Heads and Tails, summer 2009 Prof. Dr. Joachim von zur Gathen, Daniel Loebenberger

9. Exercise sheet Hand in solutions until Sunday, 28 June 2009, 24:00h.

Exercise 9.1 (A property of pseudorandom generators).	(3 points)	
Prove that no pseudorandom generator will assign a noticable probab to any string, i.e. prove that if <i>f</i> is a pseudorandom generator then positive polynomial <i>p</i> and all sufficiently large <i>n</i> and any given x_{0} , that $\operatorname{prob}(f(U_k) = x_0) \leq \frac{1}{p(n)}$	for every	3
Exercise 9.2 (Combinations of generators).	(7 points)	
Assume you are given generators $f_1, f_2 : \mathbb{B}^k \to \mathbb{B}^\ell$ and $g : \mathbb{B}^\ell \to \mathbb{B}^n$ refute the following conjectures:	. Proof or	
(i) If f_1 and f_2 are both pseudorandom, so is the concatenation of i.e. the function $h(x) := f_1(x)f_2(x)$.	f_1 and f_2 ,	2
(ii) If f_1 and g are both pseudorandom, so is the composition of i.e. the function $h : \mathbb{B}^k \to \mathbb{B}^n$ defined by $h(x) = g(f_1(x))$.	f_1 with g ,	3
(iii) If f_1 is pseudorandom, and g any polynomial time computable then the composition of f with g is pseudorandom.	e function,	1
(iv) If f_1 is any polynomial time computable function and g is performed on f_1 , then the composition of f_1 with g is pseudorandom.	seudoran-	1
Exercise 9.3 (Another Modification).	(4 points)	
Refute the conjecture that for every pseudorandom generator g : also the generator $h(x) := a(x) \oplus x0^{n-k}$ is pseudorandom. Hint: I		4

Refute the conjecture that for every pseudorandom generator $g : \mathbb{B}^k \to \mathbb{B}^n$ also the generator $h(x) := g(x) \oplus x0^{n-k}$ is pseudorandom. Hint: Let f be a pseudorandom generator and consider the generator g defined on stings on same length such that $g(x_1, x_2) = (x_1, f(x_2))$. Don't forget to argue that in this case also g is pseudorandom. **Exercise 9.4** (Nisan-Wigderson generator).

(12+4 points)

Let *D* be the design presented in the text: k = 9, n = 12, s = 3, t = 1 und $S_1 = \{1, 2, 3\}$, $S_2 = \{4, 5, 6\}$, $S_3 = \{7, 8, 9\}$, $S_4 = \{1, 4, 7\}$, $S_5 = \{2, 5, 8\}$, $S_6 = \{3, 6, 9\}$, $S_7 = \{3, 5, 7\}$, $S_8 = \{1, 6, 8\}$, $S_9 = \{2, 4, 9\}$, $S_{10} = \{1, 5, 9\}$, $S_{11} = \{2, 6, 7\}$, $S_{12} = \{3, 4, 8\}$. Let furthermore be $f : \mathbb{B}^3 \to \mathbb{B}$ the function with $f^{-1}(1) = \{001, 010, 100\}$.

- (i) Determine f_D for the arguments 010101000, 000111000.
- (ii) Find a natural number $s \in \mathbb{N}$, such that f is not $(\frac{3}{4}, s)$ -hard, and give a corresponding circuit.
- (iii) Find a positive real number $\varepsilon < \frac{3}{4}$ and a natural number s' < s such that f is not (ε, s') -hard, and give a corresponding circuit.

Let \mathcal{P} be the predictor for bit 6 with $\mathcal{P}(y_1, \ldots, y_5) = \left(\sum_{i=1}^5 y_i\right)$ rem 2.

- (iv*) Prove that there are 344 matrices in $\mathbb{B}^{3\times 3}$ for which the number of lines (columns and rows) with ones only is even.
 - (v) Prove that \mathcal{P} is a $\frac{11}{64}$ -predictor for the sixth bit under f_D . You may use the result of (iv^{*}).
- (vi) Design an algorithm \mathcal{A} which approximates f with

$$\left|\operatorname{prob}(\mathcal{A}(X) = f(X)) - \frac{1}{2}\right| \ge \frac{11}{64}.$$

+4

3

3

2