Security on the Internet, winter 2008 Michael Nüsken, Daniel Loebenberger

9. Exercise sheet Hand in solutions until Monday, 12 January 2009, 11⁵⁹am (deadline!).

As usual: Any claim needs a proof or an argument.

Exercise 9.1 (ElGamal-signatures and hash functions).

Consider the ElGamal signature scheme with a hash function *h*. Assume that the attacker can find a collission of *h*, i.e. find two documents $x \neq y$ with h(x) = h(y). Prove that the attacker can then break the scheme. Conclude a theorem: "If ElGamalSign(*h*) is secure then $h \dots$ ".

Exercise 9.2 (1999 IPsec criticism).

- (i) At http://www.schneier.com/paper-ipsec.html you find the [4] IPsec and IKE v1 criticism by Bruce Schneier and Niels Ferguson. Read and summarize it. (What are their recommendations? What are their major reasons? Do they say whether IPsec/IKE is secure or how to make it secure?)
- (ii) Reconsider their arguments in the presence of IKE version 2 (that we discussed in the course).

Exercise 9.3 (DLP and hash functions).

The numbers q = 7541 and p = 15083 = 2q + 1 are prime. We choose the group $G = \{z \mid \text{ord } z | q\} < \mathbb{Z}_p^{\times}$. Let $\alpha = 604$ and $\beta = 3791$ be elements of *G*. Both elements α and β have order *q* in \mathbb{Z}_p^{\times} and (thus) generate the same subgroup.

(i) Consider the hash function

$$h: \begin{array}{ccc} \mathbb{Z}_q \times \mathbb{Z}_q & \longrightarrow & G, \\ (x_1, x_2) & \longmapsto & \alpha^{x_1} \beta^{x_2}. \end{array}$$

Compute h(7431, 5564) and h(1459, 954).

(8 points)

(6 points)

2

(6 points)

- (ii) Find $\log_{\alpha} \beta$.
- (iii) Prove that for any p, q (both prime with q dividing p 1) finding a collision of h solves a discrete logarithm in the order q subgroup of \mathbb{Z}_p^{\times} (which is thought to be difficult...).

Exercise 9.4 (Derivated hash functions).

Let $h_0: \{0,1\}^{2m} \to \{0,1\}^m$ be a collision-resistant hash function with $m \in \mathbb{N}_{>0}$.

(i) We construct a hash function $h_1: \{0, 1\}^{4m} \to \{0, 1\}^m$ as follows: Interpret the bit string $x \in \{0, 1\}^{4m}$ as $x = (x_1|x_2)$, where both $x_1, x_2 \in \{0, 1\}^{2m}$ are words with 2m bits. Then compute the hash value $h_1(x)$ as

$$h_1(x) = h_0(h_0(x_1)|h_0(x_2)).$$

Show: h_1 ist collision-resistant.

(ii) Let $i \in \mathbb{N}$, $i \ge 1$. We define a hash function $h_i: \{0,1\}^{2^{i+1}m} \to \{0,1\}^m$ recursively using h_{i-1} in the following way: Interpret the bit string $x \in \{0,1\}^{2^{i+1}m}$ as $x = (x_1|x_2)$, where both $x_1, x_2 \in \{0,1\}^{2^im}$ are words with 2^im bits. Then the hash value $h_i(x)$ is defined as

$$h_i(x) = h_0(h_{i-1}(x_1)|h_{i-1}(x_2)).$$

Show: h_i is collision-resistant.

(iii) The number p = 2027 is prime. Now define $h_0 : \{0,1\}^{22} \to \{0,1\}^{11}$ as [2] follows: Let $x = (b_{21}, \ldots, b_0)$ be the binary representation of x. Then $x_1 = \sum_{0 \le i \le 10} b_{11+i} 2^i \mod p$ and $x_2 = \sum_{0 \le i \le 10} b_i 2^i \mod p$. Show that the numbers 5 and 7 have order p - 1 modulo p. Now compute $y = 5^{x_1} \cdot 7^{x_2} \mod p$ and let $h(x) = (B_{10}, \ldots, B_0)$ be the binary representation of y, i.e. $y = \sum_{0 \le i < 11} B_i 2^i$. Compute from h_0 the hash function $h_2 : \{0,1\}^{88} \to \{0,1\}^{11}$ analogous to (ii). Use the birthday attack to find a collision of h_0 and h_1 . (For this you should of course use a computer algebra system, e.g. MUPAD.)

Note: "|" denotes the concatenation of bit strings, in MuPAD a dot . is used.

(6 points)

2