# Lecture Notes <br> <br> Security on the Internet 

 <br> <br> Security on the Internet}

Michael Nüsken<br>b-it

# (Bonn-Aachen International Center for Information Technology) 

Winter 2008

e l'a 'l

Goal:

- coumunication, discussio.
- speed
- send information, share it
- senel text uessafes
(NOT entive DVDs!)
- make it easior, ilts fasker .7 's cheapor
- Less paper
- courect seagraphically distrubeted a parbies
- notification
- independen/ of sonder's \& recipient's) cocative
Format:
- pure lext, electromic
- fomeated: $\left[\begin{array}{l}\text { Heaclar } \\ \text { Lblak Eie }>\end{array}\right.$

Body
Thumberbind $\mathrm{Cbl}+\mathrm{V}$
Ourloole
$\rightarrow$ ? rall b ad ope file
$\rightarrow$ Prookles give Weaders

Special heach lies:
From: <sender>
of: From: Mickael Nüskon <nvesker(b6\%...)
To: <recipient>
subject: < subject>
Duke: <sen. Lis date>
Tore:
Regived :
Refom-inth:
Cc:
Bec:
X-Sam...
$\leftarrow$ like a C: liat wust dele led Cefere delivery.
Priomidy:
... encedi info...
Message - ID:
... format info... (is it tekt ar 4 HTLL or Reply-To: mu(fipar f...)
-1. con firmerition...
Before all that is ane Live starting IFrome' g: Fromw aueshen ebit.unirbounde dake

Transport of etcail?


Secunty?
Goals: Confidentiality, Privacy
encoyption [Only Bob can read the email."
Authenticity
Bob knows that it was Alice who sent the mail.
siguabere) (lute gristly
The text warn't changed undbump.
Message flow conficlutiatity Fran the existence of the message shays 'secret'.
Neu-repudiation
Alice cannot deny the resent the wail. In other words, B. $b$ can prove to thoulie that the mail is from trice
(Accessibility, Reliability)
Proof of submission
Proof of delivery
Anonymity
it few Lechnica Civies:

- wont to receive any mail (pocess)
- relay (or formad) anai 'l
- udchress info rost be inclucled and legible.
$\rightarrow$ DNS sernices sopply informatio. about the topilogy of the netroork.
(Secumity? $\because$ )
$\rightarrow$ SMTP $=$ Send Mail Transfer Protocol spenifies details as eg:
- back mail cousists of a haadas acel abody seperated by a blank live.
$\rightarrow$ theachers are never encryphed
$\rightarrow$ headers may change on the way and cun blues not be signe of by the sencler.


Return-Path: [08ws-soti-admin@bit.uni-bonn.de](mailto:08ws-soti-admin@bit.uni-bonn.de)
X-Original-To: nuesken@math.upb.de
Delivered-To: nuesken@math.upb.de
[...]
Received: by postfix.iai.uni-bonn.de (Postfix, from userid 13020)
id 94C365C834; Mon, 3 Nov 2008 21:10:04 +0100 (MET)
X-Sieve: cmu-sieve 2.0
X-IAI-Env-From: [08ws-soti-admin@bit.uni-bonn.de](mailto:08ws-soti-admin@bit.uni-bonn.de) : [131.220.8.1]
Received: from uran.iai.uni-bonn.de (uran.iai.uni-bonn.de [131.220.8.1])
by postfix.iai.uni-bonn.de (Postfix) with ESMTP
id 97F4F5C829; Mon, 3 Nov 2008 21:10:03 +0100 (MET)
(envelope-from 08ws-soti-admin@bit.uni-bonn.de)
(envelope-to VARIOUS) (2)
(internal use: ta=0, tu=1, te=0, am=-, au=-)
Delivered-To: 08ws-soti@alias.informatik.uni-bonn.de
X-IAI-Env-From: [first.family@uni-bonn.de](mailto:first.family@uni-bonn.de) : [80.136.68.129]
Received: from [192.168.178.46] (p50884481.dip.t-dialin.net [80.136.68.129])
by postfix.iai.uni-bonn.de (Postfix) with ESMTP
id A1CCC5C829; Mon, 3 Nov 2008 21:09:55 +0100 (MET)
(envelope-from first.family@uni-bonn.de)
(envelope-to VARIOUS) (2)
(internal use: ta=1, tu=1, te=1, am=P, au=first.family)
Message-ID: [490F5A8B.6000205@informatik.uni-bonn.de](mailto:490F5A8B.6000205@informatik.uni-bonn.de)
Date: Mon, 03 Nov 2008 21:09:47 +0100
From: First Family [first.family@uni-bonn.de](mailto:first.family@uni-bonn.de)
Reply-To: first.family@uni-bonn.de
User-Agent: Thunderbird 2.0.0.17 (Windows/20080914)
MIME-Version: 1.0
To: 08ws-soti@bit.uni-bonn.de
Subject: [08ws-soti] 1234567
X-Enigmail-Version: 0.95.7
Content-Type: text/plain; charset=UTF-8
Content-Transfer-Encoding: 8bit
Sender: 08ws-soti-admin@bit.uni-bonn.de
Errors-To: 08ws-soti-admin@bit.uni-bonn.de
X-BeenThere: 08ws-soti@bit.uni-bonn.de
X-Mailman-Version: 2.0.4
Precedence: bulk
[...List-Stuff...]
X-Virus-Scanned: by mailscan-system at math.uni-paderborn.de
X-Spam-Status: No, hits=0.2 tagged_above=-999.0 required=4.0 tests=AWL, BAYES_00, DNS_FROM_SECURITYSAGE, SPF_PASS, SUBJ_HAS_UNIQ_ID, UNIQUE WORDS
X-Spam-Level:
-----BEGIN PGP MESSAGE-----
Charset: UTF-8
Version: GnuPG v1.4.9 (MingW32)
Comment: Using GnuPG with Mozilla - http://enigmail.mozdev.org
hQIOA8SRdzc1IdlqEAf/VqwMFWs1Y2rqD0AQgBjJAyVWshp6TnEFutXOEloM4q4z CVtNAium3o2+6R3bToYgx7NIetmiQWsRm7o5QWmIeDKu6zu2ogvn275ik71vBAKk 0/M+IfUl2WSjpmYDZm62R2iAjwlQy6BbLbPeGXJ/AICm65mgajUT/mum8PA8ako6 EezCwYpbS3A0V0xHopKWDWtc9iUBaIsGR9xLozvcVyXXWMCJSV/BAHewoTFD8U57 vnMU0oSp/j8VjI+kp6koY86MJoNplcUUYG5j+IHnuJpfpIbxs2c5cNwYLKFuvZrV RpnjoDq/61ATmssidZEw5mF4/utOG913ftKoCdXpGAf9Fzul4wPGUFOzcATLX4Ef Q+I+x60keFC4K+mIwefsZHdhbT/XtilkeoFCtaHtvwWaqTuaSfxRnlaJshQzwHxL [...]
aHvqZs9s5+264Q0yUgB8i 7AVq6d64JL8lg1h3vKEcDdFFUbSlgEYjsQ0zFI4UK0i H+xRNHEYaC8UN1EYbulOlx1MZxz3VQ8bneX7cWmuYggkYDM0XUWfX6OP3CKoCWoU OmZbZWGzH+Il2nzeRO9/TOtHfF5enDO2yuEF3Fr6flFDjlsZIFDq4jdrZy6ucMuO -2AR6QwuWJQO37KIiJg1ngcfA+SO+Mbdg803wuMH3ORVMNc1ejo5DYRlxw== =suKP
------END PGP MESSAGE-----
08ws-SotI mailing list
08ws-SotI@bit.uni-bonn.de
https://mailbox.iai.uni-bonn.de/mailman/listinfo.cgi/08ws-soti

Hacle
$\triangle$ PATT
Changing/Addextra
coubent

Changing/ar/Fabee
sendar/
sendyto
reply
Read conke to
Detecto message flow
Phishing
seud trojens, varnes,... malwane.

Flooding /Dos

Defence
Tilhers
Hachlisting
(Signature)
Gooy listing
Siguature (CRYPTO)

Siguature (CRyPTO)
+...
( Encorption)
Eucoupt (CRYPTO)
(Secwe chamels, VPN, ... )
(cortificales)
… EDUCATON

IDS TCP-sequice * cookies,
.... sipuature...

Yecluology
(1) Encryption
$\rightarrow$ protect against chisclosure
$\rightarrow$ No protection against changes of coukent
(2) Siguature
$\rightarrow$ protect against fabe sencler
$\rightarrow$ pootect agonist manipulation of contult [iutegrity
$\rightarrow$ protect agaist denials iconnection of comhent [authentiad signer) cate]
(3) PKI

Encryption
cesar's cipher!

$$
\triangle E C R E T \quad \rightarrow \quad \text { VHFUHW }
$$

Encrypt: $z^{\text {od }}$ successor of each led.
Decrypt: $3^{\text {rd }}$ predecessor
Attach: Brute Force, try all keys!
Key? : 3.
I ane out 26 possible leys.
Actually: $0{ }^{0}{ }^{0} \mathbb{Z}_{26} \longrightarrow \mathbb{Z}_{26}$


Kerckhoffs principle:
The entire encryption scheme is kan to an attacker. The only thing which the a the chen dues not knew is the bey.

Conclusion:
Since Bruce fores attack, ie.
trying all possible keys,
is alvargs possible, the umber of passible should be large.
(Nowadays $2^{100}$ or $2^{128}$ are considered
4 abeles cask:
Affine codes
affine-enc $\mathbb{Z}_{26} \longrightarrow \mathbb{Z}_{26}$

$$
\begin{aligned}
& \text { e-enc } \beta, \mu(\beta x+\alpha) \operatorname{rem} 26 . \\
& \text { \# hays } \leq 26^{2}
\end{aligned}
$$

1. Feature: CORRECTNESS:

We can uniquely decrypt the cipher hest.
Hare in particular we must have $\beta \neq 0$ we actually ned that arfine-enc $\beta, x$ is in vertible, ie. for every $y \in \mathbb{Z}_{26}$ we can solve
therthe 6ollown; $\xi_{\text {slides: }}$
$y=(\beta x+\alpha)$ ven $26 \ldots$

That andy possible if $\beta$ is invertible. $\# z_{26}^{x}=12 \mathrm{~J}$ - 2.26
lubegers mockulo 26 (N)

$$
\begin{aligned}
& \mathbb{Z}_{26}=\{0,1,2,3, \ldots, 25\} \\
& a+t_{z_{0}} b=\mathbb{Z}_{6}\left(\left(a+t_{2} b\right) \operatorname{ran} 26\right) \\
& \left(a+\frac{!}{4}\right) \bmod 26 .
\end{aligned}
$$

Division with remainder: Given $a, b \in \mathbb{Z}, b \neq 0$, there exist $q, \sigma \in \mathbb{Z}$ such that

$$
\begin{aligned}
& a=9 \cdot 6+r \text {, } \\
& \text { ad } \quad 0 \leq r<|b| \\
& \begin{array}{ll}
r=: a \text { rem } b \in \mathbb{Z} \\
q=: a \text { quo } b \in \mathbb{Z}
\end{array} \\
& =: a \bmod b \in \not \mathbb{Z}_{b} \\
& a_{z_{26}} b=\left(a_{z} b\right) \bmod 26 .
\end{aligned}
$$

Properties:

$$
\text { PANIC }+ \text {, BANC, D } \underset{\text { ONT }}{\frac{O \neq 1}{T}}
$$

commutative ring a field!

Def
$\mathbb{Z}_{N}=\left(\mathbb{Z}_{N_{1}}+, \cdot\right)$ as above.
Then $1 \mathbb{Z}_{N}$ is a commutative ring.
Thun $2 \mathbb{Z}_{N}$ is a ficlel iff Nisprime.
Than 3 Give $a \in \mathbb{Z}$.
The there exists an inverse th ats sot in $=1$ if $a, l$ are coprime If $\operatorname{gcd}(a, N)=1 \quad \operatorname{ged}(a, N)=\operatorname{seati}$

Note: Than S $\Rightarrow$ Than?.
How to compact the inverse ifit exists?
Exuple $3 \in \mathbb{Z}_{i 0}$, inverse?


This is amexmple of EXTENDED EUCLIDEAN AL GO.

So we infer that

$$
1=-1 \cdot 20+7 \cdot 3 \quad \text { in } \mathbb{Z}!
$$

Thus

$$
1=\quad 7 \cdot 3 \quad \therefore \mathbb{Z}_{20}
$$

30

$$
3^{-1}=7 \quad \therefore \quad \mathbb{Z}_{20}
$$

Further statement:
Thun 4 The EEA
(i) always laminates.
(ii) computes $\begin{aligned} g & =s \cdot a+t \cdot b, g, s, t \in \mathbb{P} \\ \text { where } & g=g i d(a, b)\end{aligned}$ where $g=g i d(a, b)$
(iii) terminates after at most $2 \log _{2} \max (a, b)+2$ steps. In other words: the number of, rows is at most thrice the number of bits in a ad $b$.
$\Rightarrow O\left(n^{3}\right)$
EsaCorollary mebbtain thun 3 :
where $n=*$ bits
befanonofisis a and b.
$a \in \mathbb{Z}_{N}$ invertible.
$\Rightarrow$ the is $s \in \mathbb{Z}_{N}$ : $3 a=1=\mathbb{Z}_{N}$.
$\Rightarrow$ the is $s \in \mathbb{Z}, t \in \mathbb{Z}: 3 a+E N=1$ in
$\Rightarrow \quad \operatorname{gce}(\operatorname{ar} N)=1$.
$\stackrel{\text { EsP }}{\Rightarrow}$ the is site $\mathbb{Z}$, sa $+N N+1$ in.
$\Rightarrow$ the is $t \in \mathbb{Z}_{N}$ : sa= $=1=\mathbb{Z}_{d} \Rightarrow$.



One of Giovanmi Battista Porta's cipher disks

Bether cipher?
Teke a parmutation $\sigma$ of $\mathbb{Z}_{26}$,
ie. of the lefters:
$\sigma: \mathbb{Z}_{26} \rightarrow \mathbb{Z}_{26}$ bijective
T, Noticens:
injective $\equiv$ 1-1Einb
surjective $\equiv$ onto
Pernutation cipher
Replace every lefter $x$ is the plaitent mith $\sigma(x)$ is the cipher text.

