Cryptographic passports \& biometrics, summer 2009
 Michael Nüsken, Konstantin Ziegler

5. Exercise sheet
 Hand in solutions until Monday, 25 May 2009.

Any claim needs a proof or argument.

Exercise 5.1 (Counting Elliptic Curves).
(11 points)
Working over \mathbb{Z}_{p}, where the prime number $p \neq 2,3$, every elliptic curve is determined by some cubic equation in Weierstrass Normal Form

$$
y^{2}=x^{3}+a x+b
$$

where we require $4 a^{3}+27 b^{2} \neq 0$ to avoid multiple roots for the cubic polynomial on the right-hand side.

By a linear transformation of coordinates this equation can be transformed into Legendre Normal Form

$$
y^{2}=x(x-1)(x-\lambda) .
$$

(i) What is the requirement on λ to avoid multiple roots for the cubic polynomial on the right-hand side.
(ii) Let $p=13$ and pick some admissable λ. How many points are on your elliptic curve?
(iii) Write an algorithm that for a given p loops over all admissable λ and3 counts the number of points on the corresponding elliptic curve.
(iv) For $p=13$ draw a graph with possible sizes of elliptic curves on the x-axis and number of curves of that given size on the y-axis.
(v) Use the data from the last exercise to verify the Hasse bound for $p=13$.

Exercise 5.2 (Diffie Hellman key exchange).
Perform a toy example of a Diffie Hellman key exchange: Fix $p=47$ and $g=2 \in \mathbb{Z}_{p}^{\times}$.
(i) Show that the order of g is 23 , i.e. $g^{23}=1$ but $g^{k} \neq 1$ for $1 \leq k<23$. [If 1 you are clever then you only need to calculate g^{23}.]
(ii) Choose $x \in \mathbb{Z}_{23}$ (take $x \notin\{0,1\}$ to get something interesting) and calculate $h_{A}:=g^{x}$.
(iii) Choose $y \in \mathbb{Z}_{23}$ (take $y \notin\{0,1, x\}$ to get something interesting) and calculate $h_{B}:=g^{y}$.
(iv) Now compute h_{B}^{x} and h_{A}^{y} and compare.

Exercise 5.3 (ElGamal signatures).
Compute an ElGamal signature for your student identification number represented in binary. Use $p=467$ and $g=3 \in \mathbb{Z}_{p}^{\times}$and work in $G=\langle g\rangle$. For simplicity, we take the function HASH: $\{0,1\}^{*} \rightarrow \mathbb{Z}_{233}, x \mapsto\left(\sum_{0 \leq i<|x|} x_{i} 2^{i}\right) \bmod 233$. (Eg. 18 translates to the string 10010 which in turn translates into the number $18 \bmod 233$.)
(i) Here $\# G=233$ and thus $\exp _{g}: \mathbb{Z}_{233} \rightarrow G, a \mapsto g^{a}$ is an isomorphism. [Note that $166^{2}=3$ and thus $g^{233}=1$. Since $g \neq 1 \ldots$]
(ii) Setup: Compute Alice' public key with $\alpha=9$.
(iii) Sign: Sign the hash value of your student identification number.
(iv) Verify: Verify the signature.

