Heads & Tails, summer 2009 !

Bonn-Aachen International Center
for Information Technology

(© 2009 JOACHIM VON ZUR (GATHEN

Version: July 29, 2009

!This text is part of a larger set of lecture notes: cross-references to other sections are
replaced by ?7.
This text is not for distribution

Cryptography, July 29, 2009, (©2009 J. von zur Gathen iii

Contents

1 Pseudorandom generators 1
1.1 True random generators 1
1.2 Pseudorandom generators 2
1.3 Distinguisherso o oo 5)
1.4 Predictors 12
1.5 From short to long generators 19
1.6 The Nisan-Wigderson generator 22
1.7 Construction of good designs 25
1.8 Deterministic simulation of probabilistic computation 28
1.9 The Blum Blum Shub generator 29
1.10 Randomness extraction 35
Notes o o e 39

Acronyms 41

Bibliography 43

Players 45

v

CONTENTS
CONTENTS

Cryptography, July 29, 2009, (©2009 J. von zur Gathen 1

Chapter 1

Pseudorandom generators

Random numbers or random bit strings are essential in many areas of computer
science, from sorting, routing in networks, and computer algebra to cryptography.
Most computer systems provide a function like RAND that delivers elements
which look “random” in some sense. However, there is no practical inexpensive
way known to generate truly random numbers. One can think of measuring
radioactive activity, current machine clock time or disk usage, user input like
keystroke timing or mouse movement, but these are either expensive or not very
random. What else can you think of?

The most popular type of random generators, based on linear congruential
generation, is successfully used in many applications. But it is not good enough
for cryptography. So cryptographers had to invent their own notion, called (com-
putational) pseudorandom generators, which are the topic of this chapter.

Such a generator takes a small amount of true randomness as input and pro-
duces a large amount of pseudorandomness. The defining property is that these
pseudorandom elements cannot be told apart from truly random ones by any
efficient algorithm.

In this chapter, we first define and illustrate this notion of “distinguishing”
between pseudorandom and truly random elements, then see that it is essen-
tially equivalent to “predicting the next element”, and finally discuss two specific
generators, by Nisan & Wigderson (1994) and by Blum et al. (1986).

1.1. True random generators

Randomness is a vital ingredient for cryptography, from the generation of random
keys to the challenges in identification schemes. There are two types of method
for generating the required randomness. Both are inconvenient, expensive, and
potentially insecure.

A software-based generator measures some process such as

o the system clock,

1.2. PSEUDORANDOM GENERATORS
2 CHAPTER 1. PSEUDORANDOM GENERATORS

o key stroke or mouse movements,
o system or network parameters,
o the contents of certain registers,
o user input.

All of these have their problems. A 1 GHz machine running uninterrupted for
a whole year (good luck!) goes through 365 - 24 - 60 - 60 - 10° or about 258
cycles. So even if we took that as random, we would only get about 54 bits. In
a more realistic situation, say a smartcard engaged in an identification protocol,
we can at best expect a few usable bits, certainly not enough for any reasonable
protocol. Key strokes and mouse movements can possibly be observed. Some
versions of PGP require a new user to execute about 15 seconds of energetic
mouse pushing. That’s ok, but you would not be prepared to do this every time
you withdraw money from an ATM. System parameters and register contents
might be predicted or simulated. The most common method are user-generated
passwords. With appropriate cautions, this is quite reasonable, but again one
can expect only a few “random” bits.

The second type of method are hardware-based generators which measure
some physical process, such as

o radioactive decay,

o semi conductor thermal noise,

o capacitor charge,

o sector access times in a sealed hard disk.

All of these are expensive and face potential observation or manipulation by an
adversary.

A random sequence is correlated if the probability that a bit is 1 depends
on the previous bits. There are methods to remove correlation, but we do not go
into this.

Such a sequence is biased if each bit equals 1 with some probability p, with
0 < p < 1, and hence equals 0 with probability 1—p. Von von Neumann suggested
how to remove such a bias: we group the sequence into consecutive pairs, and
take 10 to mean 1, 01 to mean 0, and discard 00 and 11.

1.2. Pseudorandom generators

A pseudorandom generator will be a deterministic algorithm A with (random)
inputs from a small set X and outputs in a large set Y which are “indistinguish-
able” from random elements of Y. This notion is defined in the next section.

Cryptography, July 29, 2009, (©2009 J. von zur Gathen 3

Often we will have X = {0,1}* and Y = {0, 1}" for some k < n, and then A is
a pseudorandom bit generator.

Thus the idea of pseudorandom generators is to take a very small amount
of randomness (a random element of X) to produce a large amount of pseudo-
randomness (an element of V). These new elements are not truly random, but
should behave as if they were for the intended application.

A detailed discussion of random generation is in Knuth (1998). Knuth presents
a large array of statistical tests for pseudorandomness. It seems hard to de-
scribe a general strategy for employing these tests; one has to decide each time
anew which tests are appropriate for the purpose at hand.

In contrast to the underlying notion of statistical pseudorandomness, we
will develop a theory of computational pseudorandomness. This is the right
approach for cryptographical applications. We will see a “universal test”, namely
predicting the next pseudorandom element, and establish a strong connection
with computational complexity, the theory that asks how “hard” it is to solve a
given problem.

What is a random element, say a random bit? Is 0 a random bit? Is 17
These nonsensical questions indicate that there is no reasonable way to talk
about the randomness of an individual bit, or any finite bit string. One can
define randomness for infinite strings. For our purposes, it is more useful to talk
about “potentially infinite strings”, namely machines that produce individual bits.
Then one can have such a machine produce arbitrarily long strings of “random”
elements. When X is a finite set, a (uniform) truly random generator for X
would produce (without any input) a uniformly random element of X, so that
each element of X has the same probability 1/#X of occurring. Nobody knows
how to build such a generator (which is efficient).

The most popular pseudorandom generators are the linear congruential
pseudorandom generators. We have a modulus m € N, two integers a, b, a
seed ry € N, and define

(1.1) r; =axr;_1 +b remm

for © > 1. These are good enough for many purposes, e.g. in computer algebra,
but not for cryptography. Suppose that Alice and Bob are part of a cryptographic
network that uses Schnorr’s identification scheme; see 7?7 for details. Each time
Alice identifies herself to Bob, he sends her a random number r as part of the
protocol. Now, suppose that Bob makes the mistake of taking the r’s provided
by his machine’s rand command in C, which is based on a linear congruential
generator. If Eve listens in to the traffic and observes several consecutive values
of r, she can predict future values of r, as described below. Then the identification
scheme is completely broken. The same would happen if a bank computer used
such a generator to produce individual transaction numbers. After observing a
few of them, an adversary would be able to determine the next ones.

1.2. PSEUDORANDOM GENERATORS
4 CHAPTER 1. PSEUDORANDOM GENERATORS

In the generator (1.1), we have

r; = ax;_1 +bmodm,

Tix1 = ax; +bmodm.
In order to eliminate a and b, we subtract and find
x; — i1 = a(x;_1 — x;) mod m.

Similarly we get
Tir1 — Tiyo = a(z; — ;1) mod m.

Multiplying by appropriate quantities, we obtain

(i — 2i01)” = a(w; — zi)(Tim) — 7))

= (372'—4—1 — .Z’H_Q)(in_l — LUZ> mod m.

Thus from 4 consecutive values x;_1, x;, x;11, Ti1o We get a multiple

m' = (z; — $i+1)2 — (Tig1 — Tiga) (Ti17:)

of m. If the required geds are 1, then we can also compute guesses a’ and b’ for
a and b, respectively. We can then compute the next values x; 3, x;14,... with
these guesses and also observe the generator. Whenever a discrepancy occurs,
we refine our guesses. One can show that after a polynomial number of steps
one arrives at guesses which produce the same sequence as the original generator
(although the actual values of a,b, and m may be different from the guessed
ones). See Boyar (1989).

Such a generator is useless for cryptographic purposes, since we can predict
the next value after having seen enough previous ones.

There are variations of these generators that compute internally zg, z1, ... remm
as before, but publish only the middle half (or the top half) of the bits of ;. These
generators are also insecure; they fall prey to a short vector attack.

One may also take just one bit, say x;rem2. It is not known whether this
yields pseudorandom bits.

The following RSA generator is supposed to be secure. We have N = pq
and e with ged(e, ¢(N)) = 1 as in the RSA system, and a random seed xy € Zy.
We define x1,z,... € Z) by ;41 = xf.

