $h \ldots$...

Exercise 9.2 (1999 IPsec criticism).
(i) At http://www.schneier.com/paper-ipsec.html you find the IPsec and IKE v1 criticism by Bruce Schneier and Niels Ferguson. Read and summarize it. (What are their recommendations? What are their major reasons? Do they say whether IPsec/IKE is secure or how to make it secure?)
(ii) Reconsider their arguments in the presence of IKE version 2 (that we discussed in the course).

Exercise 9.3 (DLP and hash functions).
The numbers $q=7541$ and $p=15083=2 q+1$ are prime. We choose the group $G=\{z \mid$ ord $z \mid q\}<\mathbb{Z}_{p}^{\times}$. Let $\alpha=604$ and $\beta=3791$ be elements of G. Both elements α and β have order q in \mathbb{Z}_{p}^{\times}and (thus) generate the same subgroup.
(i) Consider the hash function

$$
h: \begin{aligned}
\mathbb{Z}_{q} \times \mathbb{Z}_{q} & \longrightarrow G, \\
\left(x_{1}, x_{2}\right) & \longmapsto \alpha^{x_{1}} \beta^{x_{2}} .
\end{aligned}
$$

Compute $h(7431,5564)$ and $h(1459,954)$.
(ii) Find $\log _{\alpha} \beta$.
(iii) Prove that for any p, q (both prime with q dividing $p-1$) finding a collision of h solves a discrete logarithm in the order q subgroup of \mathbb{Z}_{p}^{\times}(which is thought to be difficult...).

Exercise 9.4 (Derivated hash functions).
Let $h_{0}:\{0,1\}^{2 m} \rightarrow\{0,1\}^{m}$ be a collision-resistant hash function with $m \in \mathbb{N}_{>0}$.
(i) We construct a hash function $h_{1}:\{0,1\}^{4 m} \rightarrow\{0,1\}^{m}$ as follows: Interpret the bit string $x \in\{0,1\}^{4 m}$ as $x=\left(x_{1} \mid x_{2}\right)$, where both $x_{1}, x_{2} \in\{0,1\}^{2 m}$ are words with $2 m$ bits. Then compute the hash value $h_{1}(x)$ as

$$
h_{1}(x)=h_{0}\left(h_{0}\left(x_{1}\right) \mid h_{0}\left(x_{2}\right)\right) .
$$

Show: h_{1} ist collision-resistant.
(ii) Let $i \in \mathbb{N}, i \geq 1$. We define a hash function $h_{i}:\{0,1\}^{2^{i+1} m} \rightarrow\{0,1\}^{m}$ recursively using h_{i-1} in the following way: Interpret the bit string $x \in$ $\{0,1\}^{2^{i+1} m}$ as $x=\left(x_{1} \mid x_{2}\right)$, where both $x_{1}, x_{2} \in\{0,1\}^{2^{2} m}$ are words with $2^{i} m$ bits. Then the hash value $h_{i}(x)$ is defined as

$$
h_{i}(x)=h_{0}\left(h_{i-1}\left(x_{1}\right) \mid h_{i-1}\left(x_{2}\right)\right) .
$$

Show: h_{i} is collision-resistant.
(iii) The number $p=2027$ is prime. Now define $h_{0}:\{0,1\}^{22} \rightarrow\{0,1\}^{11}$ as follows: Let $x=\left(b_{21}, \ldots, b_{0}\right)$ be the binary representation of x. Then $x_{1}=\sum_{0 \leq i \leq 10} b_{11+i} 2^{i} \bmod p$ and $x_{2}=\sum_{0 \leq i \leq 10} b_{i} 2^{i} \bmod p$. Show that the numbers 5 and 7 have order $p-1$ modulo p. Now compute $y=5^{x_{1}}$. $7^{x_{2}} \bmod p$ and let $h(x)=\left(B_{10}, \ldots, B_{0}\right)$ be the binary representation of y, i.e. $y=\sum_{0 \leq i<11} B_{i} 2^{i}$. Compute from h_{0} the hash function $h_{2}:\{0,1\}^{88} \rightarrow$ $\{0,1\}^{11}$ analogous to (ii), Use the birthday attack to find a collision of h_{0} and h_{1}. (For this you should of course use a computer algebra system, e.g. MuPAD.)

Note: "|" denotes the concatenation of bit strings, in MuPAD a dot . is used.

