
Lecture Notes

Security on the Internet

Michael Nüsken

b-it

(Bonn-Aachen International Center

for Information Technology)

Winter 2008

c©2008 Michael Nüsken

nuesken
Stempel

nuesken
Stempel

���
��������
���	
��
��
������	�

Designed as Rijndael by Joan Daemen and Vincent Rijmen

CoseC b-
itComputer

SeCurity

Rheinische Bonn-Aachen
Friedrich-Wilhelms- International Center for

Universität Bonn Information Technology

SubBytes

ShiftRows

Mix
Columns

Add
Round
Key

The field F28

F28 � a = a0 + a1x + a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6 + a7x

7,
where ai ∈ F2 = {0, 1}.

Representation: 8 bits for an element = 1 byte.

Addition: XOR, (a + b)i = ai + bi.

Multiplication: as for polynomials modulo x8 + x4 + x3 + x + 1.

Example 57 · 83 = C1:

(x6 + x4 + x2 + 1) · (x7 + x + 1) = x13 + x11 + x9 + x8 + x7+

x7 + x5 + x3 + x2 + x+

x6 + x4 + x2 + 1

= x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1

= x7 + x6 + 1 mod x8 + x4 + x3 + x + 1.

Field: You can divide by every non-zero element.

The S-box

S :

F28 −−−→ F28 −−−→ F28,

y �−→ y−1=̂

⎡
⎢⎢⎣

a0
a1
a2
a3
a4
a5
a6
a7

⎤
⎥⎥⎦ �−→

⎡
⎢⎢⎣

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

a0
a1
a2
a3
a4
a5
a6
a7

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

1
1
0
0
0
1
1
0

⎤
⎥⎥⎦

Highly nonlinear:
y �→ 05 ·y254+09 ·y253+F9 ·y251+25 ·y247+F4 ·y239+01y223+B5 ·y191+8F ·y127+63.

Simple implementation using a 256 byte lookup table.

The SubBytes operation

Apply the S-box to every byte.

S
The ShiftRows operation

The rows are shifted cyclically by zero, one, two, or three bytes.

Polynomials over the field F28

R = F28[z]/(z4 + 1) � a0 + a1z + a2z
2 + a3z

3,
where ai ∈ F28.

Addition: coefficient-wise (a + b)i = ai + bi, XOR.

Multiplication: as for polynomials modulo z4+1. Another way to express
d = a · b is by the following matrix equation:

⎡
⎢⎢⎣

d0
d1
d2
d3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

a0 a3 a2 a1
a1 a0 a3 a2
a2 a1 a0 a3
a3 a2 a1 a0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

b0
b1
b2
b3

⎤
⎥⎥⎦

Not a field: (z + 1)4 = 0.

The MixColumns operation

Each column is considered as a polynomial and multiplied by c = 02 +
01z + 01z2 + 03z3.

Inverse: Multiply with d = 0E + 09z + 0Dz2 + 0Bz3.

·c

Nonlinear part of the key schedule

Ri :

(F28)4 −→ (F28)4,

⎡
⎢⎢⎢⎢⎢⎢⎣

a

b

c

d

⎤
⎥⎥⎥⎥⎥⎥⎦

�−→

⎡
⎢⎢⎢⎢⎢⎢⎣

S (b) + xi−1

S (c)

S (d)

S (a)

⎤
⎥⎥⎥⎥⎥⎥⎦

Due to the use of the S-box this map is non-linear.

The Key Schedule

. . .

. . .

. . .

. . .

⊕
R1

⊕ ⊕ ⊕ ⊕
R2

⊕ ⊕ ⊕ ⊕
R3

⊕ ⊕ ⊕

The round keys are generated from the 128 to 256 bit key.

The AddRoundKey operation

⊕ =

Simple XOR with the round key.

c©2005 Michael Nüsken, cosec, b-it, Bonn

10 to 14
rounds

���
��������
���	
��
��
������	�

Designed as Rijndael by Joan Daemen and Vincent Rijmen

CoseC b-
itComputer

SeCurity

Rheinische Bonn-Aachen
Friedrich-Wilhelms- International Center for

Universität Bonn Information Technology

SubBytes

ShiftRows

Mix
Columns

Add
Round
Key

The field F28

F28 � a = a0 + a1x + a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6 + a7x

7,
where ai ∈ F2 = {0, 1}.

Representation: 8 bits for an element = 1 byte.

Addition: XOR, (a + b)i = ai + bi.

Multiplication: as for polynomials modulo x8 + x4 + x3 + x + 1.

Example 57 · 83 = C1:

(x6 + x4 + x2 + 1) · (x7 + x + 1) = x13 + x11 + x9 + x8 + x7+

x7 + x5 + x3 + x2 + x+

x6 + x4 + x2 + 1

= x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1

= x7 + x6 + 1 mod x8 + x4 + x3 + x + 1.

Field: You can divide by every non-zero element.

The S-box

S :

F28 −−−→ F28 −−−→ F28,

y �−→ y−1=̂

⎡
⎢⎢⎣

a0
a1
a2
a3
a4
a5
a6
a7

⎤
⎥⎥⎦ �−→

⎡
⎢⎢⎣

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

a0
a1
a2
a3
a4
a5
a6
a7

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

1
1
0
0
0
1
1
0

⎤
⎥⎥⎦

Highly nonlinear:
y �→ 05 ·y254+09 ·y253+F9 ·y251+25 ·y247+F4 ·y239+01y223+B5 ·y191+8F ·y127+63.

Simple implementation using a 256 byte lookup table.

The SubBytes operation

Apply the S-box to every byte.

S
The ShiftRows operation

The rows are shifted cyclically by zero, one, two, or three bytes.

Polynomials over the field F28

R = F28[z]/(z4 + 1) � a0 + a1z + a2z
2 + a3z

3,
where ai ∈ F28.

Addition: coefficient-wise (a + b)i = ai + bi, XOR.

Multiplication: as for polynomials modulo z4+1. Another way to express
d = a · b is by the following matrix equation:

⎡
⎢⎢⎣

d0
d1
d2
d3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

a0 a3 a2 a1
a1 a0 a3 a2
a2 a1 a0 a3
a3 a2 a1 a0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

b0
b1
b2
b3

⎤
⎥⎥⎦

Not a field: (z + 1)4 = 0.