Nothing is known about how “random” this sequence is, nor whether there
is a way of predicting z; from previous values, nor whether such a prediction
algorithm would also break the RSA system.

For the Littlewood pseudorandom number generator, we pick (small)
integers n < d, which are publicly known, and an n-bit string = as (truly random)
seed. We can also consider x as an integer in binary, and 27"z is the rational
number with binary representation 0.z.

Cryptography, July 29, 2009, (©2009 J. von zur Gathen 5)

Output is the sequence of the dth bits of the binary representation of log,((x+
i)27") = log(z + i) —n for i = 0,1,.... Thus with n = 10, d = 14 and key
x = 0110100111, the first five pseudorandom bits are 11001, produced according
to the entries (all in binary) of the following table.

(x 4+10)27" logy(x +1) —n

0.0110100111 | —1.010001101000011
0.0110101000 | —1.010001011010011
0.0110101001 | —1.010001001100100
0.0110101010 | —1.010000111110101
0.0110101011 | —1.010000110000110

=W N = Of .

Littlewood (1953), page 23, proposed this number generator, actually with n =
5 and d = 7 in its decimal version and for use in a key-addition encryption
scheme. He says that “it is sufficiently obvious that a single message cannot be
unscrambled”.

This looks quite attractive, but is flawed. Wilson (1979) showed a first at-
tack, and Stehlé (2004) gives an attack on the original system and even appar-
ently stronger variants. His approach relies on modern cryptanalytic techniques
including lattice basis reduction and Coppersmith’s root finding method.

1.3. Distinguishers

We now want to formalize the notion that the elements generated by a pseudo-
random generator should look “random”. The idea is that no efficient algorithm
should be able to distinguish between these elements and truly random ones.

Recall that a probability distribution on a finite set A is a function p: A —
R>o with }° _,p(a) = 1. The uniform probability distribution u has
u(a) = 1/#A for all a € A. Together with p, a further function f: A — B
gives a random variable X on B (that is, with values in B), which assumes the
value b € B with probability Zf?f)éb p(a) which we abbreviate as

prob(b Al X).

We then also have a probability distribution g on B, with ¢(b) = Zf(a):bp(a). If
B C R, then the expected value (or average, or mean) of X is

E(X)= Zp(a)X(a) = Zb - prob(b il X).

acA beB

1.3. DISTINGUISHERS
6 CHAPTER 1. PSEUDORANDOM GENERATORS

EXAMPLE 1.2. Rolling a fair die corresponds to the uniform distribution on A =
{1,2,3,4,5,6}. If X(a) = a® for a € A, then

1
prob(4& X) = &
1 91
B(X) = Z(1+4+9+16425+36) = —. 0

We denote by B" = {0,1}" the Boolean n-cube. The uniform probability
distribution w, on B" gives every string x € B" the same probability 27", and
the uniform random variable U,, takes on every value x € B™ with probability 27",
From random variables X; on A;, X5 on As, ..., X, on A, we get the product
variable X = X; x---x X on A = A; X ---x A, which by definition takes on a

value (ay,...,a;) € A with probability prob(a; il Xi) - --prob(ag Rl Xg). As

an example, we have U, = U; x ---x Uy = U7 on B" = B! x --- x B!, If we have

a random variable X on A and a mapping f: A — B, we get a random variable

f(X) on B which takes a value b € B with probability prob(b —~ f(X)) =

> aca prob(a Rl X). We will use this in the scenario where 7: C' x D — D
=

is the projection and X a random variable on C' x D. Then 7(X) is called the
marginal value of X on B.

Now suppose that we have a random variable X on B", and a probabilistic
algorithm A with n-bit inputs x € B"™ and one bit of output. This gives a random
variable A(X) on B = {0, 1} whose underlying distribution consists of X and the
internal randomization in A. For a bit b € B, we have

prob(b Pl A(X)) = Z prob(z Rl X) - prob(b .l A(z)).
TeB™
The expected value of A on X is
E(A(X)) =Y b-prob(b <= A(X)) = prob(1 «—— A(X)).
beB

For a deterministic algorithm, prob(1 «— A(z)) = A(z) is either 0 or 1.

EXAMPLE 1.3. Let A be the deterministic algorithm which outputs A((x1, ..., zg))

x3 on any input (xy,...,2s) € B Then for the uniform random variable U on
B® we have
1
E(A(Us)) = prob(1 % A(Us)) = prob(1 <= U;) = 5

The U, here is the third component of Us = Uy x Uy x Uy x Uy x Uy x Uy = U O

Cryptography, July 29, 2009, (©2009 J. von zur Gathen 7

DEFINITION 1.4. If we have two random variables X and Y on B", and an algo-
rithm A as above, then

AaX,Y) = [E(A(X)) = E(A(Y))]

is the distinguishing power of A (between X and Y). If Au(X,Y) > € > 0,
then we say that A is an e-distinguisher between X and Y. If such an A exists,
we say that X and Y are e-distinguishable.

The pseudorandom generators that we define below cannot produce truly random
values. But we want their values to be practically indistinguishable from random
ones, namely e-distinguishable with tiny € (for any efficient A).

EXAMPLE 1.5. Suppose that n is even and X takes only values with exactly

n/2 ones: if x € B" and prob(z il X) > 0, then w(z) = §. Here w(z) is

the Hamming weight of x, that is, the number of ones in x. Then the following
deterministic algorithm A distinguishes between X and the uniform variable U,
on B": A(z) =1 <= w(z) = 5. We have

E(A(X)) = prob(1 = A(X)) = prob(g 2 w(X)) =1,
E4(U,) = prob(1 Al A(U,)) = prob (g Pl w(Un)>
=2""-#{reB": w(x) = g} =2"" (732)

Stirling’s formula (see Knuth 1973, 1.2.11.2) says that

n\" 1
|~ V2 (-) 1).
" mle) Ut n T assme T
Substituting this into the binomial coefficient and ignoring all minor terms, we
find
2NV2mn(2)" 2" 1
BA(U)) ~ 27 el = -
™ (55)" V2 \/mn/2
Thus 1
|[E(A(X)) — E(A(Un))| = 1 - > e
™m/2
for any € with, ﬁ;l > 0.43 > € > 0, as soon as n > 2. For n = 100, X and
U, are 0.9-distinguishable. O

DEFINITION 1.6. A bit generator (or generator for short) is a function f: B¥ —
B" for some k < n. The corresponding random variable on B" is f(Uy).

1.3. DISTINGUISHERS
8 CHAPTER 1. PSEUDORANDOM GENERATORS

ExamMpPLE 1.7. We consider the generator
f: B — B¢
given by the following table

z | flz)
000 | 001101
001 { 001011
010 | 011010
011 [010110
100 | 101100
101 | 100101
110 | 110100
111 | 110010

Each image word in f(B*) has Hamming weight 3. We can easily distinguish the
random variable X = f(Us) from Ug by the distinguisher A from the previous
example. Namely, on input y € B®, A outputs 1 if w(y) = 3 and 0 otherwise.
Then

¢ (6 d 5 11
E(A(Ug)=2"" (3) =16’ E(AX)) =1, A4uX,Us)=1- 6= 16
Thus A is a %—distinguisher. In such a small example, one can find other distin-
guishing properties. The following illustrates a general construction that we will

see a little later.

We can use the fourth bit of y to distinguish Us from f(Us), by comparing it
to the value of 0 or 1 which occurs less often in the first three positions, called
the minority. Thus for y € BS

[1 if yy = minority(y1, y2, ¥3),
Bly) = { 0 otherwise.

Since both values for y4 are equally likely in Ug (and independent of w1, ys, y3),
we have E(B(Ug)) = 1/2.

We now calculate E(B(X)) = prob(1 > B(X)). There are eight values of y
which occur as values of X, each with probability 1/8.

y | prob(1 <= B(y))
001101
001011
011010
010110
101100
100101
110100
110010

— O, O, KR, OR

Cryptography, July 29, 2009, (©2009 J. von zur Gathen 9

Therefore E(B(X)) = 5/8, |[E(B(X)) — E(BU))| = 2 — 1 = L and Bis an
%—distinguisher between Uz and X. This is quite ok, but not as good as the
distinguisher A from above. O

We now want to define pseudorandom generators. To this end, we consider a
family g = (gx)ren of Boolean functions g with

gk :]Bk I Bn(k)7

where n(k) > k for all £ € N. Thus each family member g, is a generator from
B* to B**). On input a uniformly random z € B*, it produces a (much) longer
output y = gp(z) € B"* which should look “random”. For any k € N, the
random variable X = g;(Uy) assumes the value y € B"*) with probability

prob(y Rl X) =27 #{r € B*: gp(x) = y}.

