Heads and Tails, summer 2009

PROF. DR. JOACHIM VON ZUR GATHEN, DANIEL LOEBENBERGER

7. Exercise sheet Hand in solutions until Sunday, 12 June 2009, 24:00h.

Exercise 7.1 (Distinguishers from predictors and vice versa). (12 points)

We are given again the following generator $g: \mathbb{B}^3 \to \mathbb{B}^6$:

x	g(x)
000	001100
001	001110
010	010101
011	011011
100	101000
101	100101
110	110010
111	110011

The algorithm $\mathcal U$ answers 1 if and only if at most four bits are 1, and 0 otherwise. The algorithm $\mathcal P$ returns the second bit. We have shown that $\mathcal U$ is a $\frac{7}{64}$ -distinguisher between the output distribution $p=g(u_3)$ of the generator and the uniform distribution u_6 on 6 bits. We also know that $\mathcal P$ is a $\frac{1}{4}$ -predictor for the sixth bit under p.

Exercise 7.2 (Distinguishers and Predictors).

(6 points)

3

3

3

3

We consider the following generator $g: \mathbb{B}^3 \to \mathbb{B}^6$:

x	g(x)
000	101100
001	011010
010	010101
011	111000
100	001011
101	000111
110	110110
111	100001

The algorithm $\mathcal{U} \colon \mathbb{B}^6 \to \mathbb{B}$ answers 1 if and only if not more than four bits are 1, and 0 else. The algorithm $\mathcal{V} \colon \mathbb{B}^5 \to \mathbb{B}$ answers 1, if the sum of the 5 bits is even, and 0 otherwise.

- (i) Prove: $\mathcal U$ is a $\frac{7}{64}$ -distinguisher between the generator's random variable $X=g(U_3)$ and the random variable U_6 of the uniform distribution on six bits.
- (ii) Prove: V is a $\frac{1}{4}$ -predictor for the sixth bit produced by g.

Exercise 7.3 (And again: Distinguishers and Predictors). (6 points)

We consider the function $g: \{0,1\}^3 \to \{0,1\}^6$, which is given by the following truth table.

x	y = g(x)
000	110001
001	110010
010	101100
011	101100
100	011010
101	011001
110	000111
111	000111

Let \mathcal{U} be an algorithm with the input $y \in \{0,1\}^6$. The reply will be y_5 , if $y_1 + y_2 + y_3 + y_4 < 3$, and $y_5 \oplus 1$ else.

- (i) Prove: \mathcal{U} is a $\frac{3}{8}$ -distinguisher between the distribution of the generator $g(u_3)$ and the uniform distribution u_6 .
- (ii) Construct out of this distinguisher a predictor as in the proof of Yao's theorem and compute its prediction power.