Exuphe

$$
\begin{array}{c|cccccc}
x & A & B & C & D & E & \cdots \\
\sigma(x) & z & 0 & g & r & a & \cdots
\end{array}
$$

This 5 is the key of the pernumation ciphes. there are 26! sock perimetiations, so 26! possible beys.

$$
26!\approx 2^{7 ?}
$$

Let's unalyze this ciphor!

1) Correct ness: we cam simply use $\sigma^{-1}$ an each lets of the ciphert get the plaitext.
2) E\#ficiency:

1 oration per bells: $O(n)$.
3) SECCRITY:

Brute force a black?
Does not work any more, 26! is toe large.
Frequency mulysis he Cps!
Find out the mosh
frequent cymbal:
the ciphertext. Probably
the encrypts the ' $E$ )
which is in many lmanages the most frequent lek.
Plug it in and continue with the rest...
BROKEN

Skytale

CORRECTNESS?
Yes, just need conather stick of same thickness dEFICIENCY?
$\theta(u)$, as fast as it cum be.
SECURITY?
\#he ys $z$ diameter of the stick *e. small!
$\rightarrow$ so brake farming has a good chance to succeed.
Beth ancungesis possible...
$\rightarrow$ BROKEN.

> SUBSTITUTION cipher
> Caesar Affine
> Permetim

TRANS POSITION ciphers
sky tale

Vigenère ciphos:
$\rightarrow$ large blacks!
Eucryption?
key is a word, eg. SECRET.
Then the firs/leth is eucropted
with the Caesar ciphas correspandigs to $S=17$.

居NEMYWAITNGAT BERLIN.

Correct mess?
iciency? $O(n)$.
SECURITY?
Brabe forre: $26^{e}, e=$ langth of the bey woid.
Frequenory unalgsis: DOESN'T moRK... í
possible weaknesses

- bayword may coution 'lots of Es,'eg. may have structare.
- try to execule frequemcy analysis on every ethe lett. But $e$ is vubuown. By guessing $l$ wie can read aff the treruenci'es whethe the guces was good..

This may be som but it may work...
$\rightarrow K A S I S K I$ attack.
BROKEN
Possible improvements
(1) Use a hoy as longe as the plawtent.
(2) Choose the key at remdam unifomely, so if does not have structure.

This is the one-Alme-pad.
This cipher is

- correct $\&$ efficient
- absolutely secure in a mathematically strong sense.

One-Time Pad
tssume the plaintext $p$ is a string of $n$ bits.
Now cluose a bay $k$ as a randume
w- Cuit stanid, un formly!
Tak is : $\forall k: \operatorname{prob}\left(\underset{\neq}{k}=\begin{array}{l}k \\ k\end{array}\right)=2^{-n}$


Encrypt:

$$
\begin{aligned}
& \text { or adclitio } \\
& =Z_{2} \text {. }
\end{aligned}
$$

Decrept:

Thun The one-tine gad is absolutely secure.

$$
\operatorname{prob}(P=p \mid C=c)=\operatorname{prob}(P=p)
$$



Side remands:
conditional probabiliky

$$
\begin{aligned}
& \text { onditional probabiliky } \frac{\operatorname{porb}(A \cap B)}{\operatorname{prob(B)}}(A \mid B)=\frac{1}{p r o b}(A)
\end{aligned}
$$ undes condition 3



The theavem uses a random vanibb he $P$
whick descurbes the know ledge of the ablacker about the choice of the plaikext. It is independet of $K$.
revtlow: $C:=P \oplus K$.
Proof hefls compute

$$
\begin{aligned}
& \operatorname{prob}(P=p / C=c) \\
& =p o b(P=P a P \oplus K=c) \\
& p \sim b(P \oplus K=c) \\
& =\frac{\operatorname{prob}(P=p a \quad K=c \oplus P)}{p+0 b(P \oplus K=c)} \\
& \operatorname{porb}(P \uplus K=c) \\
& =\operatorname{prob}(P=p) \cdot \frac{p r o b(K=c \oplus p)}{\operatorname{prob}(P \otimes K=c)}
\end{aligned}
$$

By defiurtin

$$
\operatorname{prob}(K=c o p)=2^{-4} .
$$

Further

$$
=2^{-n}
$$

Thus

$$
\begin{array}{ll}
\operatorname{prob}(P=p \mid C=c) \\
= & \operatorname{prob}(P=p) \\
=\operatorname{prob}(P=p) . & \frac{p \operatorname{cob}\left(K=2^{-4}\right.}{\operatorname{prob}(P \oplus K=c)} \\
R 2^{-4}
\end{array}
$$

That is: He e attacker does not learn any this from the a'phortext $c$.!

$$
\begin{aligned}
& \text { prob ( } P \oplus K=c \text { ) } \\
& =p \operatorname{cob}\left(\dot{J}_{p}: P=p \wedge \quad K=c \oplus p\right. \text { ) } \\
& =\sum_{p} \operatorname{posb}(P=p) \cdot \underbrace{\operatorname{pen}(K=c o p)}_{2^{-4}}) \\
& =2^{-n} \cdot \sum_{=1 .}^{\sum_{i} p^{n 0 b}(P=p)}
\end{aligned}
$$



Randomness is expensive!
$\rightarrow$ what about reusing the key?
That is:
we have $p_{1}, p_{2}$ two plailexts. But only ane hey $k$ :

$$
\begin{aligned}
& c_{1}=p_{1} \oplus k \\
& c_{2}=p_{2} \otimes k
\end{aligned}
$$

The atadeer com add $c_{2}$ and $c_{2}$ :

$$
c_{1} \oplus c_{2}=p_{1} \oplus p_{2} .
$$

Wikis is $n$ out 2 n fits! So the asher knows half of the plain lents. If the plaitexts have structure the remain if information can be guessed.
Lorene SZ42 H.
Bottom:
Wo rime Pad is completely dusecure.






Standard


Field: You can divide by every non-zero element.


The ShiftRows operation


The rows are shifted cyclically by zero, one, two, or three bytes

Polynomials over the field $\mathbb{F}_{2}{ }^{8}$
$R=\mathbb{F}_{2^{8}}[z] /\left(z^{4}+1\right) \ni a_{0}+a_{1} z+a_{2} z^{2}+a_{3} z^{3}$,
where $a_{i} \in \mathbb{F}_{28}$.
Addition: coefficient-wise $(a+b)_{i}=a_{i}+b_{i}$, XOR
Multiplication: as for polynomials modulo $z^{4}+1$. Another way to express $d=a \cdot b$ is by the following matrix equation.

$$
\left[\begin{array}{l}
d_{0} \\
d_{1} \\
d_{2} \\
d_{3}
\end{array}\right]=\left[\begin{array}{llll}
a_{0} & a_{3} & a_{2} & a_{1} \\
a_{1} & a_{0} & a_{3} & a_{2} \\
a_{2} & a_{1} & a_{0} & a_{3} \\
a_{3} & a_{2} & a_{1} & a_{0}
\end{array}\right] \cdot\left[\begin{array}{l}
b_{0} \\
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

Not a field: $(z+1)^{4}=0$.


The MixColumns operation


Each column is considered as a polynomial and multiplied by $c=02+$ $01 z+01 z^{2}+03 z^{3}$

Inverse: Multiply with $d=0 \mathrm{E}+09 z+0 \mathrm{D} z^{2}+0 \mathrm{~B} z^{3}$


## The field $\mathbb{F}_{2^{8}}$

$\mathbb{F}_{2^{8}} \ni a=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+a_{7} x^{7}$, where $a_{i} \in \mathbb{F}_{2}=\{0,1\}$.

Representation: 8 bits for an element $=1$ byte.
Addition: XOR, $(a+b)_{i}=a_{i}+b_{i}$.
Multiplication: as for polynomials modulo $x^{8}+x^{4}+x^{3}+x+1$.
Example 57-83 $=\mathrm{C} 1$ :

$$
\begin{aligned}
\left(x^{6}+x^{4}+x^{2}+1\right) \cdot\left(x^{7}+x+1\right)= & x^{13}+x^{11}+x^{9}+x^{8}+x^{7}+ \\
& x^{7}+x^{5}+x^{3}+x^{2}+x+ \\
& x^{6}+x^{4}+x^{2}+1 \\
= & x^{13}+x^{11}+x^{9}+x^{8}+x^{6}+x^{5}+x^{4}+x^{3}+1 \\
= & x^{7}+x^{6}+1 \quad \bmod x^{8}+x^{4}+x^{3}+x+1 .
\end{aligned}
$$

Field: You can divide by every non-zero element.

## The S-box



Highly nonlinear:
$y \mapsto 05 \cdot y^{254}+09 \cdot y^{253}+\mathrm{F} 9 \cdot y^{251}+25 \cdot y^{247}+\mathrm{F} 4 \cdot y^{239}+01 y^{223}+\mathrm{B} 5 \cdot y^{191}+8 \mathrm{~F} \cdot y^{127}+63$.
Simple implementation using a 256 byte lookup table.

## The SubBytes operation



Apply the S-box to every byte.

## The ShiftRows operation



The rows are shifted cyclically by zero, one, two, or three bytes.

## Polynomials over the field $\mathbb{F}_{2}{ }^{8}$

$R=\mathbb{F}_{2^{8}}[z] /\left(z^{4}+1\right) \ni a_{0}+a_{1} z+a_{2} z^{2}+a_{3} z^{3}$,
where $a_{i} \in \mathbb{F}_{2^{8}}$.
Addition: coefficient-wise $(a+b)_{i}=a_{i}+b_{i}$, XOR.
Multiplication: as for polynomials modulo $z^{4}+1$. Another way to express $d=a \cdot b$ is by the following matrix equation:

$$
\left[\begin{array}{l}
d_{0} \\
d_{1} \\
d_{2} \\
d_{3}
\end{array}\right]=\left[\begin{array}{llll}
a_{0} & a_{3} & a_{2} & a_{1} \\
a_{1} & a_{0} & a_{3} & a_{2} \\
a_{2} & a_{1} & a_{0} & a_{3} \\
a_{3} & a_{2} & a_{1} & a_{0}
\end{array}\right] \cdot\left[\begin{array}{l}
b_{0} \\
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

Not a field: $(z+1)^{4}=0$.

## The MixColumns operation



Each column is considered as a polynomial and multiplied by $c=02+$ $01 z+01 z^{2}+03 z^{3}$.

Inverse: Multiply with $d=0 \mathrm{E}+09 z+0 \mathrm{D} z^{2}+0 \mathrm{~B} z^{3}$.

## The AddRoundKey operation



Simple XOR with the round key.

SubBytes


We have seen

- transposition cipters
- sulstitution ciphers
$\rightarrow$ meckanical $\&$ electrical devices for ciphers
$\rightarrow$ computh progiems, AES
$\leftarrow$ vavious a thades.
But all this just is in the situatia..


Alice

sy unmetric eucrypがou.

What if there is uo sate way to send the secrel key?

Alice
(C Bocme)

is listemid.
Can that worle?
Auswers: 1971-74 British Secret Sersice

$$
\left.\begin{array}{rl}
1976 & \begin{array}{l}
\text { Diflie \& Hellman } \\
1978
\end{array}
\end{array}\right\} \rightarrow \begin{gathered}
\text { PSAblic } \\
\text { cryplo }
\end{gathered}
$$

We ueed a finite groop, say commutative! For excuple:

$$
\begin{array}{lcc}
\mathbb{Z}_{p}^{x}, & \text { or } & \mathbb{Z}_{N}^{+}, \text {or } \\
\mathbb{F}_{q}^{x}, & \text { or } & \left.\mathbb{T}_{q}^{2 \times 2}\right)^{x}=G L_{2}(\mathbb{T}) \\
z_{N}^{x}, & \text { or } &
\end{array}
$$

Whese are finle (camm.) groups

Revenges:
group =
0.0. class

$$
\begin{aligned}
& \text { of bents } \\
& \text { nth }
\end{aligned}
$$

with a binary op.
$\&$ PANT (C).
So what?
we con use uneltiplicastin.
or repeated multiplication...
So: given $g \in G$ where $G$ is own group. and $r \in \mathbb{N}$.
we can compote
$g^{V^{2}}$ in $G$. greek led ne $v$

Alice

$$
\alpha \in \mathbb{R}
$$

$$
a=g^{\alpha}
$$

$$
k_{1}=b^{\alpha}
$$



Bob
$\beta E_{R} \mathbb{N}$


Actually:

$$
k_{1}=k_{2}
$$

$$
k_{1}=b^{\alpha}=\left(g^{\beta}\right)^{\alpha}=g^{\beta \cdot \alpha}
$$

$$
\begin{aligned}
& k_{a}=b=\left(g^{\prime}\right) \dot{y}^{g} \stackrel{v}{v} g^{\alpha \beta}=\left(g^{\alpha}\right)^{\beta}=a^{\beta}=k_{2} \\
& \text { Need the exponentiation law }
\end{aligned}
$$

CORRECT? Yes: we define correctucess here to mean that $k_{1}=k_{2}$.

EFICIENT?
Yes, by square \& ne liply
By example:
Give $g=a \operatorname{proup} G$,

$$
x \in \mathbb{N}
$$

Compote $g^{\alpha}$.
a. Write $\alpha$ in binary, sage:

$$
r_{\text {to be precise }:} \sum_{i=0}^{r} \alpha_{i=1} \alpha_{r-i},-1=\alpha \cdot J
$$

$$
\text { 2. } \quad h \leftarrow g
$$

3. FOR $i$ from $\cdots X^{\text {do } 0^{\mu} \text { to }_{0}} 0$ do
4. $\quad h \leftarrow h^{2}$.
5. $\quad$ if $\alpha_{i}=1$ then $h \leftarrow h \cdot g$.
6. End FOR
7. Reform $K$.

Theorem square \& multiply
$(i)$ does compute $g^{\alpha}$.
(ii) needs $\frac{1 \text { squarings }}{1}$ and at most $r$ a 1 multiplications.
tact. It can be proved that we need (in a suikbhesure) at least rit squairgs.