At most 2% many y’s have positive probability. Since k& < n(k), only “very few”
values y actually occur, and X is “very far” from the uniform random variable.
But still it might be quite difficult to detect this difference. However, it is always
possible to detect some difference. For example, we may choose some yy € gi(B*),

so that prob(y 2 X) > 27% and take an algorithm which computes the function
A(y) = (y =yo) € B. Then

B(AX)) > 27" > 27® = B(A(U,w))-

Thus A distinguishes somewhat between the two distributions, but its distin-
guishing power 27% — 277k ~ 27F ig exponentially small in k. We can’t be
bothered with such tiny (and unavoidable) differences, and call them “negligible”.
We are even a bit more generous and call any function negligible if it is smaller
than any inverse polynomial.

DEFINITION 1.8. A function t: N — R is negligible if for all e > 1 there exists
ko such that for all k > ky, we have

[t(k)| < k~°. U

For example, ¢t with ¢(k) = k~'°8 is negligible, but not exponentially small like
27k,

Now the generators we consider have to be efficient, but there must not exist

efficient distinguishers. This gives the following notion.

DEFINITION 1.9. A family g = (gx)ren as above is a pseudorandom generator
if

o it can be implemented in polynomial time k©M),

1.3. DISTINGUISHERS
10 CHAPTER 1. PSEUDORANDOM GENERATORS

o for all probabilistic polynomial-time algorithms A, the distinguishing power
A4(9x(Uk), Unry) is a negligible function of k.

Such a generator can be used in any efficient (polynomial time) algorithm that
requires truly random bits. Namely, if it was ever observed that the algorithm
did not perform as predicted for truly random inputs, then the algorithm would
distinguish between U,, and the pseudorandom generator; but this is not possible.

This is, quite appropriately, an “asymptotic” notion. It does not depend on the
first hundred (or hundred million) gx’s, only on their eventual behavior. We have
seen many cryptosystems, such as RSA, which can be implemented for arbitrary
key lengths. However, there are also cryptosystems like Rijndael which have fixed
input lengths and are not part of an infinite family.

We now want to define a “finite” version of this notion. It should be applicable
to individual Boolean functions such as g: B> — B°® from Example 1.7. In
Definition 1.9 we did not specify the notion of “algorithm”. The reader should
think, as usual, of Turing machines or appropriate random access machines. For
our finite version, Boolean circuits are appropriate. They have (one-bit) input
gates, and NOT, AND, OR, and XOR gates. The time that such a circuit takes
is the number of gates in it (except for input gates). It is usually called the size
of the circuit. Then “algorithm” may also be taken to mean “family of Boolean
circuits”. There is a technical problem with “uniformity” here; see the Notes.

DEFINITION 1.10. Let k < n and s be integers, € > 0 real, and f: B¥ — B
a generator. A probabilistic Boolean circuit C of size s and with distinguishing
power Ac(f(Uy),U,) > € is called an (e, s)-distinguisher between f(Uy) and
U,. The function f is called an (e, s)-resilient pseudorandom generator if no
such C exists.

EXAMPLE 1.7 CONTINUED. We take f: B® — BS as above, and implement the
two distinguishers as Boolean circuits.

We start with the second one, and first compute z = (w(y1, y2,y3) > 2) in the

Cryptography, July 29, 2009, (©2009 J. von zur Gathen 11

circuit within dashed lines, and then output z & y, :

Yy Y2 Ys

X X
ofofo

Ya Ys Ys

[y

This circuit has 6 gates and is therefore a (3, 6)-distinguisher between f(Us) and
Us. Thus f is not a (%, 6)-resilient pseudorandom generator.

To implement the first distinguisher “w(y) = 3” as a circuit, we first compute
u = @, ice¥i- Thus uw = 1 if and only if w(y) is 1, 3, or 5. If we add the
condition that

(w(hy) > 2 and w(hy) < 1) or (w(hy) <1 and w(hy) > 2),

where hy = (y1,y2,y3) and hy = (y4,ys,ys) are the two halves of y, then we
compute precisely the Boolean function “w(y) = 3”. We re-use the 5-gate circuit
from above twice in dashed lines and get the following circuit.

1.4. PREDICTORS
12 CHAPTER 1. PSEUDORANDOM GENERATORS

This circuit has 2 - 5 4 11 = 21 gates, so that f is also not (%, 21)—resilient. O

1.4. Predictors

We consider probabilistic algorithms that try to predict the next value z; of a
sequence from the previous bits x1,...,x;_1. A good predictor can also be used
as a distinguisher. The main result of this section is the converse: from any good
distinguisher one can build a reasonably good predictor. The proof introduces
an important tool: “hybrid” distributions which “interpolate” between two given
distributions.

For two random variables X and Y on the same set B, we write

prob(Y <= X) = 3" prob(b <= Y) - prob(b <= X)
zeB

for the probability that both produce the same value. This generalizes the notion
x «— X in a natural way.

When X is a random variable on B" and 7 < n, we want to consider the ith
successor bit under X, namely the following one-bit random variable X;(y), for
any y € B! Its value is 0 with the same probability as the one with which
strings (y, 0, z) occur under X, for any z € B"¢, and 1 with the probability of
(y, 1, z) occurring under X. More precisely, for any j < n and w € B/, we let

(1.11)
p(w,) = prob(w «— (Xi,...,Xj))
= prob({w} x U,,_; > X)=2"4. Z prob((w, 2) il X)
2EBn—I
be the probability of w as an initial segment under X. Then for b € {0,1}, we
set prob(b il Xi(y)) =1/2if p(y, *) = 0, and otherwise

prob(b <= X,(y)) = p((y, b), *)/p(y, *).

DEFINITION 1.12. Let 1 < i < n be integers.
(i) A predictor for the ith bit is a probabilistic algorithm with inputs from
B~! and output in B.

(ii) Let X be a random variable on B", (Xy,..., X;_1) the corresponding vari-
able on B!, and P a predictor for the ith bit. Then the success rate
op(X) of P on X is

op(X)= Y p(y.*) - prob(P(y) <= Xi(y)).

yeBi—1

Cryptography, July 29, 2009, (©2009 J. von zur Gathen 13

Its prediction power is op(X) — 1/2. If op(X) > €+ 1/2, then P is an
e-predictor for X.

(iii) A family (Xy)ren of random variables X on B™*® is computationally
unpredictable if for any function i, with i, < n(k), any probabilistic
polynomial-time predictor for the ipth bit of X} has negligible prediction
power. Here, the predictor is an algorithm which takes as input k (encoded
in unary) and y € B*~1.

Thus 0 < op < 1. A very simple (and rather useless) predictor is to output
a uniformly random bit, independent of the input. It has success rate 1/2 for
any X.

If op(X) < 1/2, then flipping the output bit of P produces a predictor P’
with op/(X) =1 — op(X) > 1/2. For a “good” predictor P, the goal is to make
its prediction power op(X) — 1/2 as large as possible.

As in the previous section, we also have a finite version of this asymptotic
notion. Now X is a random variable on B", 1 < i <n, and P is a probabilistic
circuit of size s with ¢ — 1 inputs and one output, and is called an (e, s)-predictor
if op(X) > €+ 1/2. We say that X is (e, s)-unpredictable if no such ¢ and P
exist.

EXAMPLE 1.7 CONTINUED. We take X = f(U3) on B°. Since 0 and 1 occur
equally often in each f(z), we consider the “minority bit predictor” M; for the
1th bit. It predicts the bit that occurs less frequently in the history; if both occur
equally often, it predicts 0 or 1, each with probability 1/2.

