
Co
se

C

b-it

C
om

pu
te

r

S
e

C
u
ri

ty

Cryptographic passports & biometrics, summer 2009
MICHAEL NÜSKEN, KONSTANTIN ZIEGLER

6. Exercise sheet
Hand in solutions until Monday, 8 June 2009.

Any claim needs a proof or argument.

Exercise 6.1 (Lagrange’s theorem). (0+11 points)

We have seen that in a commutative group G we have x#G = 1 for x ∈ G.
There is a more general version of the theorem which says more and works
also for noncommutative groups.

Theorem (Lagrange). Suppose G is a finite group.

(a) If H is a subgroup of G, then #H divides #G.

(b) If x ∈ G then x#G = 1 in G.

We are going to prove the first part. Let a ∈ G be arbitrary group elements.
We consider the so-called cosets aH = {ah h ∈ H}.

(i) Prove that there is a c ∈ G such that a ∈ cH . +1

(ii) Consider the map λ : H → aH, x 7→ ax. Prove that it is bijective. +1

(iii) Conclude that #(aH) = #H is independent of a. +1

(iv) Suppose we are given two group elements a, b ∈ G. Then only the fol- +2
lowing two cases are possible:

◦ aH = bH , or

◦ aH ∩ bH = ∅.

In other words: it never happens that aH and bH have some but not all
elements in common.

Prove this. [Hint: Suppose x ∈ aH ∩ bH (so we are not in the second
case) and show that then aH = bH (this is the first case).]

(v) Conclude that G is the disjoint union of all cosets. +1

(vi) Conclude that #H divides #G. +1

We derive the second part from the first in the following steps:



Co
se

C

b-it

C
om

pu
te

r

S
e

C
u
ri

ty

2 Michael Nüsken, Konstantin Ziegler

(vii) Consider 〈a〉 =
{

. . . , a−2, a−1, 1, a, a2, . . .
}

. Prove that this is a subgroup +1
of G. It is called the subgroup generated by a.

(viii) Now let n be the order of a, i.e. an = 1 and ak 6= 1 for all 0 < k < n. Prove +2
that 〈a〉 =

{

1, a, . . . , an−1
}

and in particular # 〈a〉 = n.

(ix) Conclude that a#G = 1.+1

Exercise 6.2 (DSA Practice). (11 points)

In this exercise you will make practical computations with the DSA algorithm,
using real life key sizes. Use a computational system of your choice making
sure that you can deal with modular arithmetic involving very long integers;
we advice to use MuPAD which runs on all b-it computers. In any case, pro-
vide the essential program code as part of your solution.

(i) Generate a random prime number ` with exactly 160 bits.1

(ii) Generate a prime p with exactly 1024 bits such that ` divides p − 1.2

(iii) Find a g ∈ Z
×

p which has the exact order `. Let G = 〈g〉 ⊂ Z
×

p be the cyclic1
group with ` elements generated by g.

For simplicity we use a trivial hash function and for b∗ we simply take the
integer b (in the interval [0, p− 1], ie. forgetting that it’s actually in Zp) reduced
modulo `.

(iv) Let a < p be a random number and y = ga ∈ G. We shall consider a to1
be Alice’s secret key and y her public key.

(v) Let m ∈ Z` be the integer value of the ASCII text: DSA for real (note2
the two blanks in the text!). Using a random number k ∈ Z` produce a
DSA signature S(m) = (m,x, b) on the message m on behalf of Alice.

(vi) Let Bob know the public key (p, g, y). Verify the signature S(m) on behalf1
of Bob.

(vii) Let m′ be the integer value of the ASCII text: The Lord of the Rings has1
no secrets. Can you produce a DSA signature of this text using the same
setting as above? If no what additional steps are required?

(viii) The DSA system can be attacked in two different ways:2

(a) By solving the discrete logarithm problem in the group G with ` ele-
ments by applying the baby-step giant-step algorithm in this group.



Co
se

C

b-it

C
om

pu
te

r

S
e

C
u
ri

ty

Cryptographic passports & biometrics, summer 2009 3

(b) By solving the general discrete logarithm problem in Z
×

p using the
up to date Number Field Sieve. The complexity of this method is
given by the function:

L(p) = 2(
64

9
)

1
3
·(log

2
p)

1
3 (log

2
log

2
p)

2
3

.