Corollary
(as egg. in $Z_{p}^{x}$ are have $G(u)$
bit operations when $n=$ \#bit s(p))
the exponentiation using square \& multiply is efficient.
So together: Diffie \& Hellman is efficient $\downarrow$.

SECURITY?
What does Eve knows?
$G, g, a, b$ and the alfonth.
What does Eve want?

$$
k:=k_{1}-k_{2}
$$

Diffie - Hellman - problem for $G$

What help would be use fall? will. give $\alpha$ such that $a=g^{\alpha}$.

Discrete Logarithen probtern for $G$
Given $g, a$ in 6 .
Compute $\alpha$ suck that $a=g^{\alpha}$
\&or report that no $\alpha$ exists.
Assume Eve can solve the DLP. Then Ere can solve the DHP:

Agon
ingot: $g, a_{b} b$.
output: k

1. Call the DLP arrack to Fid $\alpha$ with $a=g^{\alpha}$.
2. Compute $k \leftarrow b^{\alpha}$.
3. Return $k$.

Then
If the Diftie Hellman bay exchange is secure
then the $D C P$ is used prop $G$ must be difficult.
Prof! we just doubt the!

Break id the DLP...
or at least: hew for can roget?
Tack: give $g, a$ in prop 6 ,
fid $x$ mol that $a=g^{\alpha}$
(or bell that Here is none.)
wee assume that $g_{1} a_{1}$ ad $\alpha$ each fit ito $"$ bits.
Trivial solution:

- Try out all $\alpha$.
- Try a audank and check whet the it works. Repeat until succaesfll. $O^{n}\left(2^{n}\right)$

Inkelvdin:
Repeat
something
Until condilim
where the canclifin holds with probability $p^{\text {ejorteack time }}$
the the expected runtime is: $\frac{1}{p}$.
rYe have to sum one the probalities to exit h after $k$ rends: $\sum_{k \geq d}(1-p)^{6-1} p \cdot k$. The rest is analysis ... $J$

Better?
Toy to waite $x=\alpha_{1} \cdot q+\alpha_{0}$
with $q=2^{4 / 3}$.
Now: here are $\frac{x}{2}$ a $b^{2}$ is $i=\alpha_{0}$

$$
\text { and } \frac{\Gamma_{m}^{2}}{2} \mathrm{~b} / \mathrm{s}=\alpha_{1}
$$

Baby step - Giant step - alford th input: $g_{1} a$.
output: $\alpha$.

1. Define $9 \approx \theta\left(2^{n / 2}\right)$.

$c=a\left(g^{-q}\right)^{\alpha_{1}}$
for $\alpha_{1}=0, \ldots, 2 q$
$\begin{aligned} \text { mil } \quad c= & g^{\alpha_{0}} \text { for some } \alpha_{0} \text {. } \\ & \text { (table look vip!) }\end{aligned}$
踥 II Now: $\quad a\left(g^{-a}\right)^{\alpha_{2}}=g^{\alpha_{0}}$.
ie $a=g^{\alpha_{1 q+}+\alpha_{0}}$.
2. Return $\alpha_{1} \cdot q+\alpha_{0}$

Birthday paradox
The expected umber of people to invite until a birth day collision occurs is $O(\sqrt{\# \text { birthdays }})$.

Pollord-9
"Guess" tuple $t=\left(\gamma, \delta, a g^{\gamma}, g^{\delta}\right)$ mil a collision occurs of the foo:

$$
a g^{\gamma}=g^{\delta^{\prime}}
$$

Rumina: expected $\hat{O}\left(\sqrt{2^{n}}\right)=\hat{O}^{n}\left(2^{n / 2}\right)$
Memory: still $O^{\sim}\left(2^{* / 2}\right)$
To improve this we mate the choice of tuples less vanda:
choose the first tuple. to.
Fix a detminiskinction mapping
apter to huptes. $t_{i}=f\left(t_{i-1}\right)$.
And consider the sequence ( $t:$ ).
Now: implement Floyd's trick:

Consider to sequences:
(1) $t_{0}, t_{1}, t_{2}, \ldots$,

$$
t_{i}=f\left(t_{i-r}\right) .
$$

(2) $f_{0}=t_{0}, s_{x}, s_{2}, \ldots$ $s_{i}=f\left(f\left(s_{i-1}\right)\right)$.

Idea: set of all

FINITE!

Now only ca -pare $s_{i}$ to $t_{i}$.
Note that

$$
\begin{array}{r}
s_{i}=f^{(2 i)}\left(s_{0}\right), \\
t_{i}=f^{(i)}\left(t_{0}\right) \\
s_{i}=f^{(i)}\left(t_{i}\right)
\end{array}
$$

30
so
How if there is a collision then it must occur beturean si and t: for same index. So we only need to
stave 2 emmets.

Expectedrmatine? Nocidea.
Heuristic expected runtime: $O^{2}\left(2^{4 / 2}\right)$
Advantage: very small storage requirements.

Even better?
No: One can prove a lower bound that mithi a group $G$ with $\# 6$ events every reundonized alforrith needs $\Omega(\sqrt{\# G})$ operations二 6 on average...
if you do not use mu y this about the special structure of your group.
Tor example: in $\bar{Z}_{p}^{x}$ there is an alfonthon using $2^{\text {ciV }} \overline{n \log n}$ steps. H's still not polytume.
$\varphi_{0} \mathscr{Z}_{7}^{x}$ is not that mice? i.
There is a particulaus well-smited
furimg of graops where no atachs essentichly betar them Baby step - Giantstep or Pollard-g are Rname.
Interludium: Elliptic curves
Cousich an equation of thecform

$$
y^{2}=x^{3}+a x+b
$$

is two un knowns $x, y$.
If me work over $\mathbb{R}$ :


Addition? $y^{2}=x^{3} \operatorname{mox}$

Define addition such that

$$
P+Q+R=0
$$

So define

$$
P+Q:=-R .
$$

lie

$$
\begin{aligned}
& x=\xi_{0}+\xi_{1} \cdot \lambda \\
& y=\eta_{0}+\eta_{1} \cdot \lambda \\
& y^{2}=x^{3}-x
\end{aligned}
$$

Twat $R+(-R)=+\theta$ gives a cubic equation for $\lambda$.
ie $R+(-R)+(-\theta)=0$
Where is the Ane through

$$
\begin{aligned}
& \text { The tine Ph rough } \\
& R_{1},-R, \operatorname{ad} \theta=-\theta \text { ? }
\end{aligned}
$$

We expect: $-\theta=0$.

$$
\begin{aligned}
\cdots \text { so if } R & =\left(x_{3}, y_{3}\right) \\
\text { the }-R & =\left(x_{3},-y_{3}\right) .
\end{aligned}
$$

Replace $\mathbb{R}$ by a finite field. then the curve is finite ad that's what to use.

Recall
Diffie - Hellman

$$
\begin{array}{ll}
\text { Alice } & z_{0} S \\
\alpha \in G_{R} Z & \\
a=g^{\alpha} & \\
k_{1}=b^{\alpha} & \\
b=g^{f} \\
k_{2}=a^{\beta}
\end{array}
$$

Note: $\quad a, b, k_{1}, k_{2}$ are $i \quad G$ and must be calculated using the operation (s) i G!

Example $G=\mathbb{Z}_{p}^{x}, \quad p$ prime

$$
g=?
$$

Obvious: $g=1$ is bad! well, what is good?
Necessary: the un er A possible -antennas for powers of $g$ must be longe! (That's the number of keys!)
Define:


The

$$
\text { ard } \begin{aligned}
g & =\operatorname{mith}\left\{i \in \mathbb{N}_{>0} \mid g^{i}=1\right\} . \\
& (\text { whee } \operatorname{mi} \phi=\infty=\# z)
\end{aligned}
$$

obsematin: why should $g^{i}=1$ be ever fulfilled
for is 0? Sang, if the group infinite.
consider the picture:


Inge $G$ is finite, we mush have

$$
g^{i}=g^{j}
$$

for same $i, j$, say $i>j$. (Pigeon hale principle) the:

$$
g^{i-j}=g^{j-j}=l
$$

because $G$ is a group and thess we can dinicle by $g^{j}$.
Now in th this we have, assuming $g^{\prime}=1, i>0$ :

$$
\langle g\rangle=\left\{1, g, g^{2}, \ldots, g^{i-1}\right\}
$$

Proof (T hm )
Assume

$$
n=\operatorname{in}\left\{\hat{i}_{i}^{0} g^{i}=1\right\} .
$$

Then $g^{n}=1$.
And Hus
$*$

$$
\langle g\rangle=\left\{\stackrel{g^{0}}{j}, g^{\prime \prime}, j^{2}, \ldots, g^{n-1}\right\} .
$$

$\Gamma_{\text {obviously }: \geq} \geq$

$$
\begin{aligned}
& \leq \text { Take } g^{j}, j \in \mathbb{Z} \text {. } \\
& \text { wite } j=q \cdot n+r \\
& \text { ante } 0 \leq t<n \text {. } \\
& \text { the } g^{j^{\prime}}=g^{\text {gut }} \\
& =\left(g^{r}\right)^{\varphi} g^{r}=g^{r} \\
& \epsilon \text { rho. }
\end{aligned}
$$

Thus $\operatorname{add} g \leq n=\min \{i>0 \mid g i=1\}$.
Consider again (*). Assume that \# $\# g\rangle\langle n$. then for same $0 \leq i \neq j<n$ we have

$$
g^{i}=g^{j} .
$$

Say is $j$. the $g^{i-j}=1$.
But $0<i-j<n$ contruclicting

$$
n=\min \left\{i \in \mathbb{N}_{>0} \mid g^{\prime}=1\right\} \text {. }
$$

Yo our assumption if false, ad $\quad \#\langle g\rangle \geqslant n$.

Yo back to choosid $g \in \mathbb{Z}_{\beta}^{x} \ldots$
Aim, Makk the DLP difficalt!
Exuph

$$
p=2^{3} \cdot 5+1=41
$$

as aecaucudate of a prive where pur is a prodoct of many small primos.
Take $g=2$.

$$
\begin{array}{r}
\vec{p}_{11}=\left\{\begin{aligned}
\{0,1,2, \ldots, 20, \\
-20,-15, \ldots,-1\}
\end{aligned}\right\} .
\end{array}
$$



Thues: and $g=20=2^{2} \cdot 5$.
Let's fry to fid $\alpha$ such that $2^{\alpha}=5$.
Bure foree: time $O(\# 6)=O\left(2^{4}\right)$ where $u=$ size of storage for an elemut of 6 .
(Remenber: Brute force is ao solution!)

We cen simplify the task:

$$
2^{\alpha}=5
$$

well, we hive 20 choices for $x$ be re.
Esepomentiats:

$$
\left(2^{r}\right)^{k}=5^{r}
$$

for sure nice $r$.
tor example with $r=10$ are get:

$$
(-1)^{a}=-1
$$

Thus : a must be odd!

$$
\left.\begin{array}{l}
\text { ae get: } \\
\qquad \begin{array}{r}
5=2^{7} \\
5^{10}
\end{array}=\left(2^{7}\right)^{10} \\
\\
=\left(2^{10}\right)^{7} \\
\\
=(-1)^{7}=-1
\end{array}\right]
$$

Dining this to the font $\rightarrow$ Pohkigtellman.
It will turn ort Heat is order to solve tho DLP far the element? of cider $20=2^{3} \cdot 5^{(1)}$
it is plough to solve ane $D L P$ for in event of oracle 5 , Avo DIPs for a slemit of rocker 2 .

So: A further condition on $g$, namely:
the archer of $g$
must not be a product of small primes
Buck to wee group Choice for Ditteiestollima:
Choose $\mathbb{Z}_{p}^{x}$
ad $g \in \mathbb{Z}_{p}^{x}$
suck that $\quad q:=\operatorname{ard} g$
is a large prime.
Idea 0: . Choose $p$ prime, sufficiently large. (say cozy bits).

- Dick fe $\in_{p} \mathbb{Z}_{\beta}^{x}$.
- Determain $\operatorname{ad}(a) \leftarrow$ Difficult. -n and hape that it is a large prime.
I) $\mathbb{R}$ Improbable.

Solution: Choose y prime, sofficienthy large (say 200 bit).

- Choose $P$ price, so that $Z_{P}^{x}$ has exerts
- Pice $h \epsilon_{e} z_{p}^{x}$ ad ed $g \leftarrow h^{\frac{p}{9}-1}$.

We already know that
give $g \in G, 6$ finite group,
for same $:>0$ we $\mathrm{Fed} g^{i}=1$. Question: Which orders can occur?
Back to on excople: $\mathbb{Z}_{4}{ }_{1}^{x}$.

| $g$ | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\operatorname{ardg}$ | 1 | 20 | 40 | 10 | 20 |  | 20 | 4 | 5 | $\ldots$ |  |

$$
\text { Note: } \quad \neq \mathbb{Z}_{41}^{x}=40 \text {. }
$$

All orders - so far - divide 40.
Theorem (Little Fermat Then)
Sim $a \in \mathbb{Z}_{p}^{x}, \quad p$ prime.
Then
$a^{p-1}=$

$$
a^{p-1}=1
$$

Theorem (Lagrange)
Given $G$ a finite group, ad $a \in G$.
then $\quad a^{\# G}=1$.