Clearly this algorithm predicts the sixth bit always correctly: o (X) = 1,
and Mg is a %—predictor. We now compute its quality as a predictor for the
fourth bit:

oae(X) = D7 ply,#) - prob(Xa(y) < Ma(y)).

yeB3

We only have six y € B® with p(y, *) > 0.

y | p(y,%) Xa(y) May) prob(Xa(y) —= Ma(y))
001] 1/4 0,1 1 1/2
011 | 1/8 0 0 1
010| 1/8 1 1 1
101| 1/8 1 0 0
100 1/8 1 1 1
10| 1/4 0,1 0 1/2

Therefore the success rate is
1 1 1 1 1 1 1 1
R [[, Z.14 .z
1 g g ity ity Utglryg
and My is a %—predictor. O

>

Y

oo | Ut
N —

1.4. PREDICTORS
14 CHAPTER 1. PSEUDORANDOM GENERATORS

It is clear that a predictor can also serve as a distinguisher. Suppose that X
is a random variable on B",1 < ¢ < /, and P is an e-predictor for the i¢th bit
under X. Then we consider the following method for obtaining an algorithm A.

ALGORITHM 1.13. Distinguisher A from predictor.

Input: y € B", and 7 and P as above.
Output: 0 or 1.

1. Compute z = P(y1,. .-, Yi—1)-
2. A outputs 1 if y; = z and 0 otherwise.

THEOREM 1.14. If P is an (¢, s)-predictor for the ith bit under X, then A is an
(¢, s + b)-distinguisher between X and U,,.

PROOF. The output of A equals (y; A 2) V (—y; A —2), which is independent of
the values of y;,1,...,yn, and A has size s + 5. We have

E(A(X)) = prob(l <= A(X))
= prob(X; .l P(Xq,...,X;1))
= O'p(X) Z % + €.

On the other hand, whatever P computes, the probability that its output P(U;_1)
equals a uniform random bit from Uj is 1/2. Thus the distinguishing power of A
between X and U, is

B(ACX)) ~ BAU)| 2 5 +e—5=¢ 0

It is quite surprising that also from any good distinguisher one can obtain
a reasonably good predictor. This strong result is due to Yao (1982). Thus
distinguishers and predictors are essentially equivalent. In other words, predicting
the next bit is a “universal test” for pseudorandomness.

THEOREM 1.15. Let X be a random variable on B", and A an (¢, s)-distinguisher
between X and U,. Then there exists an ¢ with 1 < i < n and an (%,s + 1)-
predictor for the ith bit under X.

PROOF. For 0 <i < n, we let m;: B® — B! be the projection onto the first 4
coordinates, and

Y; = 7TZ(X> X Un—i-

Thus Y; is the random variable on B™ where the first ¢ bits are generated ac-
cording to X, and the other n — ¢ according to the uniform distribution. These

Cryptography, July 29, 2009, (©2009 J. von zur Gathen 15

Y; are “hybrid” variables, partly made up from X and partly from the uniform
distribution, and they “interpolate” between the extremes Y, = X and Yy = U,,.
For 1 <i <m, let ¢; = E(A(Y;)). The distinguishing power of A is at least €, so
that |e, — eg| > €. By flipping the output bit of A if necessary, we may assume
that ey — e, > €. Intuitively, this means that an output 1 of A indicates that the
input is likely to come from U,,, and an output 0 that it comes from Y. Then we
have

e<ey—e, = E (e;—1—¢;) <n-maxe;_j —e€.
1<i<n
1<i<n

Hence the maximum is at least €/n, and there exists some ¢ < n with e¢; —e;_1 >
¢/n. We now choose such an .

We now construct a predictor P for the ith bit under X.

ALGORITHM 1.16. Predictor P.

Input: y € BL.
Output: 0 or 1.

1. Choose y,, ..., y, € B uniformly at random.
2, y* — (?J>?/z’> s ayn) [Thus ’y* S Bn]
4. Output y; ® z.

The intuition why this should work is as follows. If A outputs z = 1, then
probably (y,y;) comes from Y}, since e; > e;_1, and if z = 0, then (y,y;) is more
likely to come from Y;_;. Now Y;_; and Y; differ only in the ith place, where Y;
is derived from X while Y;_; has a uniformly random bit. Thus we take z = 1 as
an indication that y; comes from X, and indeed output y; =y, 61 d1 =y, 2
as the prediction. But z = 0 indicates that y; is presumably from U;, and that
the opposite bit y; 1D 1 = y; ® z is a better prediction for the ith bit under X
than y; itself is.

1.4. PREDICTORS
16 CHAPTER 1. PSEUDORANDOM GENERATORS

The success rate of P on X is

op(X) = 3 ply.) - prob(P(y) <= Xi(y))

yeBi—1
@, 8,
= Z p(y7 *) : prob(yi — Uy and y; @ A((yuyi) X Un—i) @1 — Xz(y>>
yeBi—1
yi €B
= D" ply#) - [prob(0 < A(y, 3i) X Un—i),9: © 1% Xi(y), and y; < Uy)
7—1
+prob(1 <% A((y, 1) x Un_i), s — X;(y),and y; <= 1))
@,
= Y p(y,#) - [prob(0 — A((y,y:) X Up—s))
7—1
y;'BEB - PTOb(O ‘E A((y7 yi) X Un—i)u Yi & Uy, and y; & Xz(y))

+ prob(1 < A((y,9:) X Un—i), 9 < Xi(y), and y; < Uy)]

= Z p(y,*) - [prob(0 =~ A((y,y:1) x Un—;))

yEIBi*I

— prob(0 <= A((y, Xi(y))) X Un_) -

N =

+ prob(1 = A((y, Xi(y)) x Up_)) -

]

2
7Y 1 7Y 1 7Y
= prob(0 «— A(Y;_1)) — 3 prob(0 «— A(Y;)) + 3 prob(1 «— A(Y))
—1 1—62+62_1+ >1+€
I B N B U R

Some explanations may be useful. In the second equation, we sum over the two
possible values for y; chosen in step 1 of P. Now P(y) = y; & z and X;(y) take
the same value in two cases:

z=0 and y;®1=X,(y),or
z=1 and y; = X;(y).

These two cases lead to the third equation. In the fourth equation, the first
summand of the previous expression is split into the probability that 0 occurs as
value of A((y,y;) x U,_1), without regard to X;(y), minus the probability that y;
occurs as value of X;(y) thisis the complement to the condition y;®1 «— X, (y).
For the fifth equation, we use the fact that the event y; «— U; is independent
of the other events, for both possible choices of y;, and occurs with probability
1/2. O

COROLLARY 1.17. (i) Suppose that each bit of the generator f: B¥ — B" is
(€, s)-unpredictable. Then f(Uy) is (¢, s + 1)-indistinguishable from U,,.

Cryptography, July 29, 2009, (©2009 J. von zur Gathen 17

(ii) Suppose that the generator g = (gi)ken Is such that each bit (that is, for
each sequence (iy)gen the ixth bit of gi) is computationally unpredictable.
Then g is a pseudorandom generator.

In other words, bit prediction is a universal test for pseudorandomness.

EXAMPLE 1.7 CONTINUED. We apply Yao’s construction to X = f(Uz) on B°
and A as above, with A(y) = 1 if and only if w(y) = 3. We have seen above that
E4(X) =1and E4(Us) = 5, and now have to calculate the expected value of A
on the hybrid distributions Y; = m;(X) x Us_;. These distributions are depicted
in Figure 1.1. At the back, we have f(Us) = Y5, a rugged landscape with eight
peaks and valleys at zero level. The montains get eroded as we move forward, to

Ys, Y4, and Y3, until we arrive at Yo = Y] = Y, a uniformly flat seascape.

Figure 1.1: The hybrid distributions from Yao’s construction.