The MixColumns operation

Each column is considered as a polynomial and multiplied by c = 02 +
01z + 01z2 + 03z3.

Inverse: Multiply with d = 0E + 09z + 0Dz2 + 0Bz3.

·c

Nonlinear part of the key schedule

Ri :

(F28)4 −→ (F28)4,

⎡
⎢⎢⎢⎢⎢⎢⎣

a

b

c

d

⎤
⎥⎥⎥⎥⎥⎥⎦

�−→

⎡
⎢⎢⎢⎢⎢⎢⎣

S (b) + xi−1

S (c)

S (d)

S (a)

⎤
⎥⎥⎥⎥⎥⎥⎦

Due to the use of the S-box this map is non-linear.

The Key Schedule

. . .

. . .

. . .

. . .

⊕
R1

⊕ ⊕ ⊕ ⊕
R2

⊕ ⊕ ⊕ ⊕
R3

⊕ ⊕ ⊕

The round keys are generated from the 128 to 256 bit key.

The AddRoundKey operation

⊕ =

Simple XOR with the round key.

c©2005 Michael Nüsken, cosec, b-it, Bonn

10 to 14
rounds

���
��������
���	
��
��
������	�

Designed as Rijndael by Joan Daemen and Vincent Rijmen

CoseC b-
itComputer

SeCurity

Rheinische Bonn-Aachen
Friedrich-Wilhelms- International Center for

Universität Bonn Information Technology

SubBytes

ShiftRows

Mix
Columns

Add
Round
Key

The field F28

F28 � a = a0 + a1x + a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6 + a7x

7,
where ai ∈ F2 = {0, 1}.

Representation: 8 bits for an element = 1 byte.

Addition: XOR, (a + b)i = ai + bi.

Multiplication: as for polynomials modulo x8 + x4 + x3 + x + 1.

Example 57 · 83 = C1:

(x6 + x4 + x2 + 1) · (x7 + x + 1) = x13 + x11 + x9 + x8 + x7+

x7 + x5 + x3 + x2 + x+

x6 + x4 + x2 + 1

= x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1

= x7 + x6 + 1 mod x8 + x4 + x3 + x + 1.

Field: You can divide by every non-zero element.

The S-box

S :

F28 −−−→ F28 −−−→ F28,

y �−→ y−1=̂

⎡
⎢⎢⎣

a0
a1
a2
a3
a4
a5
a6
a7

⎤
⎥⎥⎦ �−→

⎡
⎢⎢⎣

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

a0
a1
a2
a3
a4
a5
a6
a7

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

1
1
0
0
0
1
1
0

⎤
⎥⎥⎦

Highly nonlinear:
y �→ 05 ·y254+09 ·y253+F9 ·y251+25 ·y247+F4 ·y239+01y223+B5 ·y191+8F ·y127+63.

Simple implementation using a 256 byte lookup table.

The SubBytes operation

Apply the S-box to every byte.

S
The ShiftRows operation

The rows are shifted cyclically by zero, one, two, or three bytes.

Polynomials over the field F28

R = F28[z]/(z4 + 1) � a0 + a1z + a2z
2 + a3z

3,
where ai ∈ F28.

Addition: coefficient-wise (a + b)i = ai + bi, XOR.

Multiplication: as for polynomials modulo z4+1. Another way to express
d = a · b is by the following matrix equation:

⎡
⎢⎢⎣

d0
d1
d2
d3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

a0 a3 a2 a1
a1 a0 a3 a2
a2 a1 a0 a3
a3 a2 a1 a0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

b0
b1
b2
b3

⎤
⎥⎥⎦

Not a field: (z + 1)4 = 0.

The MixColumns operation

Each column is considered as a polynomial and multiplied by c = 02 +
01z + 01z2 + 03z3.

Inverse: Multiply with d = 0E + 09z + 0Dz2 + 0Bz3.

·c

Nonlinear part of the key schedule

Ri :

(F28)4 −→ (F28)4,

⎡
⎢⎢⎢⎢⎢⎢⎣

a

b

c

d

⎤
⎥⎥⎥⎥⎥⎥⎦

�−→

⎡
⎢⎢⎢⎢⎢⎢⎣

S (b) + xi−1

S (c)

S (d)

S (a)

⎤
⎥⎥⎥⎥⎥⎥⎦

Due to the use of the S-box this map is non-linear.

The Key Schedule

. . .

. . .

. . .

. . .

⊕
R1

⊕ ⊕ ⊕ ⊕
R2

⊕ ⊕ ⊕ ⊕
R3

⊕ ⊕ ⊕

The round keys are generated from the 128 to 256 bit key.

The AddRoundKey operation

⊕ =

Simple XOR with the round key.

c©2005 Michael Nüsken, cosec, b-it, Bonn

10 to 14
rounds

���
��������
���	
��
��
������	�

Designed as Rijndael by Joan Daemen and Vincent Rijmen

CoseC b-
itComputer

SeCurity

Rheinische Bonn-Aachen
Friedrich-Wilhelms- International Center for

Universität Bonn Information Technology

SubBytes

ShiftRows

Mix
Columns

Add
Round
Key

The field F28

F28 � a = a0 + a1x + a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6 + a7x

7,
where ai ∈ F2 = {0, 1}.

Representation: 8 bits for an element = 1 byte.

Addition: XOR, (a + b)i = ai + bi.

Multiplication: as for polynomials modulo x8 + x4 + x3 + x + 1.

Example 57 · 83 = C1:

(x6 + x4 + x2 + 1) · (x7 + x + 1) = x13 + x11 + x9 + x8 + x7+

x7 + x5 + x3 + x2 + x+

x6 + x4 + x2 + 1

= x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1

= x7 + x6 + 1 mod x8 + x4 + x3 + x + 1.

Field: You can divide by every non-zero element.

