Cryptographic passports & biometrics, summer 2009 Michael Nüsken, Konstantin Ziegler

3. Exercise sheet Hand in solutions until Monday, 11 May 2009.

Any claim needs a proof or argument.

Exercise 3.1 (Tool: The exponentiation map).

The group $G = \mathbb{Z}_p^{\times}$ has the p - 1 elements $\{1, 2, \dots, p - 1\}$. For any element $g \in G$ we get the exponentiation map

$$\operatorname{Exp}_g \colon \begin{array}{ccc} \mathbb{Z} & \longrightarrow & \mathbb{Z}_p^{\times} \\ a & \longmapsto & g^a. \end{array}$$

- (i) Consider the example p = 7, g = 3. Make a table of Exp_g for $0 \le a < 2p$. 1 What is the subgroup $\langle g \rangle \subseteq G$ generated by g?
- (ii) Consider the example p = 7, g = 2. Make a table of Exp_g for $0 \le a < p$. 1 What is the subgroup $\langle g \rangle \subseteq G$ generated by g?
- (iii) Compute 2^{67649} in \mathbb{Z}_{11}^{\times} using Square and Multiply (SaM).
- (iv) Prove that the exponentiation map respects the group structure: for any [1] $a, b \in \mathbb{Z}$ we have $g^a \cdot g^b = g^{a+b}$.
- (v) Prove that if $(a \mod \ell) = (b \mod \ell)$ then $g^a = g^b$, where the order ℓ of g is $\lfloor 1 \rfloor$ the smallest positive integer ℓ such that $g^{\ell} = 1$.

We obtain a well-defined map

$$\exp_g \colon \begin{array}{ccc} \mathbb{Z}_\ell^+ & \longrightarrow & \mathbb{Z}_p^\times, \\ a & \longmapsto & g^a \end{array}$$

(which by abuse of notation inherits the name from its parent).

(vi) Make a table of \exp_2 and \exp_3 for $2, 3 \in \mathbb{Z}_{11}^{\times}$.

(7 points)

2

1

Exercise 3.2 (Tool: The Extended Euclidean Algorithm). (0+8 points)

If you want to know why the EEA works prove the following statements. [Notation: We assume that the first column contains *remainders* r_i , the second column *quotients* q_i and the other two *coefficients* s_i and t_i . The top row has i = 0, and the bottom row (the first with $r_i = 0$ and thus the last one) is row $\ell + 1$. There is no q_0 and no $q_{\ell+1}$, $r_0 = a$, $r_1 = b$. A division with remainder produces $q_i, r_{i+1} \in \mathbb{Z}$ with $r_{i-1} = q_i r_i + r_{i+1}$ with $0 \le r_{i+1} < |r_i|$ for $0 < i \le \ell$.]

- (i) For any row in the scheme we have $r_i = s_i a + t_i b$ for $0 \le i \le \ell + 1$.
- (ii) For any two neighbouring rows in the scheme we have that the greatest common divisor of r_i and r_{i+1} is the same for $0 \le i \le \ell$. [A step leading there is $gcd(r_i, r_{i+1}) = gcd(r_{i-1}, r_i)$.]
- (iii) The greatest common divisor of r_{ℓ} and 0 is r_{ℓ} .
- (iv) We have $|r_{i+1}| < |r_i|$ for $1 \le i \le \ell$, so the algorithm terminates.
- (v) We have $|r_{i+1}| < \frac{1}{2}|r_{i-1}|$ for $2 \le i \le \ell$, so the algorithm is fast, i.e. $\ell \in \mathcal{O}(n)$ when a, b have at most n bits, i.e. $|a|, |b| < 2^n$.
- (vi) Put everything together and prove:

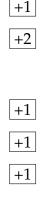
Theorem. The EEA computes given $a, b \in \mathbb{Z}$ with at most n bits with at most $\mathcal{O}(n^3)$ bit operations the greatest common divisor g of a and b and a representation g = sa + tb of it. In case g = 1 we thus have a solution of the equation 1 = sa + tb. In case g > 1 there is no such solution.

[Hint: A single multiplication or a single division with remainder of n bit numbers needs at most $O(n^2)$ bit operations.]

Exercise 3.3 (Chinese Remainder Theorem).

(10 points)

- (i) Consider $21 = 3 \cdot 7$ and fill out a table to visualize the relation between the elements of \mathbb{Z}_{21} and $\mathbb{Z}_7 \times \mathbb{Z}_3$.
- (ii) Pick two elements $x, y \in \mathbb{Z}_{21}$ (to make it interesting: the sum of the representing integers shall be larger than 21). First, add them in \mathbb{Z}_{21} and then map to $\mathbb{Z}_7 \times \mathbb{Z}_3$. Second, map both to $\mathbb{Z}_7 \times \mathbb{Z}_3$ and add afterwards. What do you observe?



+2

2

1

(iii) Pick two elements $x, y \in \mathbb{Z}_{21}$ (to make it interesting: the product of the representing integers shall be larger than 21). First, multiply them in \mathbb{Z}_{21} and then map to $\mathbb{Z}_7 \times \mathbb{Z}_3$. Second, map both to $\mathbb{Z}_7 \times \mathbb{Z}_3$ and multiply afterwards. What do you observe?

Note: a map having the properties observed in (ii) and (iii) is called a *ring homomorphism*.

(iv) Mark all the invertible elements in \mathbb{Z}_7 , \mathbb{Z}_3 , and \mathbb{Z}_{21} . What is their relationship?

Now consider two arbitrary relatively prime positive integers $m_1, m_2 \in \mathbb{Z}_{\geq 2}$.

- (v) Let x be any integer and suppose $x \mod m_1m_2$ is invertible. Prove that $\begin{bmatrix} 1 \\ x \mod m_1 \text{ and } x \mod m_2 \text{ are also invertible.} \end{bmatrix}$
- (vi) Assume that an integer y is invertible modulo m_1 and modulo m_2 . Prove that y is then invertible modulo m_1m_2 .
- (vii) Conclude that there is a bijection between $\mathbb{Z}_{m_1m_2}^{\times}$ and $\mathbb{Z}_{m_1}^{\times} \times \mathbb{Z}_{m_2}^{\times}$.

Exercise 3.4 (DLP in $(\mathbb{Z}_N, +)$).

1

(4 points)

1

- (i) What is the *Discrete Logarithm Problem* (DLP) in the additive group $(\mathbb{Z}_N, +)$. 2 (Obviously, you are not allowed to use the function dlog to define the DLP.)
- (ii) Show that the DLP in $(\mathbb{Z}_N, +)$ is *easy*, i.e. can be computed with a number of bit operations polynomial in the bit-size of *N*.