Cryptographic passports & biometrics, summer 2009 Michael Nüsken, Konstantin Ziegler

6. Exercise sheet Hand in solutions until Monday, 8 June 2009.

Any claim needs a proof or argument.

Exercise 6.1 (Lagrange's theorem). (0+11 points)We have seen that in a commutative group G we have $x^{\#G} = 1$ for $x \in G$. There is a more general version of the theorem which says more and works also for noncommutative groups. **Theorem** (Lagrange). Suppose *G* is a finite group. (a) If H is a subgroup of G, then #H divides #G. (b) If $x \in G$ then $x^{\#G} = 1$ in G. We are going to prove the first part. Let $a \in G$ be arbitrary group elements. We consider the so-called *cosets* $aH = \{ah \mid h \in H\}$. (i) Prove that there is a $c \in G$ such that $a \in cH$. (ii) Consider the map $\lambda \colon H \to aH$, $x \mapsto ax$. Prove that it is bijective. (iii) Conclude that #(aH) = #H is independent of a. +1 (iv) Suppose we are given two group elements $a, b \in G$. Then only the following two cases are possible: $\circ aH = bH$, or $\circ aH \cap bH = \emptyset.$ In other words: it never happens that aH and bH have some but not all elements in common. Prove this. [Hint: Suppose $x \in aH \cap bH$ (so we are not in the second case) and show that then aH = bH (this is the first case).] (v) Conclude that *G* is the disjoint union of all cosets. (vi) Conclude that #H divides #G.

We derive the second part from the first in the following steps:

(ix) Conclude that $a^{\#G} = 1$.

+1

1

1

1

2

1

1

2

Exercise 6.2 (DSA Practice).

(11 points)

In this exercise you will make practical computations with the DSA algorithm, using *real life* key sizes. Use a computational system of your choice making sure that you can deal with modular arithmetic involving very long integers; we advice to use MuPAD which runs on all b-it computers. In any case, provide the essential program code as part of your solution.

- (i) Generate a random prime number ℓ with exactly 160 bits.
- (ii) Generate a prime p with exactly 1024 bits such that ℓ divides p-1.
- (iii) Find a $g \in \mathbb{Z}_p^{\times}$ which has the exact order ℓ . Let $G = \langle g \rangle \subset \mathbb{Z}_p^{\times}$ be the cyclic group with ℓ elements generated by g.

For simplicity we use a trivial hash function and for b^* we simply take the integer b (in the interval [0, p-1], ie. forgetting that it's actually in \mathbb{Z}_p) reduced modulo ℓ .

- (iv) Let a < p be a random number and $y = g^a \in G$. We shall consider a to be Alice's secret key and y her public key.
- (v) Let $m \in \mathbb{Z}_{\ell}$ be the integer value of the ASCII text: DSA_for_real (note the two blanks in the text!). Using a random number $k \in \mathbb{Z}_{\ell}$ produce a DSA signature S(m) = (m, x, b) on the message m on behalf of Alice.
- (vi) Let Bob know the public key (p, g, y). Verify the signature S(m) on behalf of Bob.
- (vii) Let m' be the integer value of the ASCII text: *The Lord of the Rings has no secrets*. Can you produce a DSA signature of this text using the same setting as above? If no what additional steps are required?
- (viii) The DSA system can be attacked in two different ways:
 - (a) By solving the discrete logarithm problem in the group G with ℓ elements by applying the baby-step giant-step algorithm in this group.

(b) By solving the general discrete logarithm problem in \mathbb{Z}_p^{\times} using the up to date Number Field Sieve. The complexity of this method is given by the function:

$$L(p) = 2^{\left(\frac{64}{9}\right)^{\frac{1}{3}} \cdot (\log_2 p)^{\frac{1}{3}} (\log_2 \log_2 p)^{\frac{2}{3}}}.$$

Compare the two estimated times when $p \sim 2^{1024}$ and $\ell \sim 2^{160}$.