The S-box

S :

F28 −−−→ F28 −−−→ F28,

y �−→ y−1=̂

⎡
⎢⎢⎣

a0
a1
a2
a3
a4
a5
a6
a7

⎤
⎥⎥⎦ �−→

⎡
⎢⎢⎣

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

a0
a1
a2
a3
a4
a5
a6
a7

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

1
1
0
0
0
1
1
0

⎤
⎥⎥⎦

Highly nonlinear:
y �→ 05 ·y254+09 ·y253+F9 ·y251+25 ·y247+F4 ·y239+01y223+B5 ·y191+8F ·y127+63.

Simple implementation using a 256 byte lookup table.

The SubBytes operation

Apply the S-box to every byte.

S
The ShiftRows operation

The rows are shifted cyclically by zero, one, two, or three bytes.

Polynomials over the field F28

R = F28[z]/(z4 + 1) � a0 + a1z + a2z
2 + a3z

3,
where ai ∈ F28.

Addition: coefficient-wise (a + b)i = ai + bi, XOR.

Multiplication: as for polynomials modulo z4+1. Another way to express
d = a · b is by the following matrix equation:

⎡
⎢⎢⎣

d0
d1
d2
d3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

a0 a3 a2 a1
a1 a0 a3 a2
a2 a1 a0 a3
a3 a2 a1 a0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

b0
b1
b2
b3

⎤
⎥⎥⎦

Not a field: (z + 1)4 = 0.

The MixColumns operation

Each column is considered as a polynomial and multiplied by c = 02 +
01z + 01z2 + 03z3.

Inverse: Multiply with d = 0E + 09z + 0Dz2 + 0Bz3.

·c

Nonlinear part of the key schedule

Ri :

(F28)4 −→ (F28)4,

⎡
⎢⎢⎢⎢⎢⎢⎣

a

b

c

d

⎤
⎥⎥⎥⎥⎥⎥⎦

�−→

⎡
⎢⎢⎢⎢⎢⎢⎣

S (b) + xi−1

S (c)

S (d)

S (a)

⎤
⎥⎥⎥⎥⎥⎥⎦

Due to the use of the S-box this map is non-linear.

The Key Schedule

. . .

. . .

. . .

. . .

⊕
R1

⊕ ⊕ ⊕ ⊕
R2

⊕ ⊕ ⊕ ⊕
R3

⊕ ⊕ ⊕

The round keys are generated from the 128 to 256 bit key.

The AddRoundKey operation

⊕ =

Simple XOR with the round key.

c©2005 Michael Nüsken, cosec, b-it, Bonn

10 to 14
rounds

���
��������
���	
��
��
������	�

Designed as Rijndael by Joan Daemen and Vincent Rijmen

CoseC b-
itComputer

SeCurity

Rheinische Bonn-Aachen
Friedrich-Wilhelms- International Center for

Universität Bonn Information Technology

SubBytes

ShiftRows

Mix
Columns

Add
Round
Key

The field F28

F28 � a = a0 + a1x + a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6 + a7x

7,
where ai ∈ F2 = {0, 1}.

Representation: 8 bits for an element = 1 byte.

Addition: XOR, (a + b)i = ai + bi.

Multiplication: as for polynomials modulo x8 + x4 + x3 + x + 1.

Example 57 · 83 = C1:

(x6 + x4 + x2 + 1) · (x7 + x + 1) = x13 + x11 + x9 + x8 + x7+

x7 + x5 + x3 + x2 + x+

x6 + x4 + x2 + 1

= x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1

= x7 + x6 + 1 mod x8 + x4 + x3 + x + 1.

Field: You can divide by every non-zero element.

The S-box

S :

F28 −−−→ F28 −−−→ F28,

y �−→ y−1=̂

⎡
⎢⎢⎣

a0
a1
a2
a3
a4
a5
a6
a7

⎤
⎥⎥⎦ �−→

⎡
⎢⎢⎣

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

a0
a1
a2
a3
a4
a5
a6
a7

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

1
1
0
0
0
1
1
0

⎤
⎥⎥⎦

Highly nonlinear:
y �→ 05 ·y254+09 ·y253+F9 ·y251+25 ·y247+F4 ·y239+01y223+B5 ·y191+8F ·y127+63.

Simple implementation using a 256 byte lookup table.

The SubBytes operation

Apply the S-box to every byte.

S
The ShiftRows operation

The rows are shifted cyclically by zero, one, two, or three bytes.

Polynomials over the field F28

R = F28[z]/(z4 + 1) � a0 + a1z + a2z
2 + a3z

3,
where ai ∈ F28.

Addition: coefficient-wise (a + b)i = ai + bi, XOR.

Multiplication: as for polynomials modulo z4+1. Another way to express
d = a · b is by the following matrix equation:

⎡
⎢⎢⎣

d0
d1
d2
d3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

a0 a3 a2 a1
a1 a0 a3 a2
a2 a1 a0 a3
a3 a2 a1 a0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

b0
b1
b2
b3

⎤
⎥⎥⎦

Not a field: (z + 1)4 = 0.

The MixColumns operation

Each column is considered as a polynomial and multiplied by c = 02 +
01z + 01z2 + 03z3.

Inverse: Multiply with d = 0E + 09z + 0Dz2 + 0Bz3.

·c

Nonlinear part of the key schedule

Ri :

(F28)4 −→ (F28)4,

⎡
⎢⎢⎢⎢⎢⎢⎣

a

b

c

d

⎤
⎥⎥⎥⎥⎥⎥⎦

�−→

⎡
⎢⎢⎢⎢⎢⎢⎣

S (b) + xi−1

S (c)

S (d)

S (a)

⎤
⎥⎥⎥⎥⎥⎥⎦

Due to the use of the S-box this map is non-linear.

The Key Schedule

. . .

. . .

. . .

. . .

⊕
R1

⊕ ⊕ ⊕ ⊕
R2

⊕ ⊕ ⊕ ⊕
R3

⊕ ⊕ ⊕

The round keys are generated from the 128 to 256 bit key.

