Cryptographic passports & biometrics, summer 2009 Michael Nüsken, Konstantin Ziegler

2. Exercise sheet Hand in solutions until Monday, 27 April 2009.

Any claim needs a proof or argument.

Exercise 2.1 (Tool: Groups).

(6 points)

Consider the *additive group* $\mathbb{Z}_N^+ := (\mathbb{Z}_N, +)$ of the ring $\mathbb{Z}_N = (\mathbb{Z}_N, +, \cdot)$ of integers modulo N and for a prime p the *unit group* $\mathbb{Z}_p^{\times} := (\mathbb{Z}_p^{\times}, \cdot)$ of the ring $\mathbb{Z}_p = (\mathbb{Z}_p, +, \cdot)$ of integers modulo N. Compute (fast):

- (i) 17 + 13 in \mathbb{Z}_{21}^+ .
- (ii) $17 \cdot 13$ in \mathbb{Z}_{67}^{\times} .
- (iii) $-5 \text{ in } \mathbb{Z}_{15}^+$.
- (iv) 5^{-1} in \mathbb{Z}_{19}^{\times} .
- (v) $17 \cdot 5 := \underbrace{5 + \dots + 5}_{17}$ in \mathbb{Z}_{12}^+ . (Note that there is *no* multiplication available!) 1

(vi)
$$5^{17} := \underbrace{5 \cdot \ldots \cdot 5}_{17}$$
 in \mathbb{Z}_{19}^{\times} .

Exercise 2.2 (Tool: Euclid).

(6 points)

Consider the integers modulo 42.

- (i) Decide whether a = 10 and b = 11 have a multiplicate inverses in $(\mathbb{Z}_{42}, \times)$.
- (ii) Compute an integer k, s.t.

$$17 \cdot k = 5$$
 in \mathbb{Z}_{42} .

(iii) Compute an integer *k*, s.t.

 $17^k = 5 \text{ in } \mathbb{Z}_{42}.$

2

1

1

2

Exercise 2.3 (Tool: Groups).

1

1

1

1

2

1

1

1

(9 points)

In this exercise you will get comfortable with the concept of a group. Always remember: Don't PANIC. Which of the following sets, together with the given operation form a group? Check for each property (Proper, Associative, Neutral, Inverse, Commutative) if it is well-defined, and if so if it is fulfilled or not:

- (i) $(\mathbb{Z}, -)$: The integers \mathbb{Z} with subtraction.
- (ii) $(\mathbb{N} \setminus \{0\}, \hat{})$: The positive integers $\mathbb{N} \setminus \{0\}$ with exponentiation.
- (iii) (\mathbb{B}, \vee) : The set $\mathbb{B} := \{\top, \bot\}$ with operation \vee (the logical OR), defined as:

- (iv) $(4\mathbb{Z}+1, \cdot)$: The set $4\mathbb{Z}+1 := \{z \in \mathbb{Z} \mid z = 1 \text{ in } \mathbb{Z}_4\}$ with multiplication.
- (v) The elliptic curve $E: y^2 = x^3 + x$ has four points over \mathbb{F}_3 . Namely we have $E = \{(0,0), (-1,1), (-1,-1), \mathcal{O}\}$. We define an addition on E via the following table:

ſ	+	O	(0, 0)	(-1,1)	(-1, -1)
	Ø	0	(0,0)	(-1,1)	(-1, -1)
/	(0, 0)	(0,0)	\mathcal{O}	(-1, -1)	(-1,1)
	(-1,1)	(-1,1)	(-1, -1)	(0,0)	(1,1)
				()	(0,0)
	(-1, -1)	(-1, -1)	(-1, 1)	\mathcal{O}	(0,0)

- (vi) $(\mathcal{S}(\mathbb{Z}_{13}), \circ)$: The set $\mathcal{S}(\mathbb{Z}_{13}) := \{f : \mathbb{Z}_{13} \to \mathbb{Z}_{13} \mid f \text{ bijective}\}$ with concatenation \circ .
- (vii) $(GL(\mathbb{Z}_{13}), \cdot)$: The set $GL(\mathbb{Z}_{13})$ of all invertible 2×2 -matrices having entries from \mathbb{Z}_{13} and matrix multiplication \cdot as operation.
- (viii) (\mathbb{Z}_3^2, \Box) : The set $\mathbb{Z}_3^2 := \{(a, b) \mid a \in \mathbb{Z}_3, b \in \mathbb{Z}_3\}$ with the following operation \Box :

$$\exists : \begin{array}{ccc} \mathbb{Z}_3^2 \times \mathbb{Z}_3^2 & \longrightarrow & \mathbb{Z}_3^2, \\ (a,b), (c,d) & \longmapsto & (ac+bd, ad+bc) \end{array}$$