9. Exercise sheet Hand in solutions until Sunday, 28 June 2009, 24:00h.

Exercise 9.1 (A property of pseudorandom generators).

Prove that no pseudorandom generator will assign a noticable probability mass to any string, i.e. prove that if f is a pseudorandom generator then for every positive polynomial p and all sufficiently large n and any given x_{0}, we have that $\operatorname{prob}\left(f\left(U_{k}\right)=x_{0}\right) \leq \frac{1}{p(n)}$

Exercise 9.2 (Combinations of generators).
Assume you are given generators $f_{1}, f_{2}: \mathbb{B}^{k} \rightarrow \mathbb{B}^{\ell}$ and $g: \mathbb{B}^{\ell} \rightarrow \mathbb{B}^{n}$. Proof or refute the following conjectures:
(i) If f_{1} and f_{2} are both pseudorandom, so is the concatenation of f_{1} and f_{2}, i.e. the function $h(x):=f_{1}(x) f_{2}(x)$.
(ii) If f_{1} and g are both pseudorandom, so is the composition of f_{1} with g, 3 i.e. the function $h: \mathbb{B}^{k} \rightarrow \mathbb{B}^{n}$ defined by $h(x)=g\left(f_{1}(x)\right)$.
(iii) If f_{1} is pseudorandom, and g any polynomial time computable function, 1 then the composition of f with g is pseudorandom.
(iv) If f_{1} is any polynomial time computable function and g is pseudoran- 1 dom, then the composition of f_{1} with g is pseudorandom.

Exercise 9.3 (Another Modification).
Refute the conjecture that for every pseudorandom generator $g: \mathbb{B}^{k} \rightarrow \mathbb{B}^{n} 4$ also the generator $h(x):=g(x) \oplus x 0^{n-k}$ is pseudorandom. Hint: Let f be a pseudorandom generator and consider the generator g defined on stings on same length such that $g\left(x_{1}, x_{2}\right)=\left(x_{1}, f\left(x_{2}\right)\right)$. Don't forget to argue that in this case also g is pseudorandom.

Exercise 9.4 (Nisan-Wigderson generator).
(12+4 points)
Let D be the design presented in the text: $k=9, n=12, s=3, t=1$ und $S_{1}=\{1,2,3\}, S_{2}=\{4,5,6\}, S_{3}=\{7,8,9\}, S_{4}=\{1,4,7\}, S_{5}=\{2,5,8\}$, $S_{6}=\{3,6,9\}, S_{7}=\{3,5,7\}, S_{8}=\{1,6,8\}, S_{9}=\{2,4,9\}, S_{10}=\{1,5,9\}$, $S_{11}=\{2,6,7\}, S_{12}=\{3,4,8\}$. Let furthermore be $f: \mathbb{B}^{3} \rightarrow \mathbb{B}$ the function with $f^{-1}(1)=\{001,010,100\}$.
(iii) Find a positive real number $\varepsilon<\frac{3}{4}$ and a natural number $s^{\prime}<s$ such that f is not $\left(\varepsilon, s^{\prime}\right)$-hard, and give a corresponding circuit.

Let \mathcal{P} be the predictor for bit 6 with $\mathcal{P}\left(y_{1}, \ldots, y_{5}\right)=\left(\sum_{i=1}^{5} y_{i}\right)$ rem 2 .
(iv*) Prove that there are 344 matrices in $\mathbb{B}^{3 \times 3}$ for which the number of lines (columns and rows) with ones only is even.
(v) Prove that \mathcal{P} is a $\frac{11}{64}$-predictor for the sixth bit under f_{D}. You may use the result of (iv*).

3
(vi) Design an algorithm \mathcal{A} which approximates f with

$$
\left|\operatorname{prob}(\mathcal{A}(X)=f(X))-\frac{1}{2}\right| \geq \frac{11}{64} .
$$