The AddRoundKey operation

⊕ =

Simple XOR with the round key.

c©2005 Michael Nüsken, cosec, b-it, Bonn

10 to 14
rounds

���
��������
���	
��
��
������	�

Designed as Rijndael by Joan Daemen and Vincent Rijmen

CoseC b-
itComputer

SeCurity

Rheinische Bonn-Aachen
Friedrich-Wilhelms- International Center for

Universität Bonn Information Technology

SubBytes

ShiftRows

Mix
Columns

Add
Round
Key

The field F28

F28 � a = a0 + a1x + a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6 + a7x

7,
where ai ∈ F2 = {0, 1}.

Representation: 8 bits for an element = 1 byte.

Addition: XOR, (a + b)i = ai + bi.

Multiplication: as for polynomials modulo x8 + x4 + x3 + x + 1.

Example 57 · 83 = C1:

(x6 + x4 + x2 + 1) · (x7 + x + 1) = x13 + x11 + x9 + x8 + x7+

x7 + x5 + x3 + x2 + x+

x6 + x4 + x2 + 1

= x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1

= x7 + x6 + 1 mod x8 + x4 + x3 + x + 1.

Field: You can divide by every non-zero element.

The S-box

S :

F28 −−−→ F28 −−−→ F28,

y �−→ y−1=̂

⎡
⎢⎢⎣

a0
a1
a2
a3
a4
a5
a6
a7

⎤
⎥⎥⎦ �−→

⎡
⎢⎢⎣

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

a0
a1
a2
a3
a4
a5
a6
a7

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

1
1
0
0
0
1
1
0

⎤
⎥⎥⎦

Highly nonlinear:
y �→ 05 ·y254+09 ·y253+F9 ·y251+25 ·y247+F4 ·y239+01y223+B5 ·y191+8F ·y127+63.

Simple implementation using a 256 byte lookup table.

The SubBytes operation

Apply the S-box to every byte.

S
The ShiftRows operation

The rows are shifted cyclically by zero, one, two, or three bytes.

Polynomials over the field F28

R = F28[z]/(z4 + 1) � a0 + a1z + a2z
2 + a3z

3,
where ai ∈ F28.

Addition: coefficient-wise (a + b)i = ai + bi, XOR.

Multiplication: as for polynomials modulo z4+1. Another way to express
d = a · b is by the following matrix equation:

⎡
⎢⎢⎣

d0
d1
d2
d3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

a0 a3 a2 a1
a1 a0 a3 a2
a2 a1 a0 a3
a3 a2 a1 a0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

b0
b1
b2
b3

⎤
⎥⎥⎦

Not a field: (z + 1)4 = 0.

The MixColumns operation

Each column is considered as a polynomial and multiplied by c = 02 +
01z + 01z2 + 03z3.

Inverse: Multiply with d = 0E + 09z + 0Dz2 + 0Bz3.

·c

Nonlinear part of the key schedule

Ri :

(F28)4 −→ (F28)4,

⎡
⎢⎢⎢⎢⎢⎢⎣

a

b

c

d

⎤
⎥⎥⎥⎥⎥⎥⎦

�−→

⎡
⎢⎢⎢⎢⎢⎢⎣

S (b) + xi−1

S (c)

S (d)

S (a)

⎤
⎥⎥⎥⎥⎥⎥⎦

Due to the use of the S-box this map is non-linear.

The Key Schedule

. . .

. . .

. . .

. . .

⊕
R1

⊕ ⊕ ⊕ ⊕
R2

⊕ ⊕ ⊕ ⊕
R3

⊕ ⊕ ⊕

The round keys are generated from the 128 to 256 bit key.

The AddRoundKey operation

⊕ =

Simple XOR with the round key.

c©2005 Michael Nüsken, cosec, b-it, Bonn

10 to 14
rounds

���
��������
���	
��
��
������	�

Designed as Rijndael by Joan Daemen and Vincent Rijmen

CoseC b-
itComputer

SeCurity

Rheinische Bonn-Aachen
Friedrich-Wilhelms- International Center for

Universität Bonn Information Technology

SubBytes

ShiftRows

Mix
Columns

Add
Round
Key

The field F28

F28 � a = a0 + a1x + a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6 + a7x

7,
where ai ∈ F2 = {0, 1}.

Representation: 8 bits for an element = 1 byte.

Addition: XOR, (a + b)i = ai + bi.

Multiplication: as for polynomials modulo x8 + x4 + x3 + x + 1.

Example 57 · 83 = C1:

(x6 + x4 + x2 + 1) · (x7 + x + 1) = x13 + x11 + x9 + x8 + x7+

x7 + x5 + x3 + x2 + x+

x6 + x4 + x2 + 1

= x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1

= x7 + x6 + 1 mod x8 + x4 + x3 + x + 1.

Field: You can divide by every non-zero element.

The S-box

S :

F28 −−−→ F28 −−−→ F28,

y �−→ y−1=̂

⎡
⎢⎢⎣

a0
a1
a2
a3
a4
a5
a6
a7

⎤
⎥⎥⎦ �−→

⎡
⎢⎢⎣

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

a0
a1
a2
a3
a4
a5
a6
a7

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

1
1
0
0
0
1
1
0

⎤
⎥⎥⎦

Highly nonlinear:
y �→ 05 ·y254+09 ·y253+F9 ·y251+25 ·y247+F4 ·y239+01y223+B5 ·y191+8F ·y127+63.

Simple implementation using a 256 byte lookup table.

The SubBytes operation

Apply the S-box to every byte.

S
The ShiftRows operation

The rows are shifted cyclically by zero, one, two, or three bytes.

Polynomials over the field F28

R = F28[z]/(z4 + 1) � a0 + a1z + a2z
2 + a3z

3,
where ai ∈ F28.

Addition: coefficient-wise (a + b)i = ai + bi, XOR.

Multiplication: as for polynomials modulo z4+1. Another way to express
d = a · b is by the following matrix equation:

⎡
⎢⎢⎣

d0
d1
d2
d3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

a0 a3 a2 a1
a1 a0 a3 a2
a2 a1 a0 a3
a3 a2 a1 a0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

b0
b1
b2
b3

⎤
⎥⎥⎦

Not a field: (z + 1)4 = 0.

The MixColumns operation

Each column is considered as a polynomial and multiplied by c = 02 +
01z + 01z2 + 03z3.

Inverse: Multiply with d = 0E + 09z + 0Dz2 + 0Bz3.