Sketch:
List all proxp ebments

$$
g_{0}, g_{1}, g_{21}, \ldots, g_{8-1}
$$


Multiply mith a:
ago, a $g_{1}, a g_{2}, \ldots, a g_{8-1}$
raltiply each list:
$G$ co unace tative

$$
\underbrace{g_{0} \cdot g_{1} \cdots \cdots \cdot g_{8-1}}
$$

50

$$
\begin{gathered}
\stackrel{6}{=} \quad a g_{0} \cdot a g_{1} \cdot \ldots \cdot a g+1 \\
a^{\# 6} \cdot g_{0} \cdots \ldots \cdot g_{8-1}
\end{gathered}
$$

Vo Do
proof Lagranger
derive cootharies'/ update DH.
and $\left(g^{k}\right)=$ ?
Pollis-Hellmenin egain
CRT

Proof Assume additionally: 6 commentative,

$$
g_{0}, g_{1}, \ldots, g_{\gamma}-1
$$

whee $\gamma: \# 6$. $\quad *=$ list means : no repetitions, no omentistiens.
Now, uneltiply by a:

$$
a g_{0}, a g_{7}, \ldots, a g_{p-1} .
$$

Obn'cus: all these are group elements.
Reaching 1 no repetitions,
no om ${ }^{\text {n }}$ missions.
no repetions:
Assume to the contrary that $a g_{i}=a g_{j}$ for came $i \neq j, i, j \in\left\{0, \ldots, 8^{-1}\right\}$. Multiply by $a^{-1}$ and obtciei $g_{i}=g_{j}$.
Since the first list hes no repetitions we mush have ir.
no on issiaks
Take any group slant, say g $g_{i}$.
And $j$ with $g_{i}=a g_{j}$.
Te do so fid $j$ suck that $g_{j}=a^{-1} g_{i}$.
Now: $g_{i}=a g_{j}$
Thus the two lists are equal
up to archer.

Thus

$$
\prod_{i<g} g_{i}=\prod_{i<8}\left(a g_{i}\right)
$$

(is) $G$ is comme ta tive...
Wow, divide by the Llis.:

$$
1=a^{\gamma} \cdot \frac{\prod_{i<\gamma} g_{i}}{\underbrace{\pi g_{i}}_{1}}=a^{\# G}
$$

Exaple cont.

$$
\begin{aligned}
G=\mathbb{Z}_{41}^{x}, g=2 \rightarrow & a d g=20, \\
& \# G=40 .
\end{aligned}
$$

Lagrange hells ws:

$$
g^{40}=1
$$

we chected: $\quad g^{20}=1 . \Longleftrightarrow\left(g^{20}\right)^{2}=1$
Covollany
Agive a fimitegroup $G$, ad $a \in G$.
Oren

$$
\text { and a } 1 * 6 .
$$

Proof Assume it's woung, $\begin{aligned} & \text { Norda }+r, O^{2}<r<a r d a \\ & \text { Nrite }\end{aligned}$ Now : $\quad 1=a^{\neq G}=\left(\frac{a^{\text {arda }}}{\text { a }}\right)^{q} a^{r}=a^{r} y_{b}$ reada.

What happens if we apply the Theorem (Leyrogd) 26.11 .08 to the unit group $\mathbb{Z}_{N}^{x}$ if the ring of integass modulo $N$ ?

Theorem (Euler)
Given $N \in \mathbb{N}_{z x}, a \in \mathbb{Z}_{N}^{x}$ ie. $\operatorname{ged}(a, N)=1$. Chen

$$
a^{\varphi(N)}=1
$$

where $\varphi(N): \# \mathbb{Z}_{N}^{x}$
${ }^{*}$ this is ca Cleat the
Euler to tient function.
Farther we cam restrict $N$ to primes:
Theorem (Lithe Fermat Theorem)
Give $P$ prime, $0<a<P$.
Then $\quad a^{p^{-1}}=1$ in $\mathbb{Z}_{p}^{x}$.
Prod Well, specialise Euler to $A=3$ prime, or Lagrange to $\bar{Z}_{p}^{*}$.

Fer Diffie \& Hellman the most central builully block is the exponentiation:

$$
\begin{aligned}
& \mathbb{Z} \longrightarrow G \\
& k
\end{aligned} \longmapsto g^{k}
$$

We know now that $g^{\# G}=1$

$$
\text { ad } \quad\langle g\rangle=\left\{1, g, g^{2}, \ldots, g^{* 6-1}\right\} \text {. }
$$

Yo when computing

$$
g^{\alpha}
$$

we can first rechuce $\alpha$ machalo $\# G$ ! write

$$
\begin{aligned}
& \alpha=q \cdot \# 6+\rho, \quad 0 \leq \rho \\
& g^{\alpha}=(\underbrace{\left.g^{* 6}\right)^{q} g^{\rho}}_{=1} \\
&=g^{\rho} .
\end{aligned}
$$

Thus we get a map

$$
\begin{array}{cc}
\mathbb{Z}_{\# G} \longrightarrow G \\
\exp _{g}^{G}: & \longmapsto
\end{array} g^{\alpha}
$$

Note: whichever $k \in \mathbb{Z}$ you choose with $\alpha=\{\bmod \nexists G \nexists$

Actually this map is even a homomorphism:

$$
\left.\begin{array}{rl}
\left(Z_{* G,}+\right) & \longmapsto \\
\alpha & \left.\longmapsto G_{1} \cdot\right) \\
\beta & \longmapsto g^{\alpha} \\
\alpha+\beta & \longmapsto g^{\beta}
\end{array}\right) \longrightarrow g^{\alpha+\beta!} \stackrel{ }{=} g^{\alpha \cdot g^{\beta}} .
$$

Thin property characterizes 'homo marphisme'.
Variate consider a fioup eleunt $g$ of order $l_{i} g l_{1}$ The we obtain similarly:

$$
\begin{aligned}
& \mathbb{Z}_{e} \longrightarrow\langle g\rangle \quad \begin{array}{l} 
\\
\alpha \\
\text { exp }^{2}
\end{array} \quad \longmapsto g^{\alpha}
\end{aligned}
$$

This is also a homaraorthism but additionally bijective!
This is what the D\&H hey exchange is bated:

- computing exp is eaSY $\rightarrow$ Square \& hotliply - computing exist is some times probably difficult!

So The correct Diffie \& Hellwean hay ex change
is this:
Setup: 6 afimite group, $g \in G$ an element $\begin{aligned} & \text { of Large prime orch } e\end{aligned}$

Alice

$$
\begin{gathered}
\alpha \epsilon_{R} \\
a=g^{\alpha} \\
k_{1}=b^{\alpha}
\end{gathered}
$$

$$
\begin{aligned}
& B_{\theta} b \\
& \beta \in_{R} \mathbb{Z} e \\
& b=g^{\beta} \\
& k_{2}=a^{\beta}
\end{aligned}
$$

7 Ditties Hellman

She can do so easily if she can solve the discrete laganther pro then.
We would like fo prove however:
if Eve can solve $\Rightarrow$ Eve com solve DH P DLP for.

But that's un bu own (if not funawn t be wrongs.

Mex. 1 task:
Suppose we know and (g).
lampule and (g' ${ }^{6}$ )
Side remark: since it is difficult to compote odors
L this may be important.
Example cont
In $Z_{41}^{x}$ we have and $2=20$.
And we have found that from that we con defense

$$
\text { ard } 2^{5}=\frac{20}{5}=4
$$

and $2^{4}=\frac{20}{4}=5$.
But

$$
\begin{aligned}
\text { and } 2^{8} & =5 \\
& \neq \frac{20}{8^{2}}=2.5 \\
& \frac{20}{\operatorname{ged}(8,20)}
\end{aligned}
$$

Theine

$$
\operatorname{and}\left(g^{6}\right)=\frac{\operatorname{and} g}{\operatorname{gcd}(k, \operatorname{aod} g)}
$$

Proof Case 1 $k \mid \operatorname{ardg}$,ie. $\operatorname{gcd}(k, a d g)=k$
Case 2 $\operatorname{gcd}(6, \operatorname{ard} g)=1$.
Case 3 general : put together...

Case $1 \quad e:=\operatorname{ard} g$

$$
g^{e}=1
$$

ad $\quad e=a \cdot k$.
Thus $\quad\left(g^{k}\right)^{a}=1$
ad so $\operatorname{ard}\left(g^{k}\right) \leq a$.
Further, take $0<b<a$.
the

$$
\left.\left(g^{6}\right)^{b}=g \sum_{<e=\text { add }}^{k b} \neq 1\right\} \geq a .
$$

Case 2
We have $g^{C}=1$, a. have

$$
1=3 \cdot 6+t e^{4}
$$

for some sit munging the EEA.
Let's hoy:

$$
g=g^{1}=g^{3 \cdot 6}\left(g^{e}\right)^{t}=g^{3 \cdot k}=\left(g^{6}\right)^{3}
$$

Assure that

$$
\left(g^{k}\right)^{a}=1
$$

Men

$$
\left({\underset{=}{g}}_{g^{k s}}\right)^{a}=1^{s}
$$

so a must be at least oreg.
And so and $g^{k}=$ and $g$.

Give $g$ is same group of order $e=\pi p_{i}^{e i}$ ad $a \in\langle g\rangle$.
Find $\alpha \in \mathbb{Z}$ such that $g^{*}=a$ Take $k \mid e$ the

$$
\left(g^{k}\right)^{\alpha}=a^{k}
$$

ad this determine $a$ modulo $\operatorname{ard}\left(g^{6}\right)=\frac{l}{k}$.
From that we can obtain partial answers on $\alpha$ !
shout with $k=\frac{e}{p i}$. the

$$
\left(g^{k}\right)^{k} @ a^{6} \text { adder pi DLP }
$$

determines $\alpha$ modulo $\rho_{i}$.
Now, write $\alpha=\alpha_{1} \cdot p_{i}+\alpha_{0}$. By this me know $\alpha_{0}$. Take $k=e / p_{i}^{2}$ the

$$
\left(g^{k_{1}}\right)^{\alpha_{1}} g^{h \alpha_{0}}=\left(g^{k}\right)^{\alpha_{1} \cdot p_{1}+\alpha_{0}}=a^{k}
$$

Sort this:

$$
\left(g^{k p_{i}}\right)^{\alpha_{1}} \stackrel{\bigoplus}{=} a^{k} g^{-k \alpha_{0}}
$$

ad obama

$$
\operatorname{and} \begin{aligned}
g^{6 p_{i}} & =\operatorname{ard} g^{\frac{e_{p_{i}}}{P_{i}^{2}}} \\
& =\text { and } g^{e / p i}=p_{i}
\end{aligned}
$$

so we can obtain $\alpha_{1}$ modulo $p$ :
from (1)
Thus we know $\alpha={\underset{\text { known }}{1}}_{\alpha_{1} p_{i}}^{+\alpha_{0}}$ modulo $p_{i}{ }^{2}$.

$$
\begin{aligned}
& \text { known } \\
& \text { partially } \\
& \text { mod pi }
\end{aligned}
$$

Next skep: consider $k=\frac{l}{p_{i}{ }^{3}}$
and wink

$$
\alpha=\alpha_{2} p_{i}^{2}+\alpha_{p}^{\prime} p_{i}+\alpha_{0}
$$

We can continue this as long as

$$
\begin{aligned}
\frac{e}{p: f} \in \mathbb{z}, \text { ie. } f & \leq e_{i} \\
& \\
& =\pi_{p i}
\end{aligned}
$$

Ta halal we obtimi
Put this better to ab tin ma clue Using CRT... $P_{i} e_{i}$ for each in der i.

Repetition: $\quad 6$ is a finite group.
Define
add $g=\min \left\{i \in N_{>0} \mid g^{i}=1\right.$ ]
Key pint: $\quad\langle g\rangle=\left\{1, g, g^{?}, \ldots, g^{\text {add }-1}\right\}$

Than
ard 1\#G


Than(Laraye) $g^{* G}=1 \quad$ for any $g \in G$.

The (Ended) $G=\mathbb{Z}_{N}^{x}$ emit group of integers modulo N: For $0<a<N, \operatorname{gcd}((a, N)$
we have $\quad a^{\varphi(N)}=1$ in $\mathbb{Z}_{\lambda}{ }^{x}$
where $\varphi(N)_{1}=\# \mathbb{Z}_{N}^{x}$.
Then (Lith Fermat) $G=\mathbb{Z}_{p}^{x}$, p price:
Fr $p$ Fie, $0<e<p$ we have

$$
a^{p-1}=1=\mathbb{Z}_{p}^{x}
$$

In other rads :


Diffic -Hellma
Selop. Fix a groer 6 and an beant $g$
suck that ard $g$ is a lange prime

Alice

$$
u=g^{x}
$$

$$
k_{1}=\phi^{\alpha}
$$

$$
k_{2}=a^{\beta}
$$

Row to doose 6 and $g$ ?
$\rightarrow$ Rind discrete logarithm atacks:



$\rightarrow$. Inctex calculus

$$
\tilde{O}\left(2^{\sqrt{\log p \cdot \log \lg p}}\right)
$$

$\rightarrow$ Note: uothing Ahe inders caleclus known for elliptic coness

How lorge should thigs be?
(1) $I$ shauld be prime to prevent Pothig-thellman frum making discrete lof easies
(2) 9 should be so lange that $\tilde{O}(\sqrt{9})$ is begrand scope of am athdor... Of cownere the conshert is inpostent then.

Inpractice: $\quad 9 \approx 2^{160}\left(2^{200}\right)$
(3) if $G=\mathbb{Z}_{p}^{x}$ the 3 shanld be so larige that index calculus becomes is fasith: $\tilde{O}\left(2^{\sqrt{\log p \log \log p}}\right)$

In practice: $\quad p>2^{1024}\left(2^{2018}\right)$

Remainy hask:
Exyple yay we are lacking for $\alpha \in \mathbb{N}$ :
mach that

$$
\begin{array}{ll}
\alpha=1 & =\mathbb{Z}_{2} \\
\alpha=2 & \therefore \mathbb{Z}_{3} \\
\alpha=3 & \therefore \mathbb{Z}_{5}
\end{array}
$$

What's \&?

Rere we ca guess: (3) $\rightarrow \alpha=3,8,13,28,23,28, \ldots$.

(2) $\rightarrow x=\frac{36,23,}{36, \ldots}$

Thus $\alpha=23 \ldots$
Breck furce muntime: $O\left(2^{n}\right)$
where $u=$ bitleygh(2.3.5).
Or $\alpha=53$.
beccuuse $\quad 30=0=\mathbb{Z}_{x}$,

$$
\begin{array}{ll}
30=0 & \therefore Z_{3} \\
30=0 & \therefore Z_{5}^{\prime}
\end{array}
$$

bing $30=2.3 .5$.