Exercise 6.3 (Attacks on the ElGamal signature scheme). (4 points)

After prior failures princess Jasmin and Genie have been doing a lot of thinking and research. Genie has proposed to use the ElGamal signature scheme. They have chosen the prime number $p=1\,334\,537$ and the generator g=16. The public key of the princess Jasmin is $a=605\,828$.

- (i) They have sent the message $(x,b,\gamma)=(7\,654,642\,260,4\,427)$. Unfortunately, Genie was not very careful. He wrote down the number β somewhere and forgot to burn the piece of paper after calculating the signature. Now Jaffar knows the number $\beta=377$. Compute the secret key α .
- (ii) Princess Jasmin has changed her secret key. She now has the public key $a=436\,700$. This time Jaffar could not find the number β . Because of this he used an enchantment so that Jasmin's random number generator has output the same value for β twice in a row. This was the case for the messages $(2\,008, 14\,694, 21\,273)$ and $(234, 14\,694, 10\,507)$. Now compute Jasmin's secret key α .

Exercise 6.4 (ElGamal-signatures and hash functions). (4 points)

Consider the ElGamal signature scheme with a hash function h. Assume that the attacker can find, for a given message x, another message y with the same hash value h(x) = h(y). Prove that the attacker can then break the scheme. Conclude a theorem: "If ElGamalSign(h) is secure, then h …".

Exercise 6.5 (Security estimate). (10 points)

The ElGamal signature scheme works over some publicly known group of (often prime) order ℓ , where ℓ has length n. In many cases this is a subgroup of some \mathbb{Z}_p^{\times} with another (larger) prime p; then $\ell | (p-1)$.

(i) Show that the time for signing a message m is polynomial in n. For the generation of the hash value you may assume the call to a subroutine with time polynomial in n.

For the security of the signature scheme it is necessary it is difficult to compute a discrete logarithm in the group and also, if applicable, in the surrounding group \mathbb{Z}_p^{\times} . The best known discrete logarithm algorithms achieve the following (heuristic, expected) running times:

method	year	time for a group size of <i>n</i> -bit
brute force (any group)	$-\infty$	$\mathcal{O}^{\sim}(2^n)$
Baby-step Giant-step (any group)	1971	$\mathcal{O}^{\sim}(2^{n/2})$
Pollard's ϱ method (any group)	1978	$\mathcal{O}(n^2 2^{n/2})$
Pohlig-Hellman (any group)	1978	$\mathcal{O}^{\sim}(2^{n/2})$
Index-Calculus for \mathbb{Z}_p^{\times}	1986	$2^{(\sqrt{2}+o(1))n^{1/2}\log_2^{1/2}n}$
Number-field sieve for \mathbb{Z}_n^{\times}	1990(?)	$2^{((64/9)^{1/3} + o(1))n^{1/3}\log_2^{2/3}n}$

It is not correct to think of o(1) as zero, but for the following rough estimates just do it. Estimate the time that would be needed to find a discrete logarithm in a group whose order has n-bits assuming the (strongest of the) above estimates are accurate with o(1) = 0 (which is wrong in practice!)

- (ii) for n = 1024 (standard size),
- (iii) for n = 2048 (as required for Document Signer CA),
- (iv) for n = 3072 (as required for Country Signing CA).

Repeat the estimate assuming that for the given group only Pollard's ϱ method is available, for example in case the group is a ℓ -element subgroup of \mathbb{Z}_p^{\times} or an elliptic curve,

- (v) for n = 160,
- (vi) for n = 200,
- (vii) for n = 240.

2

In April 2001 Reynald Lercier reported (http://perso.univ-rennes1. fr/reynald.lercier/file/nmbrJL01a.html) that they can solve a discrete logarithm problem modulo a 397-bit prime p within 10 weeks on a 525MHz computer.

(viii) Which bit size for the prime p is necessary to ensure that they cannot solve the DLP problem in \mathbb{Z}_p^* given —say— 10′000 10GHz computers and 1 year (disregarding memory requirements).

[Note: The record for computing discrete logs in $\mathbb{F}_{2^n}^{\times}$ lies at n=613, see Antoine Joux http://perso.univ-rennes1.fr/reynald.lercier/file/nmbrJL05a.html.]