For 0 <i < 6 and any y € f(B?), we denote by

ci(y) = (3 _ w(Gyl_, Z . ,yi)>

the number of extensions (241, ..., 2¢) of (y1,...,¥;) that lead to total Hamming
weight 3, that is, with w(y1, ..., ¥, Zit1,...,26) = 3. Then

((Wz(l’) x Uﬁ—i)(y)) = prob 7 (0) (Y1, ..., ys) - 20O
= 21_6 . 2—3#{1’ € B3: (f(l’)l, e f(l’)z) = (yl, e ,yi)},

1.4. PREDICTORS
18 CHAPTER 1. PSEUDORANDOM GENERATORS

e; = B(A(Y;)) = prob(l <= A(y:)) = prob(3 —= w(Y;))
= prob(3 Ll w((X1,. .., X;) x Us_y))
— 973, 9=(6=i), #{(z,y) € B3 x BS—-
w(f (@)1, f(2)is Yir1, -+, ¥6) = 3}
= 2703 " ailf(x).

z€eB3

The following two tables give the values of the ¢;(f(z)) and e;.

x f(x) ¢ ¢ ¢ c3 ¢4 ¢5 cg
000 | 001101 20 10 4 3 2 1 1
001001011 20 10 4 3 1 1 1
010011010 20 10 6 3 2 1 1
0111010110 20 10 6 3 2 1 1
100| 101100 20 10 6 3 1 1 1
101 | 100101 20 10 6 3 2 1 1
110 { 110100 20 10 4 3 1 1 1
111 { 110010 20 10 4 3 2 1 1

1 01 2 3 4 5 6

5 5 3 13 1
¢ | 151 5 3 3 L

We check that the sum of these differences equals eg — eg = 11/16. The largest
of the differences is e — e5 = 1/2. Intuitively, it is clear that this points to the
minority bit predictor Mg for the last bit, from page 13, with success probability
1 and 1/2 on f(Us) and Us, respectively. But now we want to trace the general
construction. It yields the following predictor P for the sixth bit under X =
f(Us). We first change A to A’ by flipping its output bit, so that now e; — eg =
1/2 > 0. On input y € B®, P chooses yg € B uniformly at random, calculates

5 = 0 if w(yayﬁ) = 37
| 1 otherwise,

and outputs ys @ z. We claim that P(y) = Mqg(y) for any y € w5(X). This
follows from the following table of the values (z,P(y)), where the second entry
indeed always equals M (y):

w(y)
2 3

0](1,1) (0,0)

Ye

11(0,1) (1,0)

Cryptography, July 29, 2009, (©2009 J. von zur Gathen 19

In particular, we have op(X) = o, (X) = 1, and P is also an 1/2-predictor for
X. However, P is not equal to Mg, since on input y = (0,0, 0,0, 0), say, we have

prob(1 il P(y)) = 1/2 and prob(1 o Mq(y)) = 1. O
S

1.5. From short to long generators

If we have an (e, s)-generator f: B¥ — B" and k < £ < n, then by composing with
the projection 7: B" — B’ to the first ¢ bits we get a function g = 7o f: B¥ —
Bf. It is also an (e, s)-generator, since any algorithm that distinguishes g(Uy)
from U, can also distinguish f(Uy) from U,,, with the same size and quality.

Thus it is easy as pie to shorten generators. Can we also make them longer?
This is less obvious, but this section is devoted to showing that this can indeed
be achieved.

We take as our starting point a generator that is as short as possible, namely
f: B¥ — B**! and construct from it a generator g: B¥ — B” for any n > k. To
do this, we apply f iteratively to k-bit strings, save the first bit, and apply f
again to the remaining k bits.

S0 S1 S92 S3 Sn—1 Sn
O O O O O
[

g

Figure 1.2: Long generator g

We define functions f; that leave the first ¢ — 1 bits unchanged, for ¢ > 1, and
apply f to the last k bits:

]Bk—i-i—l Bk+i, ;

(36’17 cee 7$k+i—1) — ($17 sy Li—1, f(xiu cee 7$k+i—1>>-

fi = id]Bi71 Xf:

We let g; = f;0---0 fyo fi: B¥ — B* be the composition of i of these maps.
Thus g1 = f1 = f. We also set gy = idps.

THEOREM 1.18. Let f: B¥ — B**! be an (e, s)-resilient generator, that can be
computed by a circuit of size t, let £ > 1, and g = g,: B¥ — B*** as above. Then
g is an (le, s — (t)-resilient generator, and can be computed with ¢ applications

of f.

1.5. FROM SHORT TO LONG GENERATORS
20 CHAPTER 1. PSEUDORANDOM GENERATORS

The idea of the proof is to turn a distinguisher A between ¢(Uy) and U,y
into a distinguisher B between f(Uy) and Ugy;. We consider hybrid random
variables Yy, Y7 ..., Y, which interpolate between Y, = g(Uy) and Yy = Uppy. If A
distinguishes well between Y, and Y}, then it also distinguishes well between Y;
and Y, for some i. But these adjacent distributions Y; and Y;,, are essentially
like f(Uy) and Ugiq, so that we can also distinguish between these two. By
assumption, this can only be done with bad quality, so that also the quality of
the initial A is bad.

PrROOF. For 0 < i < /, we first define an auxiliary function h; = m X
gi—1: B*1 — B 50 that

hi(iﬂl,lé, e >Ik+1) = (xl,gi—1($2, cee >$k+1))

for all (x1,...,2,,41) € B*!. The important property connecting f, the g’s, and
the h’s is that for + > 1 we have h; o f = g;, and hence

(1.19) hi(f(Ur)) = 9i(Ux), hi(Ups1) = (U1, gim1(Uy)).

Here, and in similar situations later, the uniform distributions like U; and Uy
are taken independently.

Now we let A be an (d, s)-distinguisher between g(Uy) and Uy, that is, an
algorithm using time s and so that

E(A(9(Uk))) — E(A(Ug+r)) = 0.

(If the left hand quantity is at most —d, then we flip the output bit of A to
obtain the above inequality.) We will show that the following Algorithm 1.20
distinguishes between f(Uy) and Uy, .

ALGORITHM 1.20. From long to short distinguishers.

Input: = € B¢,
Output: 1 or 0.

1. Choose i €g {1,..., ¢} uniformly at random.

2. Choose y 2 Ui_;.
3. Execute A on input (y, h;(z)) € B* and return its output.

For any input z € B**! to B, we have

(1.21) prob(1 <% B(z)) = % S prob(1 <% A(Us, hi(2))).

1<i<e

Cryptography, July 29, 2009, (©2009 J. von zur Gathen 21

We consider for 0 < i < ¢ the hybrid random variable
Yi=U_; X gi(Uk>

with values in B¥**. Thus Y; = ¢,(U;) and Yy = Ui, are the two random
variables between which A distinguishes. For any ¢ < ¢ we have

Yi = Upi xgi(Ux) =Upi x hi(f(Uy)) if i >0,
Yioin = Upiy1 X gic1(Ug) = Up—y x Uy X ¢i—1(Uy) = Up—i X hi(Ugy1) if i > 1.

Now let a; = prob(1 il A(Y;)) for 0 < i < ¢. The assumption about A’s
distinguishing power says that ay — ap > . Then using (1.21) we have

prob(1 il B(f(Uy)) = % Z prob(1 2 AUe—; x hi(f(Uyr))))

1<i<e
= EZpr0b1<—A Za,,
1<i<¢ 1<7,<€
@, 1 @,
prob(1 «— B(Uy1)) = i > prob(1 = A(Up—; x hi(Uks1)))
1<i<e
= —Zpr0b1<—A Za,l,
1<i<e 1<z<z

E(B(f(Uy)) — EB(Ups1)) = prob(l = B(f(Uy))) — prob(1 <= B(Uy1))

= %(Zaz Zaz 1): g—a0)>%.
1<i<t 1<i<t

Thus algorithm B has distinguishing power at least 6 /¢ between f(Uy) and Uy ;.
We have to determine the size of B. The random choices in steps 1 and 2 just
correspond to some further random input gates, and do not contribute to the
size. For h;(x), we have to apply f exactly i —1 < ¢ —1 times, using size at most
¢t. The execution of A takes another s’ gates. The total comes to s’ + (t.

Since f is (e, s)-resilient, we have either §/¢ < € or s’ + £t > s, which is the
claim. 0

It is straightforward to apply this construction to the asymptotic notion of
pseudorandom generator, whose output cannot be distinguished by polynomial
size circuit families from the uniform distribution.

COROLLARY 1.22. Let f = (fi)ren be a pseudorandom generator with f;,: B¥ —
B*, and p € Z[t] a positive polynomial. Then the above construction yields a
pseudorandom generator g = (g)reny With gj: BF — BFP(F)

Thus we have the nice result that from the smallest possible pseudorandom
generators, which add only one pseudorandom bit, we can obtain pseudorandom
generators with arbitrary polynomial expansion rate.

1.6. THE NisaN—WIGDERSON GENERATOR
22 CHAPTER 1. PSEUDORANDOM GENERATORS

1.6. The Nisan—Wigderson generator

All known pseudorandom generators assume that some function is hard to com-
pute, and then extend few random bits to many bits that look random to all ef-
ficient algorithms. The Nisan Wigderson generator that we describe now starts
from a fairly general assumption of this type, and produces a pseudorandom
generator.

