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6. Exercise sheet
Hand in solutions until Monday, 8 June 2009.

Any claim needs a proof or argument.

Exercise 6.1 (Lagrange’s theorem). (0+11 points)

We have seen that in a commutative group G we have 7% = 1 for z € G.
There is a more general version of the theorem which says more and works
also for noncommutative groups.

Theorem (Lagrange). Suppose G is a finite group.

(a) If H is a subgroup of G, then # H divides #G.

(b) If x € G then 7% = 1in G.
We are going to prove the first part. Let a € G be arbitrary group elements.
We consider the so-called cosets aH = {ah|h € H}.

(i) Prove that thereisa c € G such thata € cH.

(ii) Consider the map \: H — aH, x — axz. Prove that it is bijective.

(iii) Conclude that #(aH) = #H is independent of a.

(iv) Suppose we are given two group elements a,b € G. Then only the fol-
lowing two cases are possible:

o aH =bH, or
o aH NbH = (.

In other words: it never happens that aH and bH have some but not all
elements in common.

Prove this. [Hint: Suppose = € aH N bH (so we are not in the second
case) and show that then a H = bH (this is the first case).]

(v) Conclude that G is the disjoint union of all cosets.

(vi) Conclude that #H divides #G.

We derive the second part from the first in the following steps:
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(vii) Consider (a) = {...,a"%,a!,1,a,a?,... }. Prove that this is a subgroup

of G. It is called the subgroup generated by a.

(viii) Now let n be the order of a, i.e. ™ = 1and a* # 1 forall 0 < k < n. Prove

that (a) = {1,q,...,a" !} and in particular # (a) = n.

(ix) Conclude that a#¢ = 1.

Exercise 6.2 (DSA Practice). (11 points)

In this exercise you will make practical computations with the DSA algorithm,
using real life key sizes. Use a computational system of your choice making
sure that you can deal with modular arithmetic involving very long integers;
we advice to use MuPAD which runs on all b-it computers. In any case, pro-
vide the essential program code as part of your solution.

(i) Generate a random prime number ¢ with exactly 160 bits.
(ii) Generate a prime p with exactly 1024 bits such that ¢ divides p — 1.

(iii) Find a g € Z,; which has the exact order /. Let G = (g) C Z,; be the cyclic
group with / elements generated by g.

For simplicity we use a trivial hash function and for b* we simply take the
integer b (in the interval [0, p — 1], ie. forgetting that it’s actually in Z,) reduced
modulo /.

(iv) Let a < p be a random number and y = ¢g* € G. We shall consider a to
be Alice’s secret key and y her public key.

(v) Let m € Z, be the integer value of the ASCII text: DSA_f or _r eal (note
the two blanks in the text!). Using a random number k € Z, produce a
DSA signature S(m) = (m, z, b) on the message m on behalf of Alice.

(vi) Let Bob know the public key (p, g,y). Verify the signature S(m) on behalf
of Bob.

(vii) Let m/ be the integer value of the ASCII text: The Lord of the Rings has
no secrets. Can you produce a DSA signature of this text using the same
setting as above? If no what additional steps are required?

(viii) The DSA system can be attacked in two different ways:

(a) By solving the discrete logarithm problem in the group G with £ ele-
ments by applying the baby-step giant-step algorithm in this group.
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(b) By solving the general discrete logarithm problem in Z using the
up to date Number Field Sieve. The complexity of this method is
given by the function:

1
L(p) = 2(5)7 05, ) (log, og, )3

Compare the two estimated times when p ~ 21?4 and ¢ ~ 2160,

Exercise 6.3 (Attacks on the ElGamal signature scheme). (4 points)

After prior failures princess Jasmin and Genie have been doing a lot of think-
ing and research. Genie has proposed to use the ElGamal signature scheme.
They have chosen the prime number p = 1334 537 and the generator g = 16.
The public key of the princess Jasmin is a = 605 828.

(i) They have sent the message (x,b,v) = (7654, 642260,4427). Unfortu-
nately, Genie was not very careful. He wrote down the number 3 some-
where and forgot to burn the piece of paper after calculating the signa-
ture. Now Jaffar knows the number 5 = 377. Compute the secret key .

(ii) Princess Jasmin has changed her secret key. She now has the public key
a = 436700. This time Jaffar could not find the number . Because of
this he used an enchantment so that Jasmin’s random number generator
has output the same value for 3 twice in a row. This was the case for the
messages (2008, 14694,21273) and (234, 14694,10507). Now compute
Jasmin’s secret key o.

Exercise 6.4 (ElGamal-signatures and hash functions). (4 points)

Consider the ElGamal signature scheme with a hash function h. Assume that
the attacker can find, for a given message z, another message y with the same
hash value h(z) = h(y). Prove that the attacker can then break the scheme.
Conclude a theorem: “If ElIGamalSign(h) is secure, then h ...”.

Exercise 6.5 (Security estimate). (10 points)

The ElGamal signature scheme works over some publicly known group of (of-
ten prime) order ¢, where ¢ has length n. In many cases this is a subgroup of
some Z, with another (larger) prime p; then /|(p — 1).

(i) Show that the time for signing a message m is polynomial in n. For the
generation of the hash value you may assume the call to a subroutine
with time polynomial in n.
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For the security of the signature scheme it is necessary it is difficult to compute
a discrete logarithm in the group and also, if applicable, in the surrounding
group Z, . The best known discrete logarithm algorithms achieve the follow-
ing (heuristic, expected) running times:

method year  time for a group size of n-bit
brute force (any group) —00 o~ (2")

Baby-step Giant-step (any group) 1971 o~ (27/2)

Pollard’s ¢ method (any group) 1978 O(n?2"/?)
Pohlig-Hellman (any group) 1978 O~ (27/2)
Index-Calculus for Z 1986 2(V2+o(1)n'/? logy* n
Number-field sieve for Z 1990(?)  2((64/9)/*+o(1))n'/*logy* n

It is not correct to think of o(1) as zero, but for the following rough estimates
just do it. Estimate the time that would be needed to find a discrete logarithm
in a group whose order has n-bits assuming the (strongest of the) above esti-
mates are accurate with o(1) = 0 (which is wrong in practice!)

(ii) for n = 1024 (standard size),
(iii) for n = 2048 (as required for Document Signer CA),
(iv) for n = 3072 (as required for Country Signing CA).

Repeat the estimate assuming that for the given group only Pollard’s ¢ method
is available, for example in case the group is a (-element subgroup of Z,; or an
elliptic curve,

(v) for n = 160,
(vi) forn = 200,
(vii) for n = 240.

In April 2001 Reynald Lercier reported (htt p://perso. univ-rennesl.
frireynald.lercier/filel/nnbrJLOla. ht M )that they can solve a dis-
crete logarithm problem modulo a 397-bit prime p within 10 weeks on a 525MHz
computer.

(viii) Which bit size for the prime p is necessary to ensure that they cannot
solve the DLP problem in Z, given —say— 10000 10GHz computers
and 1 year (disregarding memory requirements).

[Note: The record for computing discrete logs in F; lies at n = 613, see An-
toineJouxhtt p: // perso. uni v-rennesl.fr/reynald.lercier/file/
nmbr JLO5a. ht m ]