Better solution?
Yet's only consider any (3), (8):

$$
\begin{aligned}
& \alpha=2 \quad \therefore \mathbb{Z}_{3} \\
& \alpha=3 \quad=\mathbb{Z}_{5} .
\end{aligned}
$$

Re trans late these:

$$
\begin{array}{ll}
\alpha=2+s \cdot 3, & \text { for some } s \in \mathbb{Z}, \\
\alpha=3+(-t) \cdot 5 . & \text { for some } t \in \mathbb{Z} .
\end{array}
$$

Thus:

$$
\begin{aligned}
& 2+s \cdot 3=3+(-t) \cdot 5 \\
& s \cdot 3+t \cdot 5=3-2
\end{aligned}
$$

This can be cure by the extended Euclidean aloonth.
Chinese Remainctar Theorem
Down To Earth raviat: $\in^{N \geqslant 2}$
Given moduli $m_{1}, m_{2}, \ldots m_{r}$ pairwise coprime, and members $a_{1}, a_{2}, \ldots a_{r} \in \mathbb{Z}$
Then there exists a number $\alpha \in \mathbb{Z}$ such that $\forall i: \alpha=a_{i}$ i $\mathbb{Z}_{m_{i}}$
and $\alpha$ is unique modulo $m_{1} \cdot m_{2} \cdot \ldots \cdot m_{r}$.
Fwothor, one such solution can be found in
polynomial thine (wot the bithenth $\left(m_{1} \ldots m_{1} a_{1} \ldots a_{5}\right)$ )
with help of by the EEA.

Stractural varicant
Gim moduli ma, ..., mo $\in \mathbb{N}_{\geq 2}$
pairmise coprime, $m:=\prod \prod_{1 s i s r} m i$.
Then the map

$$
\mathbb{Z}_{m} \longrightarrow \mathbb{Z}_{m_{1}} \times \mathbb{Z}_{m_{\Sigma}} \times \ldots \times \mathbb{Z}_{m r}
$$

$\left.\alpha \operatorname{modm} \longmapsto\left(a \operatorname{modm}, \alpha_{1} \bmod m_{2}, \ldots,\right)^{\alpha \operatorname{moc}} m_{r}\right)$
is a molldgh, bije chive homamonhism.
injectire (Un'queness)

$$
\begin{aligned}
& \text { Exaple }
\end{aligned}
$$

$$
\begin{aligned}
& 7 \cdot 13=1 \longrightarrow(1,1)!(1,1)
\end{aligned}
$$

Proof $C R T i$ case $r=2$.
That's enough:

$$
\begin{align*}
\mathbb{Z}_{m} \longrightarrow \mathbb{Z}_{m \tau} \times & \underbrace{\mathbb{Z}_{m_{2}} \ldots \ldots m_{r}}_{\cong \ldots} \\
& \mathbb{Z}_{m_{2}} \times \underbrace{\mathbb{Z}_{1}}_{m_{3} \ldots m_{r}}
\end{align*}
$$

Now, we are Cooling for $\alpha \in Z_{m_{1}} \cdot m_{2}$ such that

$$
\begin{aligned}
& \alpha=a_{1} \quad \therefore \mathbb{Z}_{m_{1}}, \\
& \alpha=a_{2} \quad \therefore \mathbb{Z}_{m_{2}} .
\end{aligned}
$$

Ithruffices to consider $a_{1}=1, a_{2}=0 \rightarrow \alpha^{(10)}$

$$
\text { and } a_{1}=0, a_{2}=1 . \rightarrow \alpha^{(01)} \text {. }
$$

Give $\alpha^{(0)}$ with $\alpha^{(0)}=1=\mathbb{Z}_{m,} \quad \alpha^{(01)}=0=\mathbb{Z}_{m}$,

$$
\alpha^{(10)}=\theta=Z_{m 2}, \quad \kappa^{(01)}=1 \mu i n z_{m_{2}}^{\prime} .
$$

we can construct

$$
\alpha=a_{1} \cdot \alpha^{(10)}+a_{2} \alpha^{(01)}
$$

Namely, now :

$$
\begin{aligned}
& \alpha=a_{1} \cdot 1+a_{2} \cdot 0=a_{1} \quad=\mathbb{Z}_{m_{r 1}} \\
& \alpha=a_{1} \cdot 0+a_{2} \cdot 1=a_{2} \quad \therefore \mathbb{Z}_{m_{2}} .
\end{aligned}
$$

Yo let's fid $\alpha^{(10)}$.

Task is:

$$
\begin{aligned}
\alpha^{(10)} & =1+(-s) \cdot m_{1} \\
& =0+t \cdot m_{2}
\end{aligned}
$$

for same $s_{1} t \in \mathbb{Z}$.
Or: $\quad 1=\left(s \cdot m_{1}\right)+t \cdot m_{2}$.
This we can solve by the EEA.
Ad $\quad \alpha^{(10)}=t \cdot m_{2}$.
farther

$$
\alpha^{(0-1)}=s \cdot m_{2}
$$

Thus

$$
\alpha=a_{1} \cdot\left(t m_{2}+a_{2} \cdot s m_{1} .\right.
$$

Erupt

$$
\begin{aligned}
& m_{2}=31 \\
& m_{2}=5 \\
& a_{2}=2
\end{aligned} a_{2}=3 .
$$

$\operatorname{EEA}(3,5) \rightarrow \quad 1=\underset{-9}{(-3) \cdot 3}+\frac{2 \cdot 5}{10}$
So duct

$$
\left.\begin{array}{ll}
10=1 & \therefore z_{3} \\
10=0 & \therefore z_{5}
\end{array} \right\rvert\, \begin{aligned}
& -9=0 \\
& -9=1 \\
& i \mathbb{Z}_{3} \\
&
\end{aligned}
$$

Thus we obtain

$$
\begin{align*}
\alpha & =2 \cdot 10+3 \cdot(-9) \\
& =-7=8 \tag{15}
\end{align*}
$$

Now combine this with $\alpha=1=Z_{2} \substack{\alpha=23 \\ \geq \geq 30}_{\substack{2}}^{\substack{0}}$

Nombe theory
$G$ fimite group
Lagrage /Euler / Fermat

$$
\begin{aligned}
& \text { Example } \\
& G=\langle g\rangle \leqslant \pi_{\rho}^{x} \quad S_{0} 112.08 \\
& \Theta \\
& \text { ar } G=\langle P\rangle\langle E \text {, cllcorve }
\end{aligned}
$$

" prime

$$
\begin{aligned}
& a^{\# G}=1 \\
& a^{\phi(N)}=1 \therefore \mathbb{Z}_{N}^{x} \\
& a^{T-1}=1 \therefore \mathbb{Z}_{P}^{x}
\end{aligned}
$$

Onders ord (g)
CRT $\operatorname{ged}(G, n)=1 \Rightarrow Z_{m \cdot n} \cong Z_{m} \times Z_{n}$
Afgoithons
Squave \& unlliply


EEA
Baby-skf-gient-skp, Pollual.s, Poklig-Hellmam
Crypto
Diffie-Hellmen by exchange

$$
\begin{aligned}
& \text { DHP }\left(g, g^{\alpha}, g^{\beta}\right) \longmapsto g^{\alpha \beta} \\
& D L P:\left(g, g^{\alpha}\right) \longmapsto \alpha
\end{aligned}
$$

GORRECT?
EFICIENT?
SECURE? Would wat samethig like:
HORE if DLP is offficalt the DHP is diffirecth sasy: if DLP is eary $H$ DHP is easy.
Thus for seconity it is necessave that DLP is ditficalt. But it is not Known to be sufficient.


What dues a physical signature?


Document unchanged (Inkegn'ty)
.
(integrity)
Person who signed is APical
(Authenticity, Dolentification)
Connection $d o c \leftrightarrow s$ sips.
(Non-repudiation...??)
Easy to verify
Hard to generate for others
Easy to generate for the signer.
ElGamal type signatures
Setup: to be def'd la tu.
Generation! to be def edidedaber.
Verification:


Here: *: $G \rightarrow \mathbb{Z}_{e}$
$f=\operatorname{ard}(g)$

Cousequitly we construct：
Setup：Choose a group $G$
and an dement $g$ of known（prime）order $l$

Too excupte：
choose $e$ a 160－b．t mine．
choose $i$ a rove－bit price with el $p^{-1}$ ．
（chase a such that $1+a \cdot l$
has coir bits check whether it＇s prime， if not retry！
choose $h \in \mathbb{Z}_{p}^{\lambda}$ at render ad set $g:=h^{\frac{p-1}{l}}$ ．
（The $g^{l}=1$ ，If $g=1$ ：retry．）
Now $\quad \operatorname{ard} g=e$ ．
Fix a function＊：$G \rightarrow \mathbb{Z}_{e}$ simple minded．
「开位exple with $G=\langle g\rangle \subseteq \mathbb{Z}_{i}^{x}$ use

$$
(\operatorname{a\operatorname {mod}p})^{*}=a \bmod p-1
$$

for $0<a<p$ ．
Fix a function hash：$\{0,1\}^{*} \longrightarrow \mathbb{Z}_{e}{ }^{J}$
individual setup (by Alice),
Choose a private hay $\alpha \in \mathbb{Z}_{e}$.
Compute the public bey $a=g^{\alpha}$ in $G$.
Now finding the private bey from the pubtictay is a DLP.
Generate a signature:
Input: message $m$, pubtickey $a$, privateer Output: signatures s $(b, 8)$ an $m$.

1. In arneb to have the entire signing equation as powers of $g$, choose $b$ as ane:
Choose a temporary recret $\beta \epsilon_{R} Z_{e}$ ad compute $b=g^{\beta}$ in $G$.
2. Deforming $\gamma \in \mathbb{Z}_{e}$ suck that signature is valid, ie

$$
g^{\alpha b^{*}+\beta \gamma}=g^{\operatorname{hash}(m)} \dot{\operatorname{n}} G
$$

which is epenitut (by $\quad \exp _{g}: \mathbb{Z}_{c} \rightarrow\langle g\rangle$ bering bigective)
to

$$
\alpha b^{*}+\beta \gamma=\operatorname{hash}(m) \text { in } \mathbb{Z}_{e}
$$

This is a liear equation for $\gamma$.
Solve it ad
3. Return $(b, 8)$

Coriect?
If Hice signs $m$ with (b.g)
the Bol dechs this sigmature
al finds it to be ralid.
This is true by construction!
Efticlent?
Setep : $O\left(4^{*}\right) \quad \sim$ minutes
Indiniclual setop
$\left.\begin{array}{l}\text { Generation } \\ \text { verification }\end{array}\right\} O\left(n^{3}\right)$ a seconels.
$n=$ hey sixe.

SECVRITY?
Security game:
Athacker tries to athack.
EF-CIM We fry to avoid his succesr.


Security goal is:
No attacker can succeed with high probability.
( $2^{-\sqrt{n}}$ is ob, but $\frac{1}{n^{17}}$ is too much!)

Consequences:
(1) No attacker can okenge a given document.
Assuming he could
the using that subroutine chaugedec he would sin the game.

$$
\text { changedlec }(m, s)=\left(m^{\prime}, s^{\prime}\right)
$$

Luther if $(\mathrm{m}, \mathrm{s})$ is valid the $\left(\mathrm{m}^{\prime}, \mathrm{s}^{\prime}\right)$ is valict.
(2) No attacker can change the signer.
Assuming he could, ie. he has a sabreutive changesiguer $(m, 1, a)$

$$
\left(m^{\prime \prime}, s^{\prime}, a^{\prime}\right)
$$

the he would run the game.
(3) No one but the actual cam have generahed a certemin siguakure.
Totherwise thut would be a successfal attacker.I

What a baut ECGamal type siguatures?
Thm The DLP nust he difficalt if the EiflGaunal ty pe signature scheme is secare.
DLP easy $\Rightarrow$ ECGcmaltype signature insecure

Tinof Assume the atachar has a subroa timic to solve the DLP.
Then he can use it to compute the seciet hays correspandig to the public beps $a_{j}$.
Thus he wins the game easilg.
Actually, thene the atsacter can sign any messafe he is given.

Another option for the atheckor mould choose m, 8 at raudum before. Then he to solve an equation

$$
a^{b^{*}} b^{\gamma}=h .
$$

If he cary the could win the game we would like to prove:
if he could el than he com solve DLP.
But:
Thun If the Elband type signature is secure the that probe is difficult.

Further building block: hash.
Assume the ablacher has a cobroutive that can, given asnersage $m$, find a second message $m^{\prime} \neq m$ with hash ( $\mathrm{m}^{\prime}$ ) $=\operatorname{hash}$ ( m ) the the atoccher can ain the game.

Then If the hash function is not second preimage resistant,
ic. The attractor has such a subroution,
the the scheme is insecure.

Proof


The If the hashfonction is not collision resistant, ie. The dottle cater has no subroutine that autjouts two messages $m, m$ ' suck that $m \neq m^{\prime}$ and

$$
\operatorname{has}^{m \neq m}(m)=\operatorname{hash}\left(m^{\prime}\right) .
$$

then the scheme is insecure.
Proof As above....
Indigo ' given m mitt hash(m')okosktm) com Ge

Exaple
One connmen hask fuetion is
SHA1
it gets any message as a bitstiod af outputs a 160-bit string.

SHAT:

$$
\{0,1\} \hat{i}^{*} \longrightarrow\{0,1\}^{160}
$$

practical*

$$
\left(-2^{64}\right)
$$

Possible rautine to fid a secand pre image:
luputs an
Output: m'

1. REPEAT
2. Chaose $n^{\prime} \epsilon_{R}\{0,1\}$.

$$
\text { exit-prability }=\frac{1}{2^{160}}
$$

$$
\text { and so the expected remtine }=2^{160} \text {. }
$$

Possible rentice to find a collision
Iupot: -
Oulput: $m, m$.

