Heads and Tails, summer 2009 Prof. Dr. Joachim von zur Gathen, Daniel Loebenberger

11. Exercise sheet Hand in solutions until Sunday, 12 July 2009, 24:00h.

Exercise 11.1 (Blum-Blum-Shub Generator). (17+12 points)

Let N := 1333 and $x_0 := 101$. We consider the set $S \subseteq \mathbb{Z}_{1333}^{\times}$ of squares modulo 1333, and the set T of numbers a modulo 1333 with $\left(\frac{a}{1333}\right) = 1$, which are not squares.

- (i) How many elements do *S* and *T* have?
- (ii) Determine the sets S and T by giving an algorithm to find them.
- (iii) Verify (using a programming language of your choice), that squaring modulo 2 1333 is a bijection $S \rightarrow S$.
- (iv) Verify (using a programming language of your choice), that the function $x \mapsto \frac{+2}{x^2 \mod 1333}$ is a bijection $T \to S$.

Let p, q be the smallest prime numbers with $p \ge 2^9$ or $q \ge 2^{11}$ and $p \equiv q \equiv 3 \mod 4$. Let $N := p \cdot q$ and $x_0 = 100001$.

- (v) Implement the Blum-Blum-Shub-Generator in a programming language of your choice. [$x_i \leftarrow x_{i-1}^2 \operatorname{rem} N, z_i \leftarrow x_i \operatorname{rem} 2.$]
- (vi) Compute the first 50 bits with the generator.

Carry out a few statistical tests:

- (vii) What is the probability of possible pairs (z_{2i}, z_{2i-1}) for $i = 1..2^{13}$? Compare 2 with the theoretical values.
- (viii) What is the mean value and the standard deviation for 2^{13} bits. Compare 3 with the theoretical values for a "real" random generator.
 - (ix) Repeat the last statistical analysis, but this time, combine two bits to one number: $Z_i = z_{2i} \cdot 2 + z_{2i-1}$. [This is how to get the theoretical values: If X, Y are independent random bits, then the expected value of Z = 2X + Y can easily be determined as: $E(Z) = 2E(X) + E(Y) = 2 \cdot \frac{1}{2} + \frac{1}{2}$. Considering $X^2 = X$, obviously $E(X^2) = E(X)$ holds thus we can easily compute $E(Z^2) = E(4X^2 + 4XY + Y^2) = 2 + 1 + \frac{1}{2} = 3\frac{1}{2}$. Now the variance is $V(Z) := E((Z EZ)^2) = E(Z^2) (E(Z))^2 = 3\frac{1}{2} (\frac{3}{2})^2 = \frac{5}{4}$.]
 - (x) Plot 1 000 points (u, v), where the binary representation of u and v are 10 bits out of the produced series of bits each. Can any regularities be seen in the picture? Compare with a simple linear Kongruenzgenerator: $x_i \leftarrow 313x_{i-1} \operatorname{rem} 2053, z_i \leftarrow x_i \operatorname{rem} 1024$, where each value gives a coordinate u or v.

(xi) Interpret your results!

+4

1

2