Heads and Tails, summer 2009 Prof. Dr. Joachim von zur Gathen, Daniel Loebenberger

8. Exercise sheet Hand in solutions until Sunday, 21 June 2009, 24:00h.

Exercise 8.1 (Modifying pseudorandom generators). (8 points)

Suppose you are given a pseudorandom generator f. In this exercise we will explore which modifications of such a generator still yield pseudorandom generators:

- (i) Suppose you are given any (polynomial time computable) permutation 4 *h* over strings of same length. Prove that $g_1(x) := f(h(x))$ and $g_2(x) := h(f(x))$ are both pseudorandom generators.
- (ii) Consider the following two modifications to *f*:
 - The generator h_1 is defined as follows: define $h_1(x) := 0$ if the number of 1's in x is exactly len(x)/2, and $h_1(x) = f(x)$ otherwise.
 - The generator h_2 is defined as follows: define $h_2(x) := 0$ if the number of 1's in x is exactly len(x)/3, and $h_2(x) = f(x)$ otherwise.

Which of these is a pseudorandom generator? Hint: Stirling approximation.

Exercise 8.2 (From short to long – an example).

(9 points)

We are given again and again the following generator $g: \mathbb{B}^3 \to \mathbb{B}^6$:

In the last two sheets we have studied this generator in great detail. This time we will use it to construct a generator that produces longer outputs.

(i) Give a formal argument that the construction in class can be used to en- 3 large also this generator.

4

3

4

+8

+2

- (ii) Provide the tables of the enlarged generators h_9 , h_{12} that map 3 bits to 9 3 and 12 bits, respectively.
- (iii) Assume you are given an algorithm A that distinguishes the output $h_{12}(U_3)$ from the uniform distribution U_{12} on 12 bits with distinguishing power δ . Provide a distinguisher B that distinguishes the output of the short generator g from the uniform distribution on 6 bits and estimate its distinguishing power.

Exercise 8.3 (From short to long – a different construction). (4 points)

In class we constructed out of a generator $f : \mathbb{B}^k \to \mathbb{B}^{k+1}$ a generator $g : \mathbb{B}^k \to \mathbb{B}^{k+\ell}$, by applying f iteratively on the last k bits. In this exercise we consider the same construction but instead of applying f to the last k bits, we apply f to the *first* k bits. Provide a *simple* proof that this construction works as well as the construction presented in class. Hint: Do not modify the proof presented in class, but instead modify f itself.

Exercise 8.4 (From short to long – yet another construction). (0+10 points)

Suppose you are given a pseudorandom generator f, given by the functions $f_i : \mathbb{B}^i \to \mathbb{B}^{i+1}$. That is for every bitlength i we have a function f_i that produces i+1 bits. For $x \in \mathbb{B}^k$, we define $f(x) := f_{\text{len}(x)}(x)$. Consider now the following construction: Define $g(x) := g^{\ell}(x)$ to be the ℓ -fold application of f on x, where $g^0(x) := x$ and $g^i(x) := f(g^{i-1}(x))$.

- (i) Prove that for any fixed ℓ this construction yields a pseudorandom generator. Hint: Hybrids.
- (ii) Why is the construction presented in class preferable?