We now quantify when a function f is hard to approximate. Namely, a prob-
abilistic Boolean circuit A can produce a random bit, which then will equal the
value of f with probability 1/2. Now f is difficult if nothing essentially better
is possible, with small circuits. More precisely, let f: B — B be a Boolean
function, € > 0, and s € N. We say that f is (e, s)-hard if for all algorithms (=
Boolean circuits) A with n inputs and time s, we have

| prob(f(Uy) = A(U,)) — =| <

DN | —
N

The hardness H; of f is the maximal integer H; = h such that f is (h™!, h)-hard.

One can amplify the hardness of a function by XORing several copies. This
is Yao’s (1982) famous XOR lemma, which we state without proof and will not
use later.

THEOREM 1.23 (Yao’s XOR Lemma). Let fi,..., fr: B* — B all be (¢, s)-
hard, § > 0, and f: B¥” — B with

fay,. o) = @ filz).

Then f is (¢* + 0,6%(1 — €)2s)-hard.

If we have a hard function f, then the single bit f(x), for random =z € B",
looks random to any efficient algorithm. We now show how to get many bits that
look random by evaluating f at many different, nearly disjoint, subsets of bits of
a larger input. The tool for achieving this comes from design theory, an area of
combinatorics, and the theory of finite fields. A thorough survey of this subject
is in Beth et al. (1993).

Let k,n,s, and t be integers. A (k,n,s,t)-design D is a sequence D =
(S1,...,5,) of subsets of {1,...,k} such that for all 7,5 < n we have

1. #Sz =S,

2. #(S;NS;) <tifi#j.

Cryptography, July 29, 2009, (©2009 J. von zur Gathen 23

ExaMpPLE 1.24. We take k =9, n =12, s = 3, and t = 1, and arrange the nine
elements of {1,...,9} in a 3 X 3 square like this:

71819
4156
11213

The reason for doing this will be explained after Theorem 1.27. In each of the
four copies of the square, we have marked three subsets S;: one with e, one with
, and the third one with ¢.

30K ¢[m]e N cTmle
o ¢ ¢ | o ° ¢
e | o | o o | ¢ ° ¢ o ¢

Thus Si = {1,2,3}, Sy = {4,5,6), S5 = {7,8,9}, Sy = {1,5,9}, S5 = {3,4,8)},
Se = {2,6,7}, S7 = {1,6,8}, Ss = {2,4,9}, So = {3,5,7}, S = {1,4,7},
SH = {2, 5,8}, and 512 = {3,6,9}

Now D = {S1,...,S12} is an (9,12, 3, 1)-design as one easily verifies. As an
example, S; NS5 = {3} has only one element. O

In design theory, one does not usually order the Sy, ..., S,, but the above
is more appropriate for our purposes. The general goal in design theory is to fix
some of the four parameters and optimize the others, making n and s as large
and k and ¢ as small as possible.

If Dis a (k,n,s,t)-design as above and f: B® — B a Boolean function, we
obtain a Boolean function fp: B¥ — B" by evaluating f at the subsets of the
bits of z given by Sy, ..., S,. More specifically, if x € B¥ and S; = {vy,..., v},
with 1 < v <wy < -++ <ws <k, then the ith bit of fp(x) is f(xy,, ..., xy,).

EXAMPLE 1.24 CONTINUED. Say we consider the parity function f: B® — B,
so that f(x1,xe,23) = (x1 + 23 + x3) rem 2. With the design from above, the
value of fp: B — B2 at x = (0,1,1,1,1,0,0,0,1) € B is

0101
fo{]1]1]0]|] =001001010100.
1)1

For example, the second of the twelve values is computed as fp(x)s = f(xy, v5,26) =
F(110) =1+ 1+ 0rem2 = 0. 0

1.6. THE NisaN—WIGDERSON GENERATOR
24 CHAPTER 1. PSEUDORANDOM GENERATORS

We want to get rid of the two parameters € and s in our notion of (e, s)-resilient
pseudorandom generators. To this end, we—somewhat artificially—set e = n=!
and s = n. Thus we now consider pseudorandom generators f: B¥ — B" for
which there is no algorithm using time at most n and with

|E(A(f(Ur))) — E(AU))| = n"".

This is seemingly more generous than the previous definition. One has to show
that from a pseudorandom generator in the new sense one can construct one in
the previous sense (with different values of £ and n).

THEOREM 1.25. Let k,n, s be positive integers, s > 2,t = |log,n|—1, f: B® —
B with hardness H; > 2n?, and D an (k,n, s, t)-design. Then fp: B¥ — B" is
an (n~!,n)-resilient pseudorandom generator.

PROOF. By Theorem 1.15, any e-distinguisher between X = fp(U) and U,
can be transformed into a ~-predictor for some bit under X. So we now assume
that we have a predictor P for the ith bit under X, for some i < n, with op(X) >
1/2+ ¢ and € > n~2, and derive a contradiction to our hardness assumption.

By reordering the elements of {1, ..., k}, we may assume that S; = {1,..., s},
so that the ith bit depends only on the first s components of the values of Uy.
In order to separate out the dependence on the first s and the last £ — s bits; we
write Uy = Ug X Ug_s. Asin (1.11), we let p(y, %) = prob(y «— (Xi,...,X;_1)) be
the probability that y occurs as an initial segment under X, for y € B!, Then

1/2+¢€ < op(X)
= 3 prob(y < (X1, X)) - prob(P(y) < X,(y)

yeBi—1
= Y prob@ UL prob(a” <2) - prob(f(a') <2 P(y))

' €BS .z cBk—s .
y=fp &')1...i—1 cpi-1

_ 2—(k—s) Z r(x”),

w”EBkiS
where fp(2',2")1. i1 stands for (fp(x',2")1, ..., fp(2',2");—1) € B!, and
ray =27 3" prob(f(') <= P(y)).

' €BS
y=fp(=’)1, i1

Thus the average of 7 over B*~* is at least 1/2 + €. Then there exists some value
z € B*=* of 2” so that 7(z) > 1/2 + ¢; otherwise we would have

2F75(1/2 +€) > 27 max r(2”) > Z r(z”) > 2875(1/2 + ¢).

x‘"E]BkiS
mnekas

Cryptography, July 29, 2009, (©2009 J. von zur Gathen 25

This is just an instance of the general fact that some value is at least as large as
the average value: “not everybody can be below average”.
Now we fix such a z. Thus

() =27 3 prob(f(@) < P(y) = 1/2+
x' B
y=fp(z';2)1..i—1
We now have an algorithm for approximating f: compute y as above, plug it into
P, and use P(y) as an approximation for f(a’).

ALGORITHM 1.26. Circuit A that approximates f.

Input: o’ = (z1,...,xs) € B*.
Output: 0 or 1.

1. Forj=1,...,i—1do
2. y; «— fp(a’, 2);, with z as above.
3. Output P(yy....,%i-1).

We have to show that A approximates f well, and that it can be built with few
gates. The latter seems implausible at first, since in step 2 we have to evaluate
f at some point w; € B*, given by the bits of (z’, z) in the positions contained in
S;. But isn’t that hard? Yes, computing f at an arbitrary input is hard, but the
whole setup is designed so that these special evaluation problems become easy.

Let 1 < j <. Since #(5; N S;) <t = |log,n| —1 < [logyn] — 1, and z is
fixed, y; depends on at most ¢ bits. It is a general fact that any Boolean function
on t bits (with one output) can be computed in time 21, say by writing it in
disjunctive (or conjunctive) normal form. Thus y; can be computed from z’ in
time 271 < n, and all of y;, ..., y;_; can be computed with at most n(i —1) < n?
operations.

What is the probability that A(x’) = f(a), for 2’ «— U,? We are given our
fixed z, and compute yi, ..., y;_1 correctly from z'. Thus A(z") = P(y1,...,vi-1),
and

275 3" prob(f(a') = A(@) =2 Y prob(f(z) <= P(y))
ol
Yy=Jp(x ,2)1...i—1

=r(z)>1/2+e>1/2+n"2

This contradicts the assumption that H; > 2n? and proves the claim. [l

1.7. Construction of good designs

As in many other fields of combinatorics, finite fields are the basis for an attractive
solution. Let I, be a finite field with ¢ elements, so that ¢ is a prime power, t < ¢

1.7. CONSTRUCTION OF GOOD DESIGNS

26 CHAPTER 1. PSEUDORANDOM GENERATORS
an integer,
P = {feFz]: deg f <1},
Sy = {(u, f(v):ueF,} CL=F:for f € P,
ko= #L=¢", n=q""

THEOREM 1.27. The
design.

