## Cryptographic passports & biometrics, summer 2009 MICHAEL NÜSKEN, KONSTANTIN ZIEGLER

## 5. Exercise sheet Hand in solutions until Monday, 25 May 2009.

Any claim needs a proof or argument.

**Exercise 5.1** (Counting Elliptic Curves).

(11 points)

Working over  $\mathbb{Z}_p$ , where the prime number  $p \neq 2, 3$ , every elliptic curve is determined by some cubic equation in Weierstrass Normal Form

$$y^2 = x^3 + ax + b$$

where we require  $4a^3 + 27b^2 \neq 0$  to avoid multiple roots for the cubic polynomial on the right-hand side.

By a linear transformation of coordinates this equation can be transformed into Legendre Normal Form

$$y^2 = x(x-1)(x-\lambda).$$

- (i) What is the requirement on  $\lambda$  to avoid multiple roots for the cubic polynomial on the right-hand side.
- (ii) Let p=13 and pick some admissable  $\lambda$ . How many points are on your elliptic curve?
- (iii) Write an algorithm that for a given p loops over all admissable  $\lambda$  and counts the number of points on the corresponding elliptic curve.
- (iv) For p=13 draw a graph with possible sizes of elliptic curves on the x-axis and number of curves of that given size on the y-axis.
- (v) Use the data from the last exercise to verify the Hasse bound for p = 13.

1

2

1

1

3

2

Exercise 5.2 (Diffie Hellman key exchange).

(6 points)

Perform a toy example of a Diffie Hellman key exchange: Fix p=47 and  $g=2\in\mathbb{Z}_p^{\times}$ .

- (i) Show that the order of g is 23, i.e.  $g^{23} = 1$  but  $g^k \neq 1$  for  $1 \leq k < 23$ . [If you are clever then you only need to calculate  $g^{23}$ .]
- (ii) Choose  $x \in \mathbb{Z}_{23}$  (take  $x \notin \{0,1\}$  to get something interesting) and calculate  $h_A := g^x$ .
- (iii) Choose  $y \in \mathbb{Z}_{23}$  (take  $y \notin \{0, 1, x\}$  to get something interesting) and calculate  $h_B := g^y$ .
- (iv) Now compute  $h_B^x$  and  $h_A^y$  and compare.

## Exercise 5.3 (ElGamal signatures).

(7 points)

Compute an ElGamal signature for your student identification number represented in binary. Use p=467 and  $g=3\in\mathbb{Z}_p^\times$  and work in  $G=\langle g\rangle$ . For simplicity, we take the function HASH:  $\{0,1\}^*\to\mathbb{Z}_{233},\ x\mapsto (\sum_{0\leq i<|x|}x_i2^i) \bmod 233$ . (Eg. 18 translates to the string 10010 which in turn translates into the number  $18\bmod 233$ .)

- (i) Here #G=233 and thus  $\exp_g\colon \mathbb{Z}_{233}\to G,\ a\mapsto g^a$  is an isomorphism. [Note that  $166^2=3$  and thus  $g^{233}=1$ . Since  $g\neq 1\dots$ ]
- (ii) Setup: Compute Alice' public key with  $\alpha = 9$ .
- (iii) Sign: Sign the hash value of your student identification number.
- (iv) Verify: Verify the signature.