1. $L \leftarrow$ empty $45 \sqrt{ }$, $i \leftarrow 0$.
2. REPEAT

3. UNTIL hash $\left(m_{i}\right)=\operatorname{hash}\left(m_{j}\right)$ forsome $j<i$
4. Retam (m, mon .
exit-probability $=\frac{i}{2^{160}}$
$\leadsto$ expechl rum line $\approx 2^{80}=\sqrt{2^{160}}$
That's muck larger than any thiy cloable now adags.

$$
\text { (By a fachor } \approx 1000000 \text {.) }
$$

Tact There exists a procecture to fild a collision far SHAT which reeds anly $2^{63}$ calles to SHAT.
thes it's consickred broken, HASA1 but uobody didit so for. CRIS1S.

Summary Sifuzhaves
Excumple scheme:
ElGamal type signahures:

$$
a^{b^{*}} b^{\gamma}=g^{\operatorname{Hash}(m)} \text { ih } G
$$

lushonraces: ElGamal signatures

$$
G=\mathbb{Z}_{p}^{x}, \quad \operatorname{ovel}(g)=p-1 .
$$

Schnor sigunkeres, DSA

$$
G=\mathbb{Z}_{g}^{x}, \text { ad }(g)=e
$$

+ additional trick $1806 . x$ to replace $b^{424^{2}+x} b y b^{16}$ in the signature (theus saving space!)

$$
E C D S A
$$

$G=$ an Dliphic curve, $\operatorname{ard}(P)=l$ either prime or a simell ( $\leqslant 288$ ) a prime
(R) Security of a sigunherre scheme

SotI


Qthacker's success:
$\left(a_{j i}, m\right)$ has wever been querried (to the aracle.
$(m, s)$ is a valid simatame wiot the pubtic by $a j$.
Our scheme is secuie if us attacher can win this game.


Figure 1-21. The TCP/IP reference model.


Figure 1-22. Protocols and networks in the TCP/IP model initially.



Purpose:

- confidentiality
- integrity
(. an k haticity)

Need a common hap for all hiss!
where to pet the conman hey from?


Builoley blocks / terminology
SA ... seconty asso ciatiun = all counection related data stored by the communication porkers, ier particular key makrial:
-IP destination adolvess

- sepermee numb cambor ( 32 bits)
- Sequance comand overflon
-SPI secnity probocol ichlititior

$$
\rightarrow A H P \rightarrow \text { encipption anle }
$$

- used alyan Thans
- Life time of SA
(usvally 8 hacas, 12 hours)

Problenatic isroes

NAT

$\leadsto$ couses problems when
ryying bo authe licate
so urce or clestination $\Gamma^{P}$.
(Wifk IPrG no NATS are necossaiy, Hhas IPr 6 fans sopzort ESP netter than AH.
Fire walls


Anang many ather things a fire mall filfers packets accaraling to the TCP port number. But if that is encryphed, as nith IPsec +ESP, the this cammot be used...

# IPSEC \& IKE 

Michael Nüsken

25 June 2007

Before all: we are talking about a collection of protocols. Each partner of the exchange has to keep some information on the connection. This is in our context called the security association (SA). It contains specification about the algorithms that should be used for encryption and authentication, it contains keys for these, it may contain traffic selectors (filtering rules), and more. Each SA manages a simplex connection for one type of service. In each direction there will be an SA for the key exchange (IKE_SA) and one for the encapsulating security payload or for the authentication header. So each partner has to maintain at least four SAs. Such an SA is selected by an identifier, the socalled security parameter index (SPI). It is chosen randomly but so that it is unique.

## 1. IPsec

The secure internet protocol modifies the internet protocol slightly. We have the choice between transport and tunnel mode. In tunnel mode, an IP packet

| IP header | IP payload |
| :--- | :--- |

is wrapped in with a new IP header and an IPsec header to

| new IP <br> header | IPsec header | IP header | IP payload |
| :---: | :---: | :---: | :---: |

In transport mode, only the IPsec header is added:

| IP header | IPsec header | IP payload |
| :---: | :---: | :---: |

There are two types of IPsec headers: the encapsulating security payload (ESP) and the authentication header (AH).
1.1. IPsec encapsulating security payload. The ESP specifies that and how its payload is encrypted and (optionally) authenticated. Actually, this 'header' is split into a part before and one after the data:

| Security Parameter Index (SPI) |  |
| :---: | :---: |
| Sequence number |  |
| IV (optional) |  |
| Payload data [variable] |  |
| TFC padding [optional, variable] |  |
|  | Padding (0-255 octets) |
| Padding length | Next header |
| Integrity Check Value (ICV) [variable] |  |

The security parameter index identifies the SA and thus all necessary algorithms and key material. To create the secured packet from the original one, it is first padded. Padding is used to enlarge the data length to a multiple of a block size that might be associated with the encryption. Traffic flow confidentiality (TFC) padding can be used to disguise the real size of the packet. Then the data is encrypted; in tunnel mode including the old IP header. To be precise, all the information from Payload data to Next header is encrypted. Next, a message authenticion code is calculated for this encrypted text and security parameter index, sequence number, initialization vector (IV) and possibly further padding; actually the message authentication code covers the entire packet but the header and the integrity check value plus the extended sequence number and integrity check padding if any.
1.2. IPsec authentication header. The AH authenticates its payload and also parts of the IP header. (Yes, this does violate the hierarchy.)

## 2. Internet key exchange (version 2)

Any message in the internet key exchange starts with a header of the form

| IKE_SA initiator's SPI |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| IKE_SA responder's SPI |  |  |  |  |  |  |
| Next payload | Major version | Minor version | Exchange type | X | $\mathrm{I} \mathrm{V} / \mathrm{R}$ | X |
| Message ID |  |  |  |  |  |  |
| Length |  |  |  |  |  |  |

Clearly, the version is 2.0 with the present drafts (major version: 2, minor version: 0). The flags X are reserved, the I (nitiator) bit is set whenever the message comes from the initiator of the SA, the V(ersion) bit is set if the transmitter can support a higher ma-

| Exchange type | Value |
| :--- | :--- |
| Reserved | $0-33$ |
| IKE_SA_INIT | 34 |
| IKE_AUTH | 35 |
| CREATE_CHILD_SA | 36 |
| INFORMATIONAL | 37 |
| Reserved to IANA | $38-239$ |
| Reserved for private use | $240-255$ | jor version, the $R$ (esponse) bit is set if this message is a response to a message with this Message ID. The header is usually followed by some payloads like



The C(ritical) bit indicates that the payload is critical. In case the recipient does not support a critical payload it must reject the entire message. A non-critical payload can be simply skipped. All the payloads defined in RFC4306 are to be handled as critical ones whatever the C bit says.

| Next payload | Notation | Value |
| :--- | :--- | :--- |
| None |  | 0 |
| RESERVED |  | $1-32$ |
| Security Association | SA | 33 |
| Key Exchange | KE | 34 |
| Identification - Initiator | IDi | 35 |
| Identification - Responder | IDr | 36 |
| Certificate | CERT | 37 |
| Certificate Request | CERTREQ | 38 |
| Authentication | AUTH | 39 |
| Nonce | $\mathrm{Ni}, \mathrm{Nr}$ | 40 |
| Notify | N | 41 |
| Delete | D | 42 |
| Vendor ID | V | 43 |
| Traffic Selector - Initiator | TSi | 44 |
| Traffic Selector - Responder | TSr | 45 |
| Encrypted | E | 46 |
| Configuration | CP | 47 |
| Extensible Authentication | EAP | 48 |
| Reserved to IANA |  | $49-127$ |
| Private use |  | $128-255$ |

### 2.1. Initial exchange.

|  | Hdr, SAi 1, KEi, Ni | 式 |
| :---: | :---: | :---: |
|  | Hdr, SAr 1, KEr, Nr, [CERTREQ] |  |
|  | Hdr, SK $\left\{\begin{array}{l}\text { IDi, [CERT, ][CERTREQ, }][\text { [Dr, }] \\ \text { AUTH, SAi } 2, \mathrm{TSi}, \mathrm{TSr}\end{array}\right\}$ |  |
|  | Hdr, SK $\left\{\begin{array}{l}\text { IDr, [CERT, ] } \\ \text { AUTH, SAr 2, TSi, TSr }\end{array}\right\}$ |  |

Protocol 2.1. IKE_SA_INIT.

1. Prepare SAi1, the four lists of supported cryptographic algorithms for Diffie-Hellman key exchange (groups), for the pseudo random function used to derive keys, for encryption, and for authentication. Guess the group for Diffie-Hellman and compute $\mathrm{KEi}=g^{a}$.
Choose a nonce Ni. Hdr, SAi1, KEi, Ni
2. Choose SAr1 from SAi1 unless no variant is supported.

Compute $\mathrm{KEr}=g^{b}$ if the group was guessed correctly. (Otherwise send:
Hdr, N(INVALID_KE_PAYLOAD, group)
.)
Choose a nonce Nr.
3. Both parties now derive the session keys. We assume that prf is the selected pseudo random function which gets a key and a bit string as input.

$$
\begin{aligned}
& \text { SKEYSEED }=\text { prf }\left(N i \mid N r, g^{a b}\right) \text {, } \\
& \text { SK_d|SK_ai|SK_ar|SK_ei } \mid \text { SK_er } \mid \text { SK_pi } \mid \text { SK_pr } \\
& =\text { prf+(SKEYSEED, Ni } \mid \text { Nr } \mid \text { SPIi } \mid \text { SPIr })
\end{aligned}
$$

where $\operatorname{prf}+(K, S)=T_{1}\left|T_{2}\right| T_{3} \mid \ldots$, and $T_{1}=$ $\operatorname{prf}(K, S \mid 0 x 01), T_{i}=\operatorname{prf}\left(K, T_{i-1}|S| i\right)$ for $i>1$. SK_d is used for the derivation of keys in a child SA. SK_ai and SK_ei are used for authenticating and encrypting messages sent by the initiator, SK_ar and SK_er for messages sent by the responder.
4. The initiator send its identity IDi, optionally one or more certificates CERT, a certificate request CERTREQ (possibly including a list of trusted CAs), and optionally the responders identity IDr (it may be that the responder serves multiple identities 'behind' it).
Further she computes an authentication AUTH (using the key from the first CERT payload) for the entire first message concatenated with the responder's nonce Nr and the value prf(SK_pi, IDi). The authentication method can be RSA digital signature (1), shard key message integrity code (2), or DSS digital signature (3).


The initiator starts to negotiate a child SA in SAi 2 with proposed traffic selectors TSi , TSr .

Hdr, SAr 1, KEr, Nr, [CERTREQ]
Hdr, SK $\left\{\begin{array}{l}\text { IDi, [CERT, }] \\ {[\mathrm{CERTREQ},]} \\ \text { [IDr, ] } \\ \text { AUTH, SAi 2, } \\ \mathrm{TSi}, \mathrm{TSr}\end{array}\right\}$
5. The responder sends its identity IDr, certificate(s). He computes an authentication AUTH for the entire second message concatenated with the initiator's nonce Ni and the value prf(SK_pr, IDr).
Further he supplies the answer SAr 2 to the child SA creation and sends the accepted traffic selectors TSi, TSr.
$\operatorname{Hdr}, \mathrm{SK}\left\{\begin{array}{l}\text { IDr, }[\text { CERT },] \\ \text { AUTH, SAr } 2, \\ \mathrm{TSi}, \mathrm{TSr}\end{array}\right\}$
If this initial exchange is completed successfully the IKE_SA and a CHILD_SA are ready for use. Keying material for the childs is generated similar to the IKE_SA keys:

$$
\text { KEYMAT }=\text { prf }+\left(\mathrm{SK}_{-} \mathrm{d}, \mathrm{Ni} \mid \mathrm{Nr}\right)
$$

2.2. Creating additional child SAs. Further childs can be created under this IKE_SA using a CREATE_CHILD_SA exhange:


In case a CHILD_SA shall be rekeyed the notification payload N of type REKEY_SA specifies which SA is rekeyed. This can be used to established additional SAs as well as to rekey ages ones. Create new ones and afterwards delete the old ones. Also the IKE_SA can be rekeyed similarly.

In a CREATE_CHILD_SA exchange including an optional Diffie-Hellman exchange new keying material uses also the new Diffie-Hellman key $g^{i r}$, it is concatenated left to the nonces. (Though the Diffie-Hellman key exchange is optional, it is recommended to either used it or at least to limit the number of uses of the original key.)
2.3. Denial of Service. If the server has a lot of half open connections (ie. the first message arrived, the second was sent but the third message is pending) it may choose to send a cookie first. (In order to defeat a denial of service attack.) It is suggested to use a stateless cookie consisting of a version identifier and a hash value of the initiator's nonce Ni, her IP IPi, her security parameter index SPIi and some secret:

$$
\text { Cookie }=\text { verID } \mid \text { hash }\left(\mathrm{Ni}, \mathrm{IPi}, \mathrm{SPIi}, \text { secret }_{\mathrm{verID}}\right)
$$

This way the secret can be exchanged periodically, say every second, and the server only needs to store the last few (randomly) generated secrets.

The authentication AUTH then refers to the second version of the corresponding message, so the one including the cookie or responding to that, respectively. So the protocol becomes:

|  | Hdr, SAi 1, KEi, Ni | \# |
| :---: | :---: | :---: |
|  | Hdr, N(Cookie) |  |
|  | Hdr, N(Cookie), SAi 1, KEi, Ni |  |
|  | Hdr, SAr 1, KEr, Nr, [CERTREQ] |  |
|  | Hdr, SK $\left\{\begin{array}{l}\text { IDi, [CERT, ][CERTREQ, }][\mathrm{IDr},] \\ \text { AUTH, SAi } 2, \mathrm{TSi}, \mathrm{TSr}\end{array}\right\}$ |  |
|  | Hdr, SK $\left\{\begin{array}{l}\text { IDr, [CERT, ] } \\ \text { AUTH, SAr 2, TSi, TSr }\end{array}\right\}$ |  |

2.4. Extended authentication protocols. The initiator may leave out AUTH and thereby tell the responder that she wants to perform an extensible authentication which is then carried out immediately.
2.5. IP compression. The parties can negotiate IP compression.
2.6. ID payload. The ID payload

can be an IP address (ID type 1), a fully-qualified domain name string (2), a fully-qualified RFC822 email address string (3), an IPv6 address (5), an ASN. 1 X. 500 Distinguished Name [X.501] (9), an ASN. 1 X. 500 general name [X.509] (10), a vendor specific information (11).
2.7. CERT payload. The CERT payload

can be encoded in various widely used formats. Note that it can also carry revocation lists.