·c

Nonlinear part of the key schedule

Ri :

(F28)4 −→ (F28)4,

⎡
⎢⎢⎢⎢⎢⎢⎣

a

b

c

d

⎤
⎥⎥⎥⎥⎥⎥⎦

�−→

⎡
⎢⎢⎢⎢⎢⎢⎣

S (b) + xi−1

S (c)

S (d)

S (a)

⎤
⎥⎥⎥⎥⎥⎥⎦

Due to the use of the S-box this map is non-linear.

The Key Schedule

. . .

. . .

. . .

. . .

⊕
R1

⊕ ⊕ ⊕ ⊕
R2

⊕ ⊕ ⊕ ⊕
R3

⊕ ⊕ ⊕

The round keys are generated from the 128 to 256 bit key.

The AddRoundKey operation

⊕ =

Simple XOR with the round key.

c©2005 Michael Nüsken, cosec, b-it, Bonn

10 to 14
rounds

���
��������
���	
��
��
������	�

Designed as Rijndael by Joan Daemen and Vincent Rijmen

CoseC b-
itComputer

SeCurity

Rheinische Bonn-Aachen
Friedrich-Wilhelms- International Center for

Universität Bonn Information Technology

SubBytes

ShiftRows

Mix
Columns

Add
Round
Key

The field F28

F28 � a = a0 + a1x + a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6 + a7x

7,
where ai ∈ F2 = {0, 1}.

Representation: 8 bits for an element = 1 byte.

Addition: XOR, (a + b)i = ai + bi.

Multiplication: as for polynomials modulo x8 + x4 + x3 + x + 1.

Example 57 · 83 = C1:

(x6 + x4 + x2 + 1) · (x7 + x + 1) = x13 + x11 + x9 + x8 + x7+

x7 + x5 + x3 + x2 + x+

x6 + x4 + x2 + 1

= x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1

= x7 + x6 + 1 mod x8 + x4 + x3 + x + 1.

Field: You can divide by every non-zero element.

The S-box

S :

F28 −−−→ F28 −−−→ F28,

y �−→ y−1=̂

⎡
⎢⎢⎣

a0
a1
a2
a3
a4
a5
a6
a7

⎤
⎥⎥⎦ �−→

⎡
⎢⎢⎣

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

a0
a1
a2
a3
a4
a5
a6
a7

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

1
1
0
0
0
1
1
0

⎤
⎥⎥⎦

Highly nonlinear:
y �→ 05 ·y254+09 ·y253+F9 ·y251+25 ·y247+F4 ·y239+01y223+B5 ·y191+8F ·y127+63.

Simple implementation using a 256 byte lookup table.

The SubBytes operation

Apply the S-box to every byte.

S
The ShiftRows operation

The rows are shifted cyclically by zero, one, two, or three bytes.

Polynomials over the field F28

R = F28[z]/(z4 + 1) � a0 + a1z + a2z
2 + a3z

3,
where ai ∈ F28.

Addition: coefficient-wise (a + b)i = ai + bi, XOR.

Multiplication: as for polynomials modulo z4+1. Another way to express
d = a · b is by the following matrix equation:

⎡
⎢⎢⎣

d0
d1
d2
d3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

a0 a3 a2 a1
a1 a0 a3 a2
a2 a1 a0 a3
a3 a2 a1 a0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

b0
b1
b2
b3

⎤
⎥⎥⎦

Not a field: (z + 1)4 = 0.

The MixColumns operation

Each column is considered as a polynomial and multiplied by c = 02 +
01z + 01z2 + 03z3.

Inverse: Multiply with d = 0E + 09z + 0Dz2 + 0Bz3.

·c

Nonlinear part of the key schedule

Ri :

(F28)4 −→ (F28)4,

⎡
⎢⎢⎢⎢⎢⎢⎣

a

b

c

d

⎤
⎥⎥⎥⎥⎥⎥⎦

�−→

⎡
⎢⎢⎢⎢⎢⎢⎣

S (b) + xi−1

S (c)

S (d)

S (a)

⎤
⎥⎥⎥⎥⎥⎥⎦

Due to the use of the S-box this map is non-linear.

The Key Schedule

. . .

. . .

. . .

. . .

⊕
R1

⊕ ⊕ ⊕ ⊕
R2

⊕ ⊕ ⊕ ⊕
R3

⊕ ⊕ ⊕

The round keys are generated from the 128 to 256 bit key.

The AddRoundKey operation

⊕ =

Simple XOR with the round key.

c©2005 Michael Nüsken, cosec, b-it, Bonn

10 to 14
rounds

���
��������
���	
��
��
������	�

Designed as Rijndael by Joan Daemen and Vincent Rijmen

CoseC b-
itComputer

SeCurity

Rheinische Bonn-Aachen
Friedrich-Wilhelms- International Center for

Universität Bonn Information Technology

SubBytes

ShiftRows

Mix
Columns

Add
Round
Key

The field F28

F28 � a = a0 + a1x + a2x
2 + a3x

3 + a4x
4 + a5x

5 + a6x
6 + a7x

7,
where ai ∈ F2 = {0, 1}.

Representation: 8 bits for an element = 1 byte.

Addition: XOR, (a + b)i = ai + bi.

Multiplication: as for polynomials modulo x8 + x4 + x3 + x + 1.

Example 57 · 83 = C1:

(x6 + x4 + x2 + 1) · (x7 + x + 1) = x13 + x11 + x9 + x8 + x7+

x7 + x5 + x3 + x2 + x+

x6 + x4 + x2 + 1

= x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1

= x7 + x6 + 1 mod x8 + x4 + x3 + x + 1.

Field: You can divide by every non-zero element.

The S-box

S :

F28 −−−→ F28 −−−→ F28,

y �−→ y−1=̂

⎡
⎢⎢⎣

a0
a1
a2
a3
a4
a5
a6
a7

⎤
⎥⎥⎦ �−→

⎡
⎢⎢⎣

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

a0
a1
a2
a3
a4
a5
a6
a7

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

1
1
0
0
0
1
1
0

⎤
⎥⎥⎦

Highly nonlinear:
y �→ 05 ·y254+09 ·y253+F9 ·y251+25 ·y247+F4 ·y239+01y223+B5 ·y191+8F ·y127+63.

