Heads and Tails, summer 2009

Prof. Dr. Joachim von zur Gathen, Daniel Loebenberger

6. Exercise sheet Hand in solutions until Sunday, 07 June 2009, 24:00h.

1's, otherwise let A(y) = 1, if $y_5 = minority(y_1, y_2, y_3, y_4)$, and else A(y) = 0.

Compute the prediction power of this algorithm.

2

3

3

4

Exercise 6.4 (Probabilities).

(4 points)

Consider the following generator $g: \mathbb{B}^3 \to \mathbb{B}^5$ and let $(X_1, \dots, X_5) := g(U_3)$.

$\underline{}$	g(x)	\underline{x}	g(x)
000	11100	100	00110
001	00101		11110
010	01011		01010
011	10101	111	01101

- [2] (i) Compute the distribution of the projection on the second to fourth bit, thus of (X_2, X_3, X_4) .
 - (ii) Compute a table of the probabilities $W(b \leftarrow X_4(y))$ for all possible initial sections $y \in \mathbb{B}^3$ and all $b \in \mathbb{B}$.

Exercise 6.5 (Distinguishers and predictors).

(10 points)

We are given the following generator $g: \mathbb{B}^3 \to \mathbb{B}^6$:

x	g(x)
000	001100
001	001110
010	010101
011	011011
100	101000
101	100101
110	110010
111	110011

The algorithm $\mathcal U$ answers 1 if and only if at most four bits are 1, and 0 otherwise. The algorithm $\mathcal P$ returns the second bit.

- (i) Show: \mathcal{U} is a $\frac{7}{64}$ -distinguisher between the output distribution $p=g(u_3)$ of the generator and the uniform distribution u_6 on 6 bits.
- (ii) Show: \mathcal{P} is a $\frac{1}{4}$ -predictor for the sixth bit under p.
- (iii) Find a predictor of higher quality and compute its prediction power.