Cryptographic passports & biometrics, summer 2009 MICHAEL NÜSKEN, KONSTANTIN ZIEGLER

4. Exercise sheet Hand in solutions until Monday, 18 May 2009.

Any claim needs a proof or argument.

Exercise 4.1 ("Meet in the middle attack" on DLP).

Consider the group $G = \mathbb{Z}_{73}^{\times}$ generated by g = 5. The aim of this exercise is to find the discrete logarithm of a = 6 using the Baby step-gian step-method you learned in the lecture. In other words, we want to find the smallest positive integer α , such that $g^{\alpha} = a$.

- (i) Compute a table of pairs $(\alpha_0, ag^{-\alpha_0})$ for $0 \le \alpha_0 < b$ for an appropriate 2 number of steps *b*.
- (ii) Compute $(g^b)^{\alpha_1}$ for values $\alpha_1 \ge 0$ until you hit a value that appears in the table.

Such a collision means that you have found values α_0 and α_1 such that

$$g^{\alpha_0} = a(g^b)^{-\alpha_1}$$

- (iii) Compute g, g^2, \ldots, g^b and find the inverse g^{-b} of the last one.
- (iv) Compute the value of the discrete logarithm α from this equation.

Exercise 4.2 (Number of points of an elliptic curve). (4 points)

Let \mathbb{F}_q be a (actually, the) field with q elements. Clearly, given $a, b \in \mathbf{F}_q$ the equation $y^2 = x^3 + ax + b$ has at most q^2 solutions $(x, y) \in \mathbb{F}_q^2$, since there are no more candidates.

Prove a better bound of order $\mathcal{O}(q)$.

(8 points)

1

3

4

Exercise 4.3 (Elliptic curves).

(6+3 points)

Let $p \ge 5$ be prime and $a, b \in \mathbb{Z}_p$ with $4a^3 + 27b^2 \ne 0$. Consider the elliptic curve *E* given $y^2 = x^3 + ax + b$, ie.

$$E = \left\{ (x, y) \in \mathbb{Z}_p \, \middle| \, y^2 = x^3 + ax + b \right\} \, \dot{\cup} \left\{ \mathcal{O} \right\}.$$

Choose any two points $P_1, P_2 \in E$. If $P_i = (x_i, y_i) \neq \mathcal{O}$ and $x_1 \neq x_2$ the line through them is given by an equation $y = m(x - x_1) + y_1$. Let $P_3 = (x_3, y_3)$ the third point on the intersection of the line with the curve. Define $P_1 + P_2 = (x_3, -y_3)$ then. If $P_1 = -P_2$ then let $P_1 + P_2 := \mathcal{O}$. Further define $P_1 + \mathcal{O} := P_1$ and $\mathcal{O} + P_2 := P_2$ and $\mathcal{O} + \mathcal{O} := \mathcal{O}$.

- (i) Prove that the tangent at a point P_1 has slope $\alpha = \frac{3x_1^2 + a}{2y_1}$.
- (ii*) Prove that the addition is associative at least in case all operations are of the first type. You may use a computer algebra system to perform tedious algebraic computations.

Consider an example: p = 5, a = 2, b = 1. So we consider the elliptic curve $E = \{(x, y) \in \mathbb{Z}_5^2 | y^2 = x^3 + 2x + 1\} \cup \{\mathcal{O}\}$ over the field \mathbb{Z}_5 with 5 elements.

- (iii) Make a list of all points of the defined curve. Draw a picture. [It is a good idea to use the representation $\mathbb{Z}_5 = \{-2, -1, 0, 1, 2\}$.]
- (iv) Compute (-2, 2) + (0, 1).
- (v) Compute 2(0,1) := (0,1) + (0,1).
- (vi) Compute 3(0, 1).
- (vii) Make a table of the map $\exp_{(0,1)}$ which maps $a \in \mathbb{Z}_7$ to $a \cdot (0,1)$. [Hint: In \mathbb{Z}_7 we have 4 = -3.]
- (viii) Add (-2, 2) and (0, 1) using this table. Does it produce the same result as before? Should it?

Exercise 4.4 (Alternative addition?).

(4 points)

For two points P, Q on an elliptic curve E, define $P \oplus Q = S$, where S is the third intersection point of the line through P and Q with E, so that S = -(P + Q) with the 'usual' addition on an elliptic curve. Explain why this method does in general *not* generate a group structure on E.

+3

1

1

1

1

1

1

4