Simple implementation using a 256 byte lookup table.

The SubBytes operation

Apply the S-box to every byte.

S
The ShiftRows operation

The rows are shifted cyclically by zero, one, two, or three bytes.

Polynomials over the field F28

R = F28[z]/(z4 + 1) � a0 + a1z + a2z
2 + a3z

3,
where ai ∈ F28.

Addition: coefficient-wise (a + b)i = ai + bi, XOR.

Multiplication: as for polynomials modulo z4+1. Another way to express
d = a · b is by the following matrix equation:

⎡
⎢⎢⎣

d0
d1
d2
d3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

a0 a3 a2 a1
a1 a0 a3 a2
a2 a1 a0 a3
a3 a2 a1 a0

⎤
⎥⎥⎦ ·

⎡
⎢⎢⎣

b0
b1
b2
b3

⎤
⎥⎥⎦

Not a field: (z + 1)4 = 0.

The MixColumns operation

Each column is considered as a polynomial and multiplied by c = 02 +
01z + 01z2 + 03z3.

Inverse: Multiply with d = 0E + 09z + 0Dz2 + 0Bz3.

·c

Nonlinear part of the key schedule

Ri :

(F28)4 −→ (F28)4,

⎡
⎢⎢⎢⎢⎢⎢⎣

a

b

c

d

⎤
⎥⎥⎥⎥⎥⎥⎦

�−→

⎡
⎢⎢⎢⎢⎢⎢⎣

S (b) + xi−1

S (c)

S (d)

S (a)

⎤
⎥⎥⎥⎥⎥⎥⎦

Due to the use of the S-box this map is non-linear.

The Key Schedule

. . .

. . .

. . .

. . .

⊕
R1

⊕ ⊕ ⊕ ⊕
R2

⊕ ⊕ ⊕ ⊕
R3

⊕ ⊕ ⊕

The round keys are generated from the 128 to 256 bit key.

The AddRoundKey operation

⊕ =

Simple XOR with the round key.

c©2005 Michael Nüsken, cosec, b-it, Bonn

10 to 14
rounds

IPSEC & IKE

Michael Nüsken

25 June 2007

Before all: we are talking about a collection of protocols. Each partner of
the exchange has to keep some information on the connection. This is in our
context called the security association (SA). It contains specification about the
algorithms that should be used for encryption and authentication, it contains
keys for these, it may contain traffic selectors (filtering rules), and more. Each
SA manages a simplex connection for one type of service. In each direction there
will be an SA for the key exchange (IKE_SA) and one for the encapsulating
security payload or for the authentication header. So each partner has to
maintain at least four SAs. Such an SA is selected by an identifier, the so-
called security parameter index (SPI). It is chosen randomly but so that it is
unique.

1. IPsec

The secure internet protocol modifies the internet protocol slightly. We have
the choice between transport and tunnel mode. In tunnel mode, an IP packet

IP header IP payload

is wrapped in with a new IP header and an IPsec header to

new IP

header
IPsec header IP header IP payload

In transport mode, only the IPsec header is added:

IP header IPsec header IP payload

There are two types of IPsec headers: the encapsulating security payload (ESP)
and the authentication header (AH).

2 Michael Nüsken

1.1. IPsec encapsulating security payload. The ESP specifies that and
how its payload is encrypted and (optionally) authenticated. Actually, this
‘header’ is split into a part before and one after the data:

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Security Parameter Index (SPI)

Sequence number

IV (optional)

Payload data [variable]

TFC padding [optional, variable]

Padding (0-255 octets)

Padding length Next header

Integrity Check Value (ICV) [variable]

The security parameter index identifies the SA and thus all necessary algo-
rithms and key material. To create the secured packet from the original one,
it is first padded. Padding is used to enlarge the data length to a multiple of a
block size that might be associated with the encryption. Traffic flow confiden-
tiality (TFC) padding can be used to disguise the real size of the packet. Then
the data is encrypted; in tunnel mode including the old IP header. To be pre-
cise, all the information from Payload data to Next header is encrypted. Next,
a message authenticion code is calculated for this encrypted text and secu-
rity parameter index, sequence number, initialization vector (IV) and possibly
further padding; actually the message authentication code covers the entire
packet but the header and the integrity check value plus the extended sequence
number and integrity check padding if any.

1.2. IPsec authentication header. The AH authenticates its payload and
also parts of the IP header. (Yes, this does violate the hierarchy.)

IPsec & IKE 3

2. Internet key exchange (version 2)

Any message in the internet key exchange starts with a header of the form

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

IKE_SA initiator’s SPI

IKE_SA responder’s SPI

Next payload
Major

version

Minor

version
Exchange type X I V R X

Message ID

Length

Clearly, the version is 2.0 with the present Exchange type Value

Reserved 0-33

IKE_SA_INIT 34

IKE_AUTH 35

CREATE_CHILD_SA 36

INFORMATIONAL 37

Reserved to IANA 38-239

Reserved for private use 240-255

drafts (major version: 2, minor version: 0).
The flags X are reserved, the I(nitiator) bit
is set whenever the message comes from the
initiator of the SA, the V(ersion) bit is set
if the transmitter can support a higher ma-
jor version, the R(esponse) bit is set if this
message is a response to a message with this
Message ID. The header is usually followed by some payloads like

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Next payload C Reserved(0) Payload length

Payload

The C(ritical) bit indicates that the payload
is critical. In case the recipient does not sup-
port a critical payload it must reject the en-
tire message. A non-critical payload can be
simply skipped. All the payloads defined in
RFC4306 are to be handled as critical ones
whatever the C bit says.

