Security on the Internet, winter 2008
MICHAEL NUSKEN, DANIEL LOEBENBERGER

10. Exercise sheet
Hand in solutions until
Monday, 19 January 2009, 11¥am (deadline!).

As usual: Any claim needs a proof or an argument.

Exercise 10.1 (Keyed MAC). (5+2 points)

Along with authenticity (the request that the two peers authenticated reciprocally
by using a public key signature mechanism) and privacy (secret key encrypted
communication), an important issue in secure communication protocols is the mes-
sage integrity. Assume that Alice and Bob decide that they have no need for en-
crypted communication (which might also slightly slow down the communica-
tion). They definitively wish to maintain the integrity of their communication and
ascertain that no third party can interfere and modify the messages they send to
each other. Hashing may be helpful in this respect: if Alice adds the hash value
h(M) to a message M sent by her, then Bob can compute the hash of the received
message and compare the to the received hash. Due to the collision resistance
of hashes, M cannot be partially altered. An eavesdropper may however send a
totally different message M'|h(M’) together with its valid hash: hashing is not
sufficient for defending against this kind of attack. However, if Alice and Bob
have established a common shared secret S at session initialization, having a hash
method which uses this secret would protect against message manipulation. The
term of MAC (message authentication code) is standard for this idea of combining
hashing with a shared secret value.

In this exercise you will discover the current standard HMAC which can be used
in combination with various hash methods. You can download the paper Keying
Hash Functions for Message Authentication, in which a universal MAC function is
described, which can be used together with various hash functions.

(i) Read the paper and give an algorithmic description of the procedure for cre-
ating a HMAC on an input message M (of, say, 1 MB) using the SHA1 hash
function and the secret key secret.

(ii) In crypt ool , using the shared secret defined in the previous exercise, gen-
erate the HMAC of some text of own choice, by following your own algorith-
mic description given in (i).

Exercise 10.2 (AtE and died: confidentially poisoned). (1242 points)

Horton’s principle says that one should always prove the integrity of the plain
text. One solution to ensure the integrity is to first authenticate and then encrypt
(AtE). Though this paradigm is clearly correct and the conclusion grants integrity
as desired, we overlooked a different issue here. This exercise shall prove it.

242

(o] [}

2 Michael Niisken, Daniel Loebenberger

Suppose we use some encryption function ENC g, and any message authentication
function MACkg,. For a message m we compute a := MACg, (m) and send ¢ :=
ENCk, (m|a). (Here, the vertical line “|” denotes concatenation.)

Assume both are as secure as you like. In particular, the encryption function shall
guarantee that even to a chosen plaintext attacker the encryptions of two known
plain texts are indistinguishable. In other words, there is no (ie. no probabilistic
polynomial time) so-called IND-CPA attacker: the attacker may ask for encryp-
tions of chosen plain texts and he fixes two further plain texts mo, m; for which
he never inquired the encryption. Finally, the attacker is given the encryption of
myg or of my and shall tell which of the two plain texts was used. One possible en-
cryption function under these constraints is the one-time pad (assuming that the
encryption procedure keeps track of the already used parts of the key).

Now, suppose additionally that the encryption XORs something on the cipher text
(like AES-CTR), and define a variant ENC,_of this encryption function as follows:
first replace every 0-bit by two bits 00 and every 1-bit by two bits 01 or 10, choose
randomly each time, next encrypt with ENCg, . For the decryption we translate 00
back to 0, 01 and 10 to 1, and 11 is considered as a transmission error. So we send
ENCj. (m| MACk, (m)).

(i) Prove (at least, argue) that ENCj_ is still secure in the previous sense.

(if) Suppose that malicious Michael (or hoeing Hugo) has overheard the mes-
sages of your login to some server which was done by sending the pass-
word. Of course, your password was authenticated and encrypted, as all
messages. Now, malicious Michael takes the transmission of your password
and resends it with a bit pair in the cipher text inverted.

(a) How does the recipient react if the original bit was 07?

(b) How does the recipient react if the original bit was 1?

Conclude that Michael learns the bit from the reaction of the server (and thus
your passwords after enough trials).

(iii) Estimate the effect of this observation.

(iv) In SSH we transmit ENCg_ (m)| MACk, (m), so we authenticate and encrypt
(rather than first authenticating and second encrypting). Is that better? [Try
to use ENCj_here.]

(v) InIPsec we transmit ENCg (m)| MACkg, (ENCg_ (m)). Is the previous attack
here also successful? What about the paradigm?