## 3. IKE version 1

The version 1 of the internet key exchange distinguishes between a main mode and an aggressive mode. Further it allows four variants in each mode depending on the desired type of authentication. Authentication can be based on

- public signature keys,
- public encryption keys, originial protocol,
- public encryption keys, revised protocol, or
- a pre-shared secret.

We only give the bare protocol summaries here, using notation similar to the one used for version 1. (They are not based on RFC240x but on the book ?.)

### 3.1. Main mode, public signature keys.



### 3.2. Aggressive mode, public signature keys.

| 导 | SAi, KEi, Ni, IDi |
| :---: | :---: |
|  | SAr, KEr, Nr, IDr, AUTH, [CERT] |
|  | SK \{AUTH, [CERT]\} |

### 3.3. Main mode, public encryption keys, original protocol.

| $\stackrel{\stackrel{8}{\ddot{U}}}{\stackrel{y}{4}}$ | SAi | $\bigcirc$ |
| :---: | :---: | :---: |
|  | SAr |  |
|  | KEi, $\{\mathrm{Ni}\}_{\text {Bob }},\{\mathrm{IDi}\}_{\text {Bob }}$ |  |
|  | $\mathrm{KEr},\{\mathrm{Nr}\}_{\text {Alice }},\{\mathrm{IDr}\}_{\text {Alice }}$ |  |
|  | $\mathrm{SK}=f\left(g^{a b}, \mathrm{Ni}, \mathrm{Nr}\right)$ <br> SK \{AUTH, [CERT]\} |  |
|  | SK \{AUTH, [CERT]\} |  |

3.4. Aggressive mode, public encryption keys, original protocol.

| \|总 | SAi, KEi, $\{\text { Ni }\}_{\text {Bob }},\{\mathrm{IDi}\}_{\text {Bob }}$ | \% |
| :---: | :---: | :---: |
|  | SAr, $\mathrm{KEr},\{\mathrm{Nr}\}_{\text {Alice }},\{\mathrm{IDr}\}_{\text {Alice }}$, AUTH |  |
|  | AUTH |  |

3.5. Main mode, public encryption keys, revised protocol.

| $$ | SAi | 0 |
| :---: | :---: | :---: |
|  | SAr |  |
|  | $\begin{gathered} K_{A}=\operatorname{hash}(\mathrm{Ni}, \text { cookiei }) \\ \{\mathrm{Ni}\}_{\mathrm{Bob}}, K_{A}\{\mathrm{KEi}\}, K_{A}\{\mathrm{IDi}\}, K_{A}\{\mathrm{CERT}\} \end{gathered}$ |  |
|  | $\begin{gathered} K_{B}=\operatorname{hash}(\mathrm{Nr}, \text { cookier }) \\ \{\mathrm{Nr}\}_{\text {Alice }}, K_{B}\{\mathrm{KEr}\}, K_{B}\{\mathrm{IDr}\} \end{gathered}$ |  |
|  | $\begin{gathered} \mathrm{SK}=f\left(g^{a b}, \mathrm{Ni}, \mathrm{Nr}, \text { cookiei, cookier }\right) \\ \text { SK \{AUTH }\} \end{gathered}$ |  |
|  | SK \{AUTH\} |  |

### 3.6. Aggressive mode, public encryption keys, original protocol.



### 3.7. Main mode, pre-shared secret.

|  | SAi |  |
| :---: | :---: | :---: |
|  | SAr |  |
|  | KEi, $\mathrm{Ni}^{\text {I }}$ |  |
|  | KEr, Nr |  |
|  | $\begin{gathered} \mathrm{SK}=f\left(\text { secret, } g^{a b}, \mathrm{Ni}, \mathrm{Nr}, \text { cookiei, cookier }\right) \\ \mathrm{SK}\{\mathrm{IDi}, \mathrm{AUTH}\} \end{gathered}$ |  |
|  | SK \{IDr, AUTH \} |  |

3.8. Aggressive mode, pre-shared secret.

| $\begin{aligned} & \stackrel{\ddot{U}}{\ddot{U}} \\ & \hline \end{aligned}$ | SAi, KEi, Ni, IDi |
| :---: | :---: |
|  | SAr, KEr, Nr, IDr, AUTH |
|  | AUTH |
|  | secret, $g^{a b}, \mathrm{Ni}, \mathrm{Nr}$, cookiei, cookier) |

Michael Nüsken
b-it, Bonn, Germany

History of IKE

Photbris


NSA proposed:


- andy frumewark true.
- ruled out both candidates
$\rightarrow$ IETF could the up the development
OAKLEY, SKETAE ... (newdraths)
NEva puts
Problem: - no clear design
- too many variants
- documentation: $\geq 150$ pages

$$
\geq 3 R F C
$$

\& difficult to read.

KEr2

- clear, simple rules
- any request gets a respouse
- initial exckuge: 1 option, (motherthan 8) 4 mesge.
+ create ohild $\underbrace{S A}_{\begin{array}{c}\text { sewnity } \\ \text { association }\end{array}} \quad 2 \mathrm{msss}$.
- all functiandity of IKEU 1 is still there!
$\rightarrow$ easier analysis
Secrrity questions
(0) Sec ure?
(1) Session bey agree ment.
- Howlong? Rundom?
- Do botk parties contribute toit?
- Man in the middle
(2) Perfect forward security
- Can an ablacker decrupt given the loug-tern secuets affer bermination of the coumaction? Escrow Foilage
-.... durimst the councection.
(3) Denial of service

How expensive is a half-open connection (half-ope = cm apis until fouthentication)?
time, space, conmmenicatiu!
(4) Endpoint identifier hiding

- Does an eavescluepper get information about the idmetities?
- Can an active attacker get identity information of? initiator ar respandor?
[Comet have bo the 'no'?
$\rightarrow$ So choose decide what, it ever, is warated. Design decision.]
(5) Live partner reassurance
- Replay?
(6) Plausible deniability
- Does the protocol log prove
that - Alice talked?
- Bob talked?
- Alice talked to Bob?
- Bob talked to Alice?
(7) Stream protection
- How is a logical data stream (6.1.08 protected?
- canfidentiality?
- authenticaty?
- inhegrity $\rightarrow$ vuchanged not toon meach
(8) Negotiating crypto parameters

$$
\rightarrow \text { Pros ... }
$$

$$
\rightarrow \text { Cons.. }
$$

Task (me'll do thet hamarron)
Ansmer these questions a.l classify pros and cous for
(a) $\operatorname{KEVT}$ aggiessive mock
(b) IKEV $\rightarrow$ meain mode
(は) IKEV2.


- Man in the middle has no trance with pre-shared key and public key encryption
- Perfect Forward Security is assured through" short time" secrets
- Escrow Foilage is prevented by the discrete log property of the "short time" secrets
- An eavesdropper get no information about the identities with public key encryption
- Nonces prevent replay attacks
- Assuming the key exchange created a secure session key, this implies the fullfillment of the three notions of stream protection
- less communication effort and faster key exchange compared to the Main Mode

$$
(1 K[\underbrace{-1} \text { main mode })
$$

(1). Key $=\operatorname{hash}\left(g^{\alpha \beta}, N:, N r\right) \leftarrow$ fixed size

- both parties contribute
- Mah-In-the-middle-atiack prevented by authentication
(2) PFS:V SK based on NONCES

Escrow foiluge: possible if Nonce in deartext
$\rightarrow$ only in main mote, public siguatarekey
(3) DOS possible
(4). Only if 10 is not encrypted $\Rightarrow$ not the case!

- Attacker can pretend to be the server $\rightarrow$ find at Alice $1 D$ in main mode. public sig bes
(5) Replay not possible due to the nones
(6) Each party can prove the 10 of the other party
(7) Confidentiality: by enate encryption $t$ authenticity by signature inlog口ity
| KEY

1. 4 menages they exchange

+ Random? $\rightarrow$ Yes: use nonce $+K M$
+ MIM? $\rightarrow$ No: authenticahou

2. Perfect Forward Security
$\rightarrow$ Yes, because session keys are not based on secret Keys (ra mom x, P)
3. DoS $\rightarrow$ possible
half conn are expensive: KM generahon+ storage, nonce
4. Endpoints are hidden (authentication material is encrypt ted) $\rightarrow$ if the attacker n's mon active
5. Yes, because of the nonces (Live partner reassurance)
 they talk to each other

+ Session keys are strong
+ rosistont. ho M1M
+ reply protection
+ extensible authenhicahou support
+ compression
+ NAT
+ congeston mohficathou

A secvre counectiou
sots


Fast encryption and lost then fica lion
We have fast block cipher:
plainer $t^{128}$ its
Ley $\underset{\substack{102}}{\rightarrow \text { PES }} \underset{\substack{182 \\ 206}}{\substack{128 \\ \text { eipherket }}}$
Row to use that kind of primitive to encrypt long texts?
$\rightarrow$ Modes of Operation
Electronic Code book Mode


Problems: . same blacks we encorppled in the see way $\rightarrow$ 'large' structures remain visible

- danger of replacing or exchanging blocks underway


Decrypting is easy:


Note! if one cipherblock is corrupted ar missing then at most two plaintert b cocks are corrupted.
For Proc we dan't care too much because a clever adruinistratos mill always anthenticuntion to deck for integrity.

For $\mathrm{Psec} \quad A E S-C B C$
is one of the allowed encopptiou afontmas.
Known: For fixed sized messages security of $C B C$ cum be reduced to secanty. f the used block cipher.
Problem: Or messages are not Fixed size.

$$
\Delta
$$

CTR counter made


Use IV to define where to shat the can her
(and maybe how to merementit).
Easy bodecrypt and even in case the order is garbled..
Known? security of CTR
con be reduced to security of the used block cipher.
of course now it is easy to mani pupate the pin text at mill vales there is an integrity check.
thathentication? slutegrity che de?
Solution $1 \quad C B C-M A C$
cipher block churning - message authentication code


Note: - an attacker, actually Hind party, can neither jeverate nor check the CBC-MTAC value, beccuse It depends on a kay.

- if any plain text block is changed that (usually) affects the CBC-IAAC value.
Need colliviou-resistance, hind of,...
Solution 2
MAC - SHAT
* compression
function


Fact: One can (almost/) prove that this construction is secure if the used hash function is good.

Horton liears a who?
Horton's principle
A signature (ar authentication value) must depend on the meaning of the message (ie. plainkext).
$\rightarrow$ order of encryption and authentication

Wore on attacking MACS
We have seen that the HOAAC essentially pre-and postpends a single boy to the message and hashes that.


G: Can't we do that sigher or mare secure?
(1) Why not use differ beys at the beginning and the end?
(2) wing not leave out him. tical hay?
(3) why not leave out the final key?
ad (3) EXTENSION ATTACK.
Neglecting the haskfunction's padded we can extend the text and adapt the MAC.
at
ad（2）Collision Arracks an the
key less hash function
If leave out the initial bey
then we can use a collision of the hay lass function to obtain a collision of the keyed version．So it is not－as it should be－muck more difficult to a tack the keyed version．
security for（keyed）MAC
粞 the attacker is successful if he can find a collision for the MAC without knowing the bey． That－due to the ignorance of the hey－ is muck more difficult them fir dig a collision for a hash function．
ad（1）PINDE\＆CONQUER ATTACK tustead of having to try all pairs of （bey，boy，it is enough to try all keys keys and then all hey keys． Eg．with length of hey：being 80 bit vedic $2^{160}$ operatives，only $2.2^{80}$ are enough


Bottom line
tone can prove that
(i) if someune breaks CBC-DAC then be cam also Greak the anderlging block cipher.
(ii) if someose Greaks HMAC-hash the he can also loreak the underlaing hash functicn.

Now combine authomticatin ad encroption. How to do fhis?
WIll, reca Cling Horton's principte we should
At $E$, authen ticate thd then encrppt. and not $E \in A$ encorpt ad then anshenticate.
Because with EtA we anly, antreniticate the cyipher lext. If an a nacker is able to exchinge one of the excruption heys the recipient exchinge one of the encreption meys (unlest thore iststructure
would not defect a probbem in phent).

However, is ex. 10.2 we see that AtE may be bad as well.
Lesson: When ever we combine primitives, we nat olen on their indin'dual security
but we have to reduce
the security of the new
construction to something difficult, eg. The seccomity of the old cons ruction.

Bisect ${ }^{1 k E}$ achua Ply uses EXAT.
That seems to vioLate Horton's principle.
t way out of the EtA-probhem woald be to authenticate encryption bey + cipharthext. Because this determines the plainhext, the acethentiaction now remthenticates the meaning of the plainhext. And so this variation does not n'olate Horton's principle.
After IKE there is a (strong), connection betaken encryption bey and, authentication bey. Actually, both are chitherent sections of a certain psecedorandominly generated bitting. So you pseudo iandomeny the pseudo random generator.
reuse started to think about securing in particules worn comections.
First steps: 1994 (?) Netscape

$$
\leadsto S S L
$$

Decision:
web $\left|\frac{\text { APple }}{\text { w her }}\right|$

Reasons: wanted fast, easily emboddable solution.

- should link application (web browses) to application (web serves) rather them station to station
 definitely authentication and: sec was uotyet there.

Shape of SSL /TLS:
Initial handshake
 msg 1 msg $?$
msg 3

$$
\begin{aligned}
& \text { compute } \\
& f\left(S, R_{\text {Alice }}, R_{\mathrm{Bob}}\right)
\end{aligned}
$$ msg 4

$$
\begin{gathered}
S=\text { premaster hoy } \\
R_{\text {thice }} / R_{B, b}=\text { nonces } \\
K=\text { master key }
\end{gathered} \quad \begin{aligned}
& \text { bit }) \\
&
\end{aligned}
$$

Protocol 19-1. (simplified) SSLv3/TLS

oue part for eucryption one for cuthentication
ore for?
hask ('chent finished' \|V KH msg 1822)
$T \quad \tau$ depends an nession
Ke ane ${ }^{2} Z_{0} S$ (SSLV2, SSLV3, TLS 1.0, chosen by 30 (SSLV2, SSLVS, TLS 1.0,
hash ('server fimished'll K\|msf 182 (83?))

