Heads and Tails, summer 2009 Prof. Dr. Joachim von zur Gathen, Daniel Loebenberger

12. Exercise sheet Hand in solutions until Sunday, 19 July 2009, 24:00h.

Exer	cise 12.1 (Hash crisis). (10 points)	
In the lecture we have touched cryptographic hash functions.		
(i)	Lookup the definitions for MD5, SHA-1 and SHA-2. Describe which proper- ties we would like to have for a hash function. Which of the three functions would you still use nowadays?	5
(ii)	Read the article Arjen Lenstra, Xiaoyun Wand & Benne de Weger, <i>Colliding</i> X.509 <i>Certificates</i> <http: 067.pdf="" 2005="" eprint.iacr.org=""> and give a short survey.</http:>	5
Exercise 12.2 (Questions on pseudorandom generators). (0+19 points)		
(i)	What is a pseudorandom generator?	+1
(ii)	State at least two candidates for pseudorandom generators.	+2
(iii)	State criteria for a cryptographically good pseudorandom generator? Why can it happen, that a generator is perfect for simulation, but should not be used in cryptography?	+1
(iv)	What is a ε -distinguisher for two distributions X and Y over $\{0,1\}^n$?	+1
(v)	What is a δ -predictor for the distribution X?	+1
(vi)	Given a δ -predictor for the <i>i</i> th bit of a distribution <i>X</i> , how can you get a ε -distinguisher between this distribution and the uniform distribution? Give an ε for the predictor.	+2

(vii) Is it possible to derive a δ -predictor for one of the bits from a given ε -distinguisher 2 between *X* and the uniform distribution? How?

+1

+1

- (viii) What is a (k, n, s, t)-design D?
- (ix) What is the hardness of a function $f: \{0,1\}^s \to \{0,1\}$?
- (x) Given a design *D* and a (hard) function $f: \{0,1\}^s \to \{0,1\}$, how can you design a generator $\{0,1\}^k \to \{0,1\}^n$?
- (xi) Does a sufficiently large amount of designs with small values for k and large +1 values for n exist?

(xii) What does the theorem of Nisan and Wigderson say?

(xiii) What is the purpose of an extractor?

(xiv) Describe one construction for a good extractor.