10. Exercise sheet

Hand in solutions until Sunday, 05 July 2009, 24:00h.

Exercise 10.1 (Designs).

Let p be a prime number. As usual, let \mathbb{F}_{p} be the field with p elements. Consider:

- $S=\mathbb{F}_{p}^{2}$,
- $\forall a, b \in \mathbb{F}_{p}: S_{a, b}=\left\{(x, a x+b): x \in \mathbb{F}_{p}\right\} \subseteq S$,
- $D^{\prime}=\left\{S_{a, b}: a, b \in \mathbb{F}_{p}\right\}$.
(i) Arrange the elements of D^{\prime} into a sequence D.
(ii) Determine the uniquely determined values $k, n, s \in \mathbb{N}$ and the smallest possible value $t \in \mathbb{N}$ such that D is a (k, n, s, t)-design.

Exercise $10.2($ Squaring $\bmod p)$.
In this exercise we are going to investigate the set of squares $\bmod p$, where p is some prime. As usual, we denote by \mathbb{Z}_{p}^{\times}the group of all such invertible elements with multiplication $\bmod p$. Additionally define the order of $a \in \mathbb{Z}_{p}^{\times}$, in symbols ord (a) to be the smallest nonnegative integer e such that $a^{e}=1$ in \mathbb{Z}_{p}^{\times}. Now consider the set

$$
S:=\left\{b^{2} \bmod p: b \in \mathbb{Z}_{p}\right\} .
$$

Show the following properties:
(i) S is a subgroup of \mathbb{Z}_{p}^{\times}of size $(p-1) / 2$, in other words the probability that a randomly selected element from \mathbb{Z}_{p}^{\times}is a square $\bmod p$ with probability $1 / 2$. Hint: There is an element $g \in \mathbb{Z}_{p}^{\times}$, such that every element $a \in \mathbb{Z}_{p}^{\times}$ can be written as g^{α} for some positive integer α. Additionally you may use the fact that ord $a^{k}=\frac{\operatorname{ord} a}{\operatorname{gcd}(p-1, k)}$ for every positive integer k.
(ii) $S=\left\{b \in \mathbb{Z}_{q}^{\times}: b^{(q-1) / 2}=1\right\}$.
(iii) $b^{(q-1) / 2} \in\{1,-1\}$ for all $b \in \mathbb{Z}_{q}^{\times}$.

Exercise 10.3 (Foundations: quadratic residues).
(15 points)
The BLUm-BLum-Shub generator uses squaring modulo a BLUM number N to generate random bits. A Blum number N is the product $p \cdot q$ of two odd primes p, q, both of which are congruent to $3 \bmod 4$.

To understand this we need some information about quadratic residues. What are the quadratic residues modulo N ? The Jacobi symbol and the law of quadratic reciprocity are helpful:

Definition and Theorem. The Jacobi symbol ($\frac{a}{b}$) maps an integer number a and an odd natural number b to $-1,0$ or +1 . If $b=p$ is prime, the Jacobi symbol is also called Legendre symbol and it is defined by

$$
\left(\frac{a}{p}\right)= \begin{cases}0, & \operatorname{gcd}(a, p) \neq 1, \\ +1, & a \text { is a square modulo } p, \text { i.e. } x^{2} \equiv a \quad(\bmod p) \text { is solvable, } \operatorname{gcd}(a, p)=1, \\ -1, & \text { otherwise. }\end{cases}
$$

If $b=p_{1}^{e_{1}} \ldots p_{r}^{e_{r}}$ is the prime factorization, let

$$
\left(\frac{a}{b}\right)=\left(\frac{a}{p_{1}}\right)^{e_{1}} \cdots\left(\frac{a}{p_{r}}\right)^{e_{r}} .
$$

It holds that:
(i) $\left(\frac{a}{b}\right)=\left(\frac{a \mathrm{rem} b}{b}\right) \cdot\left(\frac{a}{b}\right)=0$ if and only if gcd $(a, b) \neq 1$.
(ii) $\left(\frac{1}{b}\right)=+1,\left(\frac{a^{\prime} a}{b}\right)=\left(\frac{a^{\prime}}{b}\right) \cdot\left(\frac{a}{b}\right),\left(\frac{a}{b} b\right)=\left(\frac{a}{b}\right) \cdot\left(\frac{a}{b}\right)$.
(iii) $\left(\frac{-1}{b}\right)=(-1)^{\frac{b-1}{2}}$. This is +1 for $b \equiv 1(\bmod 4)$ and -1 for $b \equiv-1(\bmod 4)$.
(iv) $\left(\frac{2}{b}\right)=(-1)^{\frac{b^{2}-1}{8}}$. This is +1 for $b \equiv \pm 1(\bmod 8)$ and -1 for $b \equiv \pm 3(\bmod 8)$.
(v) The law of quadratic reciprocity states that, if a is also an odd natural number, then:

$$
\left(\frac{a}{b}\right)=(-1)^{\frac{a-1}{2} \frac{b-1}{2}}\left(\frac{b}{a}\right) .
$$

Thus the two Jacobi symbols differ in sign if and only if $a \equiv-1(\bmod 4)$ and $b \equiv-1$ $(\bmod 4)$.
(i) Develop an algorithm for computing the Jacobi symbol using polynomial time and implement it in a programming language of your choice. [Hint: It can be done in $O\left(n^{2}\right)$. The standard Euclidean algorithm uses time $O\left(n^{2}\right)$.]
(ii) Which numbers have $\left(\frac{a}{N}\right)=1$? Compare with the two properties ' a is a square modulo p^{\prime} and ' a is a square modulo q^{\prime}.
Note: A number a with $\left(\frac{a}{N}\right)=+1$ that is not a square is sometimes called a pseudosquare modulo N.
(iii) If $\left(\frac{x}{N}\right)=1$, then either x is a square and $-x$ is a pseudosquare modulo N or vice versa. [Consider $\left(\frac{-1}{N}\right),\left(\frac{-1}{p}\right),\left(\frac{-1}{q}\right)$.]