Wow from K we derive
2 encryption bays,
2 authentioction/integrity keys,
2 IV (for CBC or similar)
one triple for each direction.
Next: optional 'session resomptiou'


Feather purpose: this allows to upgrade to better security primitives
[Background: US export restriction] (max.allowed: 40 -bid symmetric, 512 bi l RSA) dropped meanwhile!
SSL fulfilled this restriction by offing modes that publish 88 of 28 bits seel key.


Key
Exchange
Algorithm
Description
DHE_DSS Ephemeral DH with DSS signatures
DHE_RSA Ephemeral DH with RSA signatures
DH_anon
DH_DSS
DH_RSA
NULL
RA

Anonymous DH, no signatures
DH with DSS-based certificates
DH with RSA-based certificates
No key exchange
RSA key exchange

Key size limit
None
None
None
None
None
RSA = none
N/A
None


Note: each suite is a combination. So one cam combination. (Other when the IKE procedure.)


- Per fect forward secunity?

We do not have unith RSA-encripled $S$ sent bo Bob!
Haning Bub's secret encryption bey (lang teme) the attacker sisly decrypts $\{S\}_{\text {Bob }}$.

DoS?

- No extra protection (still?)
- not that importand becouse the connection relies on lower protocals that have DoS protection.
- Endpait id lidity
- Serveris always Enown pubticly
- Chient is always protected.
- Yive parher reassuiance?

Nonces RAbice, Robl prevent replays...
Additionally!. different heys far alffemt dhictios

- lil.t - nessage wumbers...
- Semiability
- No!
- Strean protection
- Nejotiabe crypto parans

Encryption \& authentication in $T \angle S$


Note: - sequence un n is authenticated bot never sent!

- all header date is authenticated.
- AtE.

- Is Alice allowed to access the file Wonder Land
on the hardetrive Babbit?
- Nay Alice use the printer Blade Cower?
- May Alice send mail to Bobby?


How do all the B's know that/whether a specific A (eg Alice) has the associate privilege fright?

Probhems
(a) unthenticate tlice

(b) privilige mamagement
$\rightarrow$ adunimistration needs
to (re) inform / coutiguve
each 1 seperately.
(A) cach pair A-B reeds a shaved bey for fast secured data exchange.
Possible solution: a trusted thidelparty,
key distribution center.

Ldea :


Protocol 11-16. KDC operation (in principle)

Pros Recons:
(Alice needs Keflice and the bey center. necks ale keys)

+ (re) configuration at ane place
$t$ each pair Alice-Bob gets a shart-lived cession bey whenever needed (an dallowed)
- single print of failure (if bey center is down, nothing works)
- performance bitleneck

F initial effort for setup is large

- if the key' is corrupted all wathenticution is lost. Actually, the bay center can in personate every one.

The cons may weakened by dupticatidng the bey center....

+ each user only, weeds to curthou fixate once to the bey center.


Protocol 11-17. KDC operation (in practice)
pere, a traitor can just replay the blind message
Neechum-Schroeder protocal

$N_{1}$ nonce that greets that the supposed key center thees the shared bey Kosice.
$N_{2}$ nonce that grouts to Alice the she is hocking to BOD.
$N_{3}$ nonce. that prevent cams to prevent replays

- that grants to Bob that he is talking to Alice.

Waning:
one could thine of a replay attacker that uses parts of message 4
to often a valid answer dies massage 5.
(Hear start a second correction

$$
\text { with ticket, } K_{A 3}\left\{N_{3}\right\} \text {.) }
$$

That is prevented if each message has an integrity check!
A further a shack cones when Trudy, thetraites, is able to steal Alice' key and get a bunch of tickets before Alice notice and revokes her benny (and logs in anew to the bey contour).
Problem: the tickets stay valid!

A possible solution to this probhem:


Protocol 11-19. Expanded Needham-Schroeder
Thas now jremts Live Partwer Reassurance.
(Ex) Reduce this to six messages. Saviant Olway - Rees protocol


Protocol 11-20. Otway-Rees

The Kerberos authentication service (see Chapter 13 Kerberos V4) is roughly based on the Needham-Schroeder protocol. It looks a iot simpler than these protocols because it assumes a universal idea of time, and includes expiration dates in messages. The basic Kerberos protocol is:


Protocol 11-21. Kerberos

Kerberos Authentication


Ticket Granting Service
$\rightarrow$ u_key
$\rightarrow$ s_key
$\rightarrow$ tgs_key
$\rightarrow$ tgs_id

Anfrage Service $S$
TGT * tgs_key tgs_Session_key Anfrage TGT
2.

Antwort:
u_id

Kerheros 15
Wistory: Needhan-Scluroeder: 1979 (?)

- Kerberos was developped atruct
$\therefore$ the carly 1980s,
$\sqrt{5}$ i the early 1990 s.
$R \neq C 4120$ : Juely $2005^{\circ}$.
cven here: anly 4 out of 139 pages dea l with secuntry considerations.
'Own' securily reurar les:
- "By itself Karberos cloes not provide an thentication.
- Devial of Sernice attlacks are not solved.
- Interapeerability couflicts
- Tassmond-guessing

The tickets are devined from passwoncl in away bhat allows offliwe dictionary athacks. (Fassive!)

- 14 anly used DES-KBC-MDS.

VS still has DES-CBC-MDS as a SHOULD.
Everythaing, rebies on syuchronized
clocks!

- No identifier hichnos.
- No perfect forward security.

Schneider on Kerberos security

- so we replay seem possible,
in particular if . ticket lifetime has not expired
or one manipolake clocks
- Kerberos (d er any suck system) is vulnerable to malware.
security model?
-owe: a tacks to t'eedhcura-Schroede(us seen yesterday)
- formulated a okcinge that he proved secure in a certain model.
Wiriuschi: . Needham-Sckooecler-Lowe zobhichey is shill insecure in practice


Allacher


The attacker tromesparts all messages. The is further to corrupt some (but not all) parties.
Aim: Mutual anthention of 'Mucorropted Bel Bob, Attacker tries to 'perform' an an Ahentication to Alice on to Bob without corrupting any of the two.
The For any asymmetric eucorptian scheme Need ham-Sckroeder based on it is rusecure incs secure
Then There exists anto-cpiseccurefic encorption scheme such that, Needham-Schroeder-Lowe is still insecure.

ElGamal encryption scheme

Fin if we base Neectham-Schroeder-lowe) to fl on a IND-CCA secure asymmetric 28.109 encryption scheuse then
if is secure in the above sense
For un encryption scheme ND-ClAt secure means that athecher comet distinguish two self chosen messages even if lit is allowed to se' ciphertexts decrypted!


$1 N D-C C A$ secure

Goal: $\quad i=j$
\& $c$ is never queried to the decription oracle. menus that there is no succusful polytime a the cher.

ELGamal encryption
Global setup! a roup $G_{1}$ an element hg (5)
of known ardor $q$
(suck that D1 mink basis is difficult)
Personal setup: secret key $\alpha \in \mathbb{Z}_{q}$,
public bey $a=g^{\alpha} \in G$

Bob

$$
\rightarrow \text { Alice }
$$

$\tau \in \in_{R} \mathbb{Z}_{q}$
(temperamp secret)

$$
\begin{aligned}
& t=g^{\tau} \in G \\
& y=a^{\tau} \cdot x \quad(t, y) \quad
\end{aligned} \quad t^{-\alpha} \cdot y
$$

This scheme obviously (?) is not IND-CCA secure. Proof The attacker chooses $m_{0}, m_{2}$ different, and aster for an encryption $c=(t, y)$ of one of them. Then he computes

$$
c^{*}=\left(g^{\rho} t, a^{\rho} y\right)
$$

and asks the decryption oracle for its decryption $m^{*}$. So he cam see whether it was

However, one can prove it is IND-CPA secure.


Algorithm. SHA-1.
Input: A message $x \in\{0,1\}^{*}$.
Output: A hash value $H \in\{0,1\}^{160}$.
Constants and round functions:

1. $h \leftarrow(67452301$, EFCDAB89, 98BADCFE, 10325476, C3D2E1F0).

Precalculations:
2. Padding: $\tilde{x} \leftarrow x|1| 0^{d} \mid\langle | x| \rangle_{6}$ mit $0 \leq d<512$ so, that $|\tilde{x}|$ is a multiple of $512=16 \cdot 32$.
3. Cut $\tilde{x}$ in 32-bit words: $\tilde{f}=x_{0} x_{1} x_{2} \ldots x_{16 m-1}$.
4. Initialize: $\left(H_{1}, H_{2}, H /, H_{4}, X_{5}\right) \leftarrow h$.

Main calculation:
5. For $i=0 . . m-1$ 6-13
6.

For $j=0 . .15$ do $W_{j} \leftarrow x_{16 i+j}$.
7. For $j=10 . .79$ do
8. $\quad W / \rho \leftarrow\left(W_{j-3} \oplus W_{j-8} \oplus W_{j-14} \oplus W_{j-16}\right) \otimes 1$.
9. $(A, B, C, D, E) \leftarrow\left(H_{1}, H_{2}, H_{3}, H_{4}, H \vee\right)$.
10. Fo $j=0 . .79$ do $11-12$
11. $\quad t \leftarrow A \ominus 5+f_{j}(B, C, D)+E+W_{j}+K_{j}$.

12
13.
$(A, B, C, D, E) \leftarrow(t, A, B \otimes 30, C, D)$.

$$
\begin{aligned}
& \left(H_{1}, H_{2}, H_{3}, H_{4}, H_{5}\right) \leftarrow \\
& \left(H_{1}+A, H_{2}+B, H_{3}+C, H_{4}+D, H_{5}+E\right)
\end{aligned}
$$

14. Return $H_{1}\left|H_{2}\right| H_{3}\left|H_{4}\right| H_{5}$.

Protocols $66 t$

IPsecIDLE $\approx D H+$ heftuatiation + Symen. Enc.

$$
+M A C
$$

+ Cortificates/PRI

$$
\begin{aligned}
& T L S / S S L=-" \square \\
& S S H=\cdots
\end{aligned}
$$

Kerberos $\approx$ Pubtic eucirption a Symm. Euc. + MACC.
PGP $>$ Pobtic encryption, public bey signatures, symm. encroption.
Structures
PKI $\approx$ Siguatues + Certificates + Trusted Thind Parties



Solutious

- electionic bankij
$\rightarrow$ decticatedsolutions ("old"))
$\rightarrow$ TLSKSener kifp.
- (secure email)
- virtual prinak netuabs
- electronic keath card
+ in frustructme
- (electronic elections) Need auonymity and venitiability.
- (baukij card)
- electronic passparts ad ict-cards.
- ecommerce
commerce
(usually just $T L S / S S($ aver hty )

The final cent:

Security model:
For encryption:

$c$ never, queried
Security motion: There is wo suck attacker.
Helpful for finding

- necessary conchtions
- sufficient conditicus (security reductions)

security notion: There is no suck attacker.

Your questions:
(1) Repeat major issues

- Poklig-Hellman
- Pollard-s , Baby-Ske-Giaunt-Skp
- Chinese Remanider Algontion
(2) $\cdots$ - $P_{\text {sec }}$
- Todes of aporation
- Sccurity notions
(3) … - Key Exclunge Threats

CRT If $m, n$ are coprime then
$\mathbb{Z}_{m n} \longrightarrow \mathbb{Z}_{m} \times \mathbb{Z}_{n} \quad$ is an isomarphism.
$(a \bmod \operatorname{mn}) \longmapsto(\operatorname{amodm}, \operatorname{and} n)$


DLP: give gi $\in G$
Find $\propto \in \mathbb{Z}_{\underline{\text { od l }(g)}}$ such that

Poklig - Hellman
... uses the factorization of $\operatorname{arl}(g)$ to break dorm the DLP to easier instances.

$$
\text { If } g^{x}=a \text { then }
$$

choose nice $k ;$ !
Best $\quad \frac{\text { ard }(g)}{k}$ is prime
$\operatorname{and}^{k}(g)$ is $k$ in cause $k \mid \operatorname{ard}(g)$.
The new problem determines $x$ modulo and $\left(g^{k}\right)$.
altogether we can obtain
$\alpha$ med $p$ for any $p / \operatorname{ard}(G)$.
Actually, give can extend that to
$\alpha \bmod p^{e}$ for any $p^{e} \mid \operatorname{ard}(g)$
by writing $\alpha$ in base $\rho=$ (Details...)
ad choosing $k=\frac{\operatorname{ard}(g)}{P^{f}}$ for $f=1,2,3, \ldots e$.
Drevall runtime: $\quad \sum e_{i} \cdot \operatorname{DLP}\left(p_{i}\right)$ whee are lg)


To solve DLPs in peneral ad
is particula if and $(g)$ is grime
use Pollard-g
or Baby-Step-biant-Shes.
In baby-giant we urite $\quad q=\operatorname{ard}(g)$.

$$
\alpha=\alpha_{2} \cdot \Gamma_{V} \nabla^{T}+\alpha_{0}
$$

ad consider

$$
\left(g^{\sqrt{V_{q}}{ }^{7}}\right)^{\alpha_{1}}=g^{-\alpha_{0}} a
$$

So we ouly need runtime $O(\sqrt{9})$. improvennt: Pollardeg inckidig Floyd's trick.
$\rightarrow$ runtice: expected $O(\sqrt{9})$. memary: CO TT?

Modes of operation
We have block ciphers, many good ones. They can encrypt a fixed sited block
using a (fixed sited) boy.
We need to construct ciphers that can encrypt arbitrarily long messages.
"from shat to long"
Various solution:
$E C B$ :


We should prove: if the is can be attacked
the a single block cipher entity
alitle can be attacked.
ECB is wreak because it will reveal some patterns in the message...
CBC


Threats \& Security
Davious attack aims:

- Porbect Farmard Security, Escron foilage
- Identifior Hiding
- Denial of Service
...
Secunty Notions
... see yesterday.

Psec
... see notes of 13 Jamuary...