Compare the two estimated times when p ∼ 21024 and ` ∼ 2160.

Exercise 6.3 (Attacks on the ElGamal signature scheme). (4 points)

After prior failures princess Jasmin and Genie have been doing a lot of think-
ing and research. Genie has proposed to use the ElGamal signature scheme.
They have chosen the prime number p = 1334 537 and the generator g = 16.
The public key of the princess Jasmin is a = 605 828.

(i) They have sent the message (x, b, γ) = (7 654, 642 260, 4 427). Unfortu- 2
nately, Genie was not very careful. He wrote down the number β some-
where and forgot to burn the piece of paper after calculating the signa-
ture. Now Jaffar knows the number β = 377. Compute the secret key α.

(ii) Princess Jasmin has changed her secret key. She now has the public key 2
a = 436 700. This time Jaffar could not find the number β. Because of
this he used an enchantment so that Jasmin’s random number generator
has output the same value for β twice in a row. This was the case for the
messages (2 008, 14 694, 21 273) and (234, 14 694, 10 507). Now compute
Jasmin’s secret key α.

Exercise 6.4 (ElGamal-signatures and hash functions). (4 points)

Consider the ElGamal signature scheme with a hash function h. Assume that 4
the attacker can find, for a given message x, another message y with the same
hash value h(x) = h(y). Prove that the attacker can then break the scheme.
Conclude a theorem: “If ElGamalSign(h) is secure, then h . . . ”.

Exercise 6.5 (Security estimate). (10 points)

The ElGamal signature scheme works over some publicly known group of (of-
ten prime) order `, where ` has length n. In many cases this is a subgroup of
some Z

×

p with another (larger) prime p; then `|(p − 1).

(i) Show that the time for signing a message m is polynomial in n. For the 2
generation of the hash value you may assume the call to a subroutine
with time polynomial in n.



Co
se

C

b-it

C
om

pu
te

r

S
e

C
u
ri

ty

4 Michael Nüsken, Konstantin Ziegler

For the security of the signature scheme it is necessary it is difficult to compute
a discrete logarithm in the group and also, if applicable, in the surrounding
group Z

×

p . The best known discrete logarithm algorithms achieve the follow-
ing (heuristic, expected) running times:

method year time for a group size of n-bit
brute force (any group) −∞ O∼(2n)

Baby-step Giant-step (any group) 1971 O∼(2n/2)
Pollard’s % method (any group) 1978 O(n22n/2)

Pohlig-Hellman (any group) 1978 O∼(2n/2)

Index-Calculus for Z
×
p 1986 2(

√
2+o(1))n1/2 log1/2

2
n

Number-field sieve for Z
×
p 1990(?) 2((64/9)1/3+o(1))n1/3 log2/3

2
n

It is not correct to think of o(1) as zero, but for the following rough estimates
just do it. Estimate the time that would be needed to find a discrete logarithm
in a group whose order has n-bits assuming the (strongest of the) above esti-
mates are accurate with o(1) = 0 (which is wrong in practice!)

(ii) for n = 1024 (standard size),1

(iii) for n = 2048 (as required for Document Signer CA),1
(iv) for n = 3072 (as required for Country Signing CA).

1

Repeat the estimate assuming that for the given group only Pollard’s % method
is available, for example in case the group is a `-element subgroup of Z

×

p or an
elliptic curve,

(v) for n = 160,1

(vi) for n = 200,1
(vii) for n = 240.

1

In April 2001 Reynald Lercier reported (http://perso.univ-rennes1.
fr/reynald.lercier/file/nmbrJL01a.html) that they can solve a dis-
crete logarithm problem modulo a 397-bit prime p within 10 weeks on a 525MHz
computer.

(viii) Which bit size for the prime p is necessary to ensure that they cannot2
solve the DLP problem in Z

∗

p given —say— 10’000 10GHz computers
and 1 year (disregarding memory requirements).

[Note: The record for computing discrete logs in F
×

2n lies at n = 613, see An-
toine Joux http://perso.univ-rennes1.fr/reynald.lercier/file/
nmbrJL05a.html.]