4 Michael Nüsken

Next payload Notation Value

None 0

RESERVED 1-32

Security Association SA 33

Key Exchange KE 34

Identification - Initiator IDi 35

Identification - Responder IDr 36

Certificate CERT 37

Certificate Request CERTREQ 38

Authentication AUTH 39

Nonce Ni, Nr 40

Notify N 41

Delete D 42

Vendor ID V 43

Traffic Selector - Initiator TSi 44

Traffic Selector - Responder TSr 45

Encrypted E 46

Configuration CP 47

Extensible Authentication EAP 48

Reserved to IANA 49-127

Private use 128-255

2.1. Initial exchange.

In
it

ia
to

r

Hdr, SAi 1, KEi, Ni
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Hdr, SAr 1, KEr, Nr, [CERTREQ]
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Hdr, SK

{
IDi, [CERT,][CERTREQ,][IDr,]

AUTH, SAi 2, TSi, TSr

}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Hdr, SK

{
IDr, [CERT,]

AUTH, SAr 2, TSi, TSr

}

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

R
es

p
on

d
er

Protocol 2.1. IKE_SA_INIT.

1. Prepare SAi1, the four lists of supported crypto-
graphic algorithms for Diffie-Hellman key exchange
(groups), for the pseudo random function used to
derive keys, for encryption, and for authentication.
Guess the group for Diffie-Hellman and compute
KEi = ga.
Choose a nonce Ni. Hdr, SAi 1, KEi, Ni

−−−−−−−−−−−−−−−−−−−−−→
2. Choose SAr1 from SAi1 unless no variant is sup-

ported.

IPsec & IKE 5

Compute KEr = gb if the group was guessed cor-
rectly. (Otherwise send:

Hdr,N(INVALID_KE_PAYLOAD, group)

.)
Choose a nonce Nr.

Hdr, SAr 1, KEr, Nr,

[CERTREQ]
←−−−−−−−−−−−−−−−−−−−−−

3. Both parties now derive the session keys. We as-
sume that prf is the selected pseudo random func-
tion which gets a key and a bit string as input.

SKEYSEED = prf(Ni|Nr, gab),

SK_d|SK_ai|SK_ar|SK_ei|SK_er|SK_pi|SK_pr

= prf+(SKEYSEED,Ni |Nr |SPIi |SPIr)

where prf+(K,S) = T1|T2|T3| . . . , and T1 =
prf(K,S|0x01), Ti = prf(K,Ti−1|S|i) for i > 1.
SK_d is used for the derivation of keys in a child
SA. SK_ai and SK_ei are used for authenticat-
ing and encrypting messages sent by the initiator,
SK_ar and SK_er for messages sent by the respon-
der.

4. The initiator send its identity IDi, optionally one
or more certificates CERT, a certificate request
CERTREQ (possibly including a list of trusted
CAs), and optionally the responders identity IDr (it
may be that the responder serves multiple identities
‘behind’ it).
Further she computes an authentication AUTH (us-
ing the key from the first CERT payload) for the
entire first message concatenated with the respon-
der’s nonce Nr and the value prf(SK_pi, IDi). The
authentication method can be RSA digital signa-
ture (1), shard key message integrity code (2), or
DSS digital signature (3).

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Next payload C Reserved(0) Payload length

Auth method Reserved

Authentication data

The initiator starts to negotiate a child SA in SAi 2
with proposed traffic selectors TSi, TSr.

Hdr, SK





IDi, [CERT,]

[CERTREQ,]

[IDr,]

AUTH, SAi 2,

TSi, TSr





−−−−−−−−−−−−−−−−−−−−−→

6 Michael Nüsken

5. The responder sends its identity IDr, certificate(s).
He computes an authentication AUTH for the en-
tire second message concatenated with the initia-
tor’s nonce Ni and the value prf(SK_pr, IDr).
Further he supplies the answer SAr 2 to the child
SA creation and sends the accepted traffic selectors
TSi, TSr.

Hdr, SK




IDr, [CERT,]

AUTH, SAr 2,

TSi, TSr




←−−−−−−−−−−−−−−−−−−−−−

If this initial exchange is completed successfully the IKE_SA and a CHILD_SA
are ready for use. Keying material for the childs is generated similar to the
IKE_SA keys:

KEYMAT = prf+(SK_d, Ni |Nr)

2.2. Creating additional child SAs. Further childs can be created under
this IKE_SA using a CREATE_CHILD_SA exhange:

In
it

ia
to

r Hdr, SK

{
[N,] SAi 2, Ni, [KEi,]

[TSi, TSr]

}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Hdr, SK

{
SAr 2, Nr, [KEr,]]

[TSi, TSr]

}

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

R
es

p
on

d
er

In case a CHILD_SA shall be rekeyed the notification payload N of type
REKEY_SA specifies which SA is rekeyed. This can be used to established
additional SAs as well as to rekey ages ones. Create new ones and afterwards
delete the old ones. Also the IKE_SA can be rekeyed similarly.

In a CREATE_CHILD_SA exchange including an optional Diffie-Hellman
exchange new keying material uses also the new Diffie-Hellman key gir, it is
concatenated left to the nonces. (Though the Diffie-Hellman key exchange is
optional, it is recommended to either used it or at least to limit the number of
uses of the original key.)

2.3. Denial of Service. If the server has a lot of half open connections
(ie. the first message arrived, the second was sent but the third message is
pending) it may choose to send a cookie first. (In order to defeat a denial of
service attack.) It is suggested to use a stateless cookie consisting of a version
identifier and a hash value of the initiator’s nonce Ni, her IP IPi, her security
parameter index SPIi and some secret:

Cookie = verID | hash(Ni, IPi, SPIi, secretverID)

IPsec & IKE 7

This way the secret can be exchanged periodically, say every second, and the
server only needs to store the last few (randomly) generated secrets.

The authentication AUTH then refers to the second version of the cor-
responding message, so the one including the cookie or responding to that,
respectively. So the protocol becomes:

In
it

ia
to

r

Hdr, SAi 1, KEi, Ni
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Hdr, N(Cookie)
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Hdr, N(Cookie), SAi 1, KEi, Ni
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Hdr, SAr 1, KEr, Nr, [CERTREQ]
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Hdr, SK

{
IDi, [CERT,][CERTREQ,][IDr,]

AUTH, SAi 2, TSi, TSr

}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Hdr, SK

{
IDr, [CERT,]

AUTH, SAr 2, TSi, TSr

}

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

R
es

p
on

d
er

2.4. Extended authentication protocols. The initiator may leave out
AUTH and thereby tell the responder that she wants to perform an exten-
sible authentication which is then carried out immediately.