PROOF.

collection of all these graphs Sy of f € P is a (k,n,q,t)-

The only claim to verify is that #(Sy N S,) < t for distinct f and

g € P. But #(SyNS,) > t+1 means that the two polynomials f and g of degree
at most ¢t have ¢t + 1 values in common. Then f — g is a polynomial of degree at
most ¢ with at least ¢t + 1 roots, hence the zero polynomial, and we have f = ¢g. [

EXAMPLE 1.24 CONTINUED. We take ¢ = 3 and ¢ = 1, so that k = 9 = ¢2,

n=9=¢"*, and s = 3 = ¢. The following picture shows this design.
2|66 ¢ 2| ¢ o 24|

1 1 | ¢ 1 ¢ |

O|e| e | e 0| e | ¢ 0| e ¢

0 1 2 0 1 2 0 1 2
o: =0, o f=u, o f=2x,

=1, cf=a+1, cf=2x+1,

¢ =2, ¢ f=x+2 ¢ f=20+2.

Thus we find the first nine pieces of the design from Example 1.24.

O

In general, this construction does not provide the best possible design, but it is
very simple and sufficient for our purposes.

s=q t|k=s> n=st (]Z)
3 1 9 9 28
3 2 9 27 84
4 2 16 64 1820

Figure 1.3: Some design parameters. Compare n to the number (]Z) of all subsets

of size s.

Cryptography, July 29, 2009, (©2009 J. von zur Gathen 27

COROLLARY 1.28.

(i) For any positive integers s > t, where s is a prime power, there exists an
(82,81, s, t)-design.

(ii) For any positive integers k, n, t, and a prime power s with k > s? and
t > log,n — 1 there exists a (k,n, s, t)-design.

PROOF. In (i) we have recorded the above construction. For (ii), we use (i)
and note that n = s'%8sm < gt*1, O

COROLLARY 1.29. Let n and s be positive integers, with s a prime power, and
f: B® — B with hardness H; > 2n®. Then the Nisan Wigderson generator is a
pseudorandom generator from B** to B".

In particular, if n is exponential in s, say n = 2%/%, then we have a pseudoran-
dom generator that turns short random strings into exponentially long pseudo-
random ones.

The corollary has the form:

(1.30) If there is a hard problem, then a pseudorandom generator exists.

Most statements about the existence of pseudorandom generators have this
form. We have a substantial collection of problems that we think are hard, but
unfortunately it is even harder to prove this. In fact, very few such results
are known; we will mention one below. On the other hand, almost all Boolean
functions on s inputs require time at least 2°/s to compute them exactly. This is
easily proved by a counting argument; see Muller (1956) and Boppana & Sipser
(1990), Theorem 2.4. Thus hard functions do exist; an unresolved difficulty is to
find nice and natural such functions. But for our application we would have to
solve a yet more difficult problem: to show that some functions are even hard to
approximate.

One of the interesting consequences of Nisan and Wigderson’s work is that this
lamentable situation of relying on the hardness of functions is unavoidable: the
converse of (1.30) also holds! If we can prove that something is a pseudorandom
generator, then we have automatically proved some problem to be hard!

Recall the complexity classes

PCZPPCRPCBPPCNPCEXPTIME.

We say that a generator g = (gx)ren, With gi: B¥ — B"®) for all k, is quick
if it can be implemented in time exponential in k. A function r: N — N is
called reasonable if for all k, k' € N we have

kE<r(k) <2k

18 DETERMINISTIC SIMULATION OF PROBABILISTIC COMPUTATION
28 CHAPTER 1. PSEUDORANDOM GENERATORS

r(k) < r(k)if k <K,
(r(k))* < r(k?).

THEOREM 1.31. Let r: N — N be reasonable. Then the following statements
are equivalent:

(i) For some ¢ > 0 there exists a function in EXPTIME with hardness r(k°).

(ii) For some ¢ > 0 there exists a quick pseudorandom generator g with gi.: By, —
B,

PROOF. We only prove (i) = (ii). Let f = (f5)sen be a function in EXPTIME
with fs: B® — B for all s and hardness Hy, > r(s°). We build a pseudorandom
generator g = (gi) with gg: B¥ — B”, with n = r(k%* — 1)/2. Let k € N and
s = |kY2|. Then Hy, > r(s¢) > r(k®?—1) > r((k*=1)2) > (r(k“*—1))? = 2n2.
Now the corollary says that we indeed have a pseudorandom generator from
B> — B". Since s2 < k, this gives a pseudorandom generator B¥ — B*. [

1.8. Deterministic simulation of probabilistic computation

A fundamental question about probabilistic computations is whether randomness
really helps, or whether it can in effect be eliminated without too much cost.

Suppose that A is a probabilistic algorithm computing some function f in
time ¢. In particular, it uses at most ¢(n) random bits on inputs of size n. We
can simulate A by deterministic algorithm B which makes all 2! choices of
these bits one after the other, simulates A on each of them, and then counts
the outcomes and takes the majority opinion as output. Of course, this is an
exponential increase in cost, from #(n) to 2t

Now if £(n) is polynomial in n and we have a good pseudorandom generator,
we may take its output instead of the random bits required in A. Then we only
have to try out all possible choices for the seeds to the pseudorandom generator.
This may be exponentially less than 2.

Nisan and Wigderson assume that there exists a function in DTZME (2°0M™)
with the properties at left, and conclude the inclusions of complexity classes at
right.

Not approximable by BPP C ().ogDTIME(2™)
polynomial-sized circuits
For some ¢ > 0, not approximable | BPP C DT ZME(200e))
by circuits of size 2™ for some ¢ > 0

Hardness > 2" for some € > 0 BPP =P

Cryptography, July 29, 2009, (©2009 J. von zur Gathen 29

Generally speaking, (too) few hardness results have been proven. One of the few
successes deals with circuits of constant depth d. Hastad proved a lower bound on
approximability (of the parity function). Nisan and Wigderson use this to obtain
a pseudorandom generator B¥ — B™ with exponential expansion n*" " which
no circuit of polynomial size and with depth at most d can distinguish from the
uniform distribution more than negligible advantage.

1.9. The Blum-Blum-Shub generator

This generator takes N = p - ¢ with distinct odd primes p and ¢ as in RSA, as
seed a random square xy € Zy, then computes z; = r? rem N, and returns the
low order bit

Torem2, xyrem?2,

Why the hell should this be secure?
For a € Z and a prime p, the Legendre symbol is

1 if a mod p € Z; is a square,
a
(—) = -1 ifamodp € Z; is a nonsquare,
0 if pla.

Fermat’s Little Theorem says that a?~' = 1 in Z,, for all a # 0. If a = §?, then
aP=V/2 = (p2)P=1)/2 = pp=1 = 1, Thus x®"Y/2 — 1 has the (p — 1)/2 squares as
its roots, and since its degree is (p — 1)/2, there are no others. It follows that

<%> = a2 (mod p).

1 1
Now £-= elements of ZX are squares, and 2= are nonsquares, so that half
2 'p) 2)

of the elements of Z; have Legendre symbol 1, and half have —1. The Jacobi
symbol is defined in our situation as

B-660)

By the Chinese Remainder Theorem, an element a € Zj is a square modulo N
if and only if it is a square modulo p and modulo q. We have
-1

(—) =1 <= p=1modA4.
p

Let O =0y ={a € Z): 3b € ZY a = b*} be the set of squares modulo N, and

a

X =KXy ={a € Zy: (N) = 1 and a ¢ O} be the set of nonsquares modulo

N with Jacobi symbol 1. (They are also called pseudosquares in the literature,
but this is a very different use of “pseudo” from pseudoprimes—which are usually
primes—and “pseudorandom” elements—which behave like random elements; the
elements of X are never squares.)

1.9. THE BLuM—BLUM—SHUB GENERATOR
30 CHAPTER 1. PSEUDORANDOM GENERATORS

Figure 1.4: The values u and v are explained in the text.

a

It is easy to compute <N) by a method similar to the Euclidean algorithm.

This takes O(k?) bit operations if @ and N are k-bit numbers (and presumably
O(M (k) logk) with fast arithmetic). Thus we can quickly tell whether a € O UKX.
The quadratic residuosity problem modulo N is to decide on input a € JUKX
whether a € [J. Of course, given the factors p and ¢, this becomes easy since we
can compute <%> and <g> But no polynomial-time algorithm is known if these
factors are not provided, and we will assume that in fact this is a hard problem.

