Cryptographic passports \& biometrics, summer 2009
 Michael NÜsken, Konstantin Ziegler

4. Exercise sheet

 Hand in solutions until Monday, 18 May 2009.Any claim needs a proof or argument.

Exercise 4.1 ("Meet in the middle attack" on DLP).
Consider the group $G=\mathbb{Z}_{73}^{\times}$generated by $g=5$. The aim of this exercise is to find the discrete logarithm of $a=6$ using the Baby step-gian step-method you learned in the lecture. In other words, we want to find the smallest positive integer α, such that

$$
g^{\alpha}=a .
$$

(i) Compute a table of pairs $\left(\alpha_{0}, a g^{-\alpha_{0}}\right)$ for $0 \leq \alpha_{0}<b$ for an appropriate number of steps b.
(ii) Compute $\left(g^{b}\right)^{\alpha_{1}}$ for values $\alpha_{1} \geq 0$ until you hit a value that appears in the table.

Such a collision means that you have found values α_{0} and α_{1} such that

$$
g^{\alpha_{0}}=a\left(g^{b}\right)^{-\alpha_{1}}
$$

(iii) Compute g, g^{2}, \ldots, g^{b} and find the inverse g^{-b} of the last one.
(iv) Compute the value of the discrete logarithm α from this equation.

Exercise 4.2 (Number of points of an elliptic curve).

Let \mathbb{F}_{q} be a (actually, the) field with q elements. Clearly, given $a, b \in \mathbf{F}_{q}$ the equation $y^{2}=x^{3}+a x+b$ has at most q^{2} solutions $(x, y) \in \mathbb{F}_{q}^{2}$, since there are no more candidates.

Prove a better bound of order $\mathcal{O}(q)$.

Exercise 4.3 (Elliptic curves).
Let $p \geq 5$ be prime and $a, b \in \mathbb{Z}_{p}$ with $4 a^{3}+27 b^{2} \neq 0$. Consider the elliptic curve E given $y^{2}=x^{3}+a x+b$, ie.

$$
E=\left\{(x, y) \in \mathbb{Z}_{p} \mid y^{2}=x^{3}+a x+b\right\} \dot{\cup}\{\mathcal{O}\}
$$

Choose any two points $P_{1}, P_{2} \in E$. If $P_{i}=\left(x_{i}, y_{i}\right) \neq \mathcal{O}$ and $x_{1} \neq x_{2}$ the line through them is given by an equation $y=m\left(x-x_{1}\right)+y_{1}$. Let $P_{3}=\left(x_{3}, y_{3}\right)$ the third point on the intersection of the line with the curve. Define $P_{1}+P_{2}=$ $\left(x_{3},-y_{3}\right)$ then. If $P_{1}=-P_{2}$ then let $P_{1}+P_{2}:=\mathcal{O}$. Further define $P_{1}+\mathcal{O}:=P_{1}$ and $\mathcal{O}+P_{2}:=P_{2}$ and $\mathcal{O}+\mathcal{O}:=\mathcal{O}$.
(i) Prove that the tangent at a point P_{1} has slope $\alpha=\frac{3 x_{1}^{2}+a}{2 y_{1}}$.
(ii*) Prove that the addition is associative at least in case all operations are of the first type. You may use a computer algebra system to perform tedious algebraic computations.

Consider an example: $p=5, a=2, b=1$. So we consider the elliptic curve $E=\left\{(x, y) \in \mathbb{Z}_{5}^{2} \mid y^{2}=x^{3}+2 x+1\right\} \dot{\cup}\{\mathcal{O}\}$ over the field \mathbb{Z}_{5} with 5 elements.
(iii) Make a list of all points of the defined curve. Draw a picture. [It is a good idea to use the representation $\mathbb{Z}_{5}=\{-2,-1,0,1,2\}$.]
(iv) Compute $(-2,2)+(0,1)$.
(v) Compute $2(0,1):=(0,1)+(0,1)$.
(vi) Compute $3(0,1)$.
(vii) Make a table of the map $\exp _{(0,1)}$ which maps $a \in \mathbb{Z}_{7}$ to $a \cdot(0,1)$. [Hint: In \mathbb{Z}_{7} we have $4=-3$.]
(viii) Add $(-2,2)$ and $(0,1)$ using this table. Does it produce the same result as before? Should it?

Exercise 4.4 (Alternative addition?).
(4 points)
For two points P, Q on an elliptic curve E, define $P \oplus Q=S$, where S is the third intersection point of the line through P and Q with E, so that $S=$ $-(P+Q)$ with the 'usual' addition on an elliptic curve. Explain why this method does in general not generate a group structure on E.