2.5. IP compression. The parties can negotiate IP compression.

2.6. ID payload. The ID payload

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Next payload C Reserved(0) Payload length

ID type Reserved

Identification data

can be an IP address (ID type 1), a fully-qualified domain name string (2), a
fully-qualified RFC822 email address string (3), an IPv6 address (5), an ASN.1
X.500 Distinguished Name [X.501] (9), an ASN.1 X.500 general name [X.509]
(10), a vendor specific information (11).

2.7. CERT payload. The CERT payload

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Next payload C Reserved(0) Payload length

Cert encoding Certificate data

Certificate data

8 Michael Nüsken

can be encoded in various widely used formats. Note that it can also carry
revocation lists.

3. IKE version 1

The version 1 of the internet key exchange distinguishes between a main mode
and an aggressive mode. Further it allows four variants in each mode depending
on the desired type of authentication. Authentication can be based on

◦ public signature keys,

◦ public encryption keys, originial protocol,

◦ public encryption keys, revised protocol, or

◦ a pre-shared secret.

We only give the bare protocol summaries here, using notation similar to
the one used for version 1. (They are not based on RFC240x but on the book
?.)

3.1. Main mode, public signature keys.

A
li
ce

SAi
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

SAr
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

KEi, Ni
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

KEr, Nr
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

SK = f(gab, Ni, Nr)
SK {IDi, AUTH, [CERT]}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
SK {IDr, AUTH, [CERT]}

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

B
ob

3.2. Aggressive mode, public signature keys.

A
li
ce

SAi, KEi, Ni, IDi
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

SAr, KEr, Nr, IDr, AUTH, [CERT]
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

SK {AUTH, [CERT]}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

B
ob

IPsec & IKE 9

3.3. Main mode, public encryption keys, original protocol.

A
li
ce

SAi
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

SAr
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

KEi, {Ni}
Bob

, {IDi}
Bob−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

KEr, {Nr}
Alice

, {IDr}
Alice←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

SK = f(gab, Ni, Nr)
SK {AUTH, [CERT]}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
SK {AUTH, [CERT]}

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

B
ob

3.4. Aggressive mode, public encryption keys, original protocol.

A
li
ce

SAi, KEi, {Ni}
Bob

, {IDi}
Bob−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

SAr, KEr, {Nr}
Alice

, {IDr}
Alice

, AUTH
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

AUTH
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

B
ob

3.5. Main mode, public encryption keys, revised protocol.

A
li
ce

SAi
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

SAr
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

KA = hash(Ni, cookiei)
{Ni}

Bob
, KA {KEi}, KA {IDi}, KA {CERT}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
KB = hash(Nr, cookier)
{Nr}

Alice
, KB {KEr}, KB {IDr}

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
SK = f(gab, Ni, Nr, cookiei, cookier)

SK {AUTH}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

SK {AUTH}
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

B
ob

10 Michael Nüsken

3.6. Aggressive mode, public encryption keys, original protocol.

A
li
ce

KA = hash(Ni, cookiei)
SAi, {Ni}

Bob
, KA {KEi}, KA {IDi}, KA {CERT}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
KB = hash(Nr, cookier)

SAr, {Nr}
Alice

, KB {KEr}, KB {IDr}, AUTH
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

SK = f(gab, Ni, Nr, cookiei, cookier)
SK {AUTH}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

B
ob

3.7. Main mode, pre-shared secret.

A
li
ce

SAi
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

SAr
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

KEi, Ni
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

KEr, Nr
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

SK = f(secret, gab, Ni, Nr, cookiei, cookier)
SK {IDi, AUTH}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
SK {IDr, AUTH}

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

B
ob

3.8. Aggressive mode, pre-shared secret.

A
li
ce

SAi, KEi, Ni, IDi
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

SAr, KEr, Nr, IDr, AUTH
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

AUTH
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

SK = f(secret, gab, Ni, Nr, cookiei, cookier)

B
ob

Michael Nüsken

b-it, Bonn, Germany

Algorithm. SHA-1.

Input: A message x ∈ {0, 1}∗.

Output: A hash value H ∈ {0, 1}160.

Constants and round functions:

1. h← (67452301, EFCDAB89, 98BADCFE, 10325476, C3D2E1F0).

Kj ←





5A827999, 0 ≤ j < 20, (32 bits of
√

2)

6ED9EBA1, 20 ≤ j < 40, (32 bits of
√

3)

8F1BBCDC, 40 ≤ j < 60, (32 bits of
√

5)

CA62C1D6, 60 ≤ j < 80. (32 bits of
√

7)

fj(B, C, D) =





(B ∧ C) ∨ (B ∧D), 0 ≤ j < 20,

B ⊕ C ⊕D, 20 ≤ j < 40,

(B ∧ C) ∨ (C ∧D) ∨ (D ∧B),

B ⊕ C ⊕D, 60 ≤ j < 80.

Precalculations:

2. Padding: x̃← x|1|0d| 〈|x|〉64 mit 0 ≤ d < 512 so, that

|x̃| is a multiple of 512 = 16 · 32.

3. Cut x̃ in 32-bit words: x̃ = x0x1x2 . . . x16m−1.

4. Initialize: (H1, H2, H3, H4, H5)← h.

Main calculation:

5. For i = 0..m− 1 do 6–13

6. For j = 0..15 do Wj ← x16i+j .

7. For j = 16..79 do

8. Wj ← (Wj−3 ⊕Wj−8⊕Wj−14⊕Wj−16) <© 1 .

9. (A, B, C, D, E)← (H1, H2, H3, H4, H5).

10. For j = 0..79 do 11–12

11. t← A <© 5 + fj(B, C, D) + E + Wj + Kj .

12. (A, B, C, D, E)← (t, A, B <© 30, C, D).

13. (H1, H2, H3, H4, H5)←

(H1 + A, H2 + B, H3 + C, H4 + D, H5 + E).

14. Return H1|H2|H3|H4|H5.

Michael Nüsken Electronic passports and biometrics, December 7, 2006 1

nuesken
Line

nuesken
Line