Let U, X, C Z; be the sets of squares and nonsquares, respectively, and
similarly for ¢. Under the Chinese remainder isomorphism

X: Ly — Ly XL
we have

X(DN) = DPXDQ>
XXy) = K, xK,.

We consider the squaring map o,: Z) — 0O, C ZS with o,(a) = a®. If p =
3 mod 4, then —1 is not a square modulo p, and exactly one of the two square
roots a and —a of a? is a square.

We now assume that p = ¢ = 3mod 4. Then N = pq is called a Blum
integer, after Manuel Blum. If y(a) = (u,v), then x(a?) has the four square
roots

(u,v), (—u,v), (u, —v), (—u, —v).

Cryptography, July 29, 2009, (©2009 J. von zur Gathen 31

Exactly one of them is a square, and y~! of this square is called the principal
(square) root of a®. If, say, u is a square modulo p and v a nonsquare modulo
q, then (u,—v) is the square among the four. This situation is illustrated in
Figure 1.4.

EXAMPLE 1.32. We let p = 3 and ¢ = 7, so that N = 21. Then O3 = {1},
X; = {2}, O; = {1,2,4}, and W; = {3,5,6}. Figure 1.4 now looks as follows:
Not surprisingly, 1 is the principal root of 1, and 4 that of 16. But also 16 is

1,2,4 3,5,6

1 (1,1)] 10« (1,3)
116 < (1,2) | 19 « (1,5)
4 (1,4) | 13 < (1,6)
8 (2,1) |17 < (2,3)

2] 2+(2,2)| 5+ (2,5)
11+ (2,4) | 20 < (2,6)

Figure 1.5:

the principal root of 4. In other words, —5 = 16 mod 21 is the principal root of
25 = 4 mod 21. O

From an algebraic point of view, [J is a subgroup of Z3, with ¢(N)/4 elements.
The squaring map o: Zy, — [is a homomorphism which always maps four
elements (+u, +v) to one, namely to (u?,v?). O has four cosets (I, X, and, say,
Coy and (4, and in each coset lies exactly one of these four square roots. In
particular, o induces a bijection on [J. Multiplication by —1 gives a bijection
between [and X (and between Cy and C}). The residue class group Zy,/0 is
isomorphic to {+1} x {£1} = Zy X Zy, with O < (1,1) and X < (—1,-1).
Here {£1} is the “multiplicative version” of Z,. The corresponding mapping

L3 — {1} x {£1} is given by a — ((g) , (g))

Our ultimate goal is to prove the following result.

THEOREM 1.33. Let N be a k-bit Blum integer, consider the Blum—Blum—Shub
generator g: B¥ — B" for some n > k, and suppose that A is an e-distinguisher
between g(uy) and u,, for e = n=¢ for some e > 0. Then for any 6 > 0 one can
test quadratic residuosity by a probabilistic algorithm T with error probability
at most 6. If A uses time polynomial in n, then B uses time polynomial in n, e~
and log 6~ 1.

1.9. THE BLuM—BLUM—SHUB GENERATOR
32 CHAPTER 1. PSEUDORANDOM GENERATORS

We note that A only has to work well on most inputs, while on any single
input z to B, the error probability is at most §.
The proof proceeds in four steps:

distinguisher Sep postdictor sep 2 squareness distinguisher

step J weak squareness test Ste—pf strong squareness test.

A postdictor (or previous bit predictor) works like our old friends the
predictors, only it predicts the previous bit zy from x,...,z,. Yao’s method
yields the first step.

Step 1: From A we obtain an “-postdictor.

In Step 2, we build a squareness distinguisher B from a postdictor P.

ALGORITHM 1.34. Squareness distinguisher B.

Input: A Blum integer N and « € OUKX C {0,..., N —1}.
Output: “a € " or “a € X".

1. Compute x; = a®>rem N.

2. Compute the output y; = xyrem?2,...,y, = x,rem2 of the Blum Blum
Shub generator.

3. Compute z = P(y1, ..., Yn)-

4. If a = z mod 2 then output “a € 0" else output “a € X”.

The idea is that P always postdicts elements from a long sequence of repeated
squares, so that the postdicted z is likely to be the low order bit of a square. The
two square roots modulo N in DUX of 2; = a? mod N are a and —arem N =

N —a, and a # N — a mod 2 since N is odd.

LEMMA 1.35. Suppose that P is an e-postdictor. Then for a € JUKX chosen
uniformly at random, the output of the squareness distinguisher is correct with
probability at least 1/2 + e.

PROOF. By assumption, we have

1
5 +e<op(p) = Z p(a) prob(ag = P(y1,-..,yn))
acJUK
= po- Z prob(ao = P(yl, e ayn))
acOUK
= po- |>_prob(B(a) =“a€0”)+) prob(B(a) =“a € X"
acl] aeX
= pp- Z prob(B(a) is correct),
acOUK

where ag is the low order bit of a1, p is the uniform distribution on J U X, so that
pla) = po = (#FOUX) L =2/(p—1)(g—1) for all a € UK, 4y, ..., ¥y, are

Cryptography, July 29, 2009, (©2009 J. von zur Gathen 33

computed as in step 2 of B, and “prob” refers to the internal distribution of the
probabilistic algorithms P and B. We note that #Zx = (p—1)(¢—1) = ¢(N).O

Step 3. Our algorithm B distinguishes (slightly) the squares in [0 from the
nonsquares in X. If B were deterministic, then for slightly more than half the
inputs from JURX its answer would be correct. (In general, the correctness
probabilities sum to just over 1/2.) We now build a much stronger result from
this: a probabilistic algorithm C whose success probability on any input is slightly
more than 1/2. For any problem, any algorithm with C’s properties also has B’s
properties, but in general one cannot go the other way around. Here we succeed

in this by “smearing” the (non)squareness of a single input uniformly across the
whole of J UK.

ALGORITHM 1.36. Weak squareness test C.

Input: z € UK.
Output: “z € " or “xz € K"

1. Choose r € Zy and b € {0,1} uniformly at random.

2. Compute z = (—1)’7?zrem N.

3. Call B with input z, and let ¢ € {0, 1} be the output bit ¢ = (B(z) = “z € O0”).
[Thus ¢ is 1 if and only if B answers “z € ("]

. Output “x e " if b c=1 and “z € K" otherwise.

B

THEOREM 1.37. For any input x € JUKX), this test C answers correctly with
probability at least 1/2 + e.

PROOF. We first claim that if B answers correctly, then so does C. Let x € (.
Then

b=0<=zecll<= (B(z)=“2€) <= c=1.

Thus for both possible values of b, we have bédc = 1, and C(z) is correct. Similarly,
for x € X we find

b=0<=zeX <= (B(z) =“2 e X") <= ¢ =0,

so that b & ¢ = 0. This proves the claim.

Now let x € JUKX be an input, and y € JUNX arbitrary. We claim that
there exists exactly four choices for (b,r) so that y = (—1)’r%zrem N. First
suppose that € [J. The elements 72 rem N form precisely the set O of squares,
and each element of [J comes from four values of r. Since [J is a group, the
elements r2zrem N also make up O, each element occurring four times. Now
multiplication by 1 = (—=1)° does not change anything, while multiplication by

—1 = (—=1)! maps O bijectively to X.

1.9. THE BLuM—BLUM—SHUB GENERATOR
34 CHAPTER 1. PSEUDORANDOM GENERATORS

Similarly, if x € X, then r2zrem N forms X, four times, and (—1)*7?z rem N

gives LJUKX.

In particular, for any input x € LJUKX, the element z computed in the algo-
rithm is a uniform random element of LJUX. The success probability of B on
such inputs z is at least 1/2 + ¢, so that C also has at least this success probabil-
ity. 0

Now comes the final Step 4. We have a Monte Carlo test C for squareness
with success probability at least 1/2 + e. We now improve this to 1 — § for any
0> 0.

This method for bumping up success probabilities works for any Monte Carlo
algorithm. So we have a set [J C B"™ and a probabilistic algorithm C which answers
“r e or“x ¢ 0" oninput x, and the output is correct with probability exactly
1/2 + € for every z € B™.

We let &k = 2m + 1 for m € N, and consider the test 7 which, on input =z,
runs C exactly k times and outputs the majority answer.

THEOREM 1.38. The test T answers correctly with probability at least 1