Cryptographic passports \& biometrics, summer 2009
 Michael NÜsken, Konstantin Ziegler

2. Exercise sheet

Hand in solutions until Monday, 27 April 2009.

Any claim needs a proof or argument.

Exercise 2.1 (Tool: Groups).
Consider the additive group $\mathbb{Z}_{N}^{+}:=\left(\mathbb{Z}_{N},+\right)$ of the ring $\mathbb{Z}_{N}=\left(\mathbb{Z}_{N},+, \cdot\right)$ of integers modulo N and for a prime p the unit group $\mathbb{Z}_{p}^{\times}:=\left(\mathbb{Z}_{p}^{\times}, \cdot\right)$ of the ring $\mathbb{Z}_{p}=\left(\mathbb{Z}_{p},+, \cdot\right)$ of integers modulo N. Compute (fast):
(i) $17+13$ in \mathbb{Z}_{21}^{+}.
(ii) $17 \cdot 13$ in \mathbb{Z}_{67}^{\times}.
(iii) -5 in \mathbb{Z}_{15}^{+}.
(iv) 5^{-1} in \mathbb{Z}_{19}^{\times}.
(v) $17 \cdot 5:=\underbrace{5+\cdots+5}_{17}$ in \mathbb{Z}_{12}^{+}. (Note that there is no multiplication available!) 1
(vi) $5^{17}:=\underbrace{5 \cdot \ldots \cdot 5}_{17}$ in \mathbb{Z}_{19}^{\times}.

Exercise 2.2 (Tool: Euclid).
Consider the integers modulo 42.
(i) Decide whether $a=10$ and $b=11$ have a multiplicate inverses in $\left(\mathbb{Z}_{42}, \times\right)$.
(ii) Compute an integer k, s.t.

$$
17 \cdot k=5 \text { in } \mathbb{Z}_{42}
$$

(iii) Compute an integer k, s.t.

$$
17^{k}=5 \text { in } \mathbb{Z}_{42}
$$

Exercise 2.3 (Tool: Groups).
(9 points)
In this exercise you will get comfortable with the concept of a group. Always remember: Don't PANIC. Which of the following sets, together with the given operation form a group? Check for each property (Proper, Associative, Neutral, Inverse, Commutative) if it is well-defined, and if so if it is fulfilled or not:
(i) $(\mathbb{Z},-)$: The integers \mathbb{Z} with subtraction.
(ii) $\left(\mathbb{N} \backslash\{0\},^{\wedge}\right)$: The positive integers $\mathbb{N} \backslash\{0\}$ with exponentiation.
(iii) (\mathbb{B}, \vee) : The set $\mathbb{B}:=\{\top, \perp\}$ with operation \vee (the logical $O R$), defined as:

V	T	\perp
T	T	T
\perp	T	\perp

(iv) $(4 \mathbb{Z}+1, \cdot)$: The set $4 \mathbb{Z}+1:=\left\{z \in \mathbb{Z} \mid z=1\right.$ in $\left.\mathbb{Z}_{4}\right\}$ with multiplication.
(v) The elliptic curve $E: y^{2}=x^{3}+x$ has four points over \mathbb{F}_{3}. Namely we have $E=\{(0,0),(-1,1),(-1,-1), \mathcal{O}\}$. We define an addition on E via the following table:

+	\mathcal{O}	$(0,0)$	$(-1,1)$	$(-1,-1)$
\mathcal{O}	\mathcal{O}	$(0,0)$	$(-1,1)$	$(-1,-1)$
$(0,0)$	$(0,0)$	\mathcal{O}	$(-1,-1)$	$(-1,1)$
$(-1,1)$	$(-1,1)$	$(-1,-1)$	$(0,0)$	\mathcal{O}
$(-1,-1)$	$(-1,-1)$	$(-1,1)$	\mathcal{O}	$(0,0)$

(vi) $\left(\mathcal{S}\left(\mathbb{Z}_{13}\right), \circ\right)$: The set $\mathcal{S}\left(\mathbb{Z}_{13}\right):=\left\{f: \mathbb{Z}_{13} \rightarrow \mathbb{Z}_{13} \mid f\right.$ bijective $\}$ with concatenation \circ.
(vii) $\left(\mathrm{GL}\left(\mathbb{Z}_{13}\right), \cdot\right)$: The set $\mathrm{GL}\left(\mathbb{Z}_{13}\right)$ of all invertible 2×2-matrices having entries from \mathbb{Z}_{13} and matrix multiplication \cdot as operation.
(viii) $\left(\mathbb{Z}_{3}^{2}, \square\right)$: The set $\mathbb{Z}_{3}^{2}:=\left\{(a, b) \mid a \in \mathbb{Z}_{3}, b \in \mathbb{Z}_{3}\right\}$ with the following operation \square :

$$
\square: \begin{aligned}
\mathbb{Z}_{3}^{2} \times \mathbb{Z}_{3}^{2} & \longrightarrow \mathbb{Z}_{3}^{2}, \\
(a, b),(c, d) & \longmapsto(a c+b d, a d+b c)
\end{aligned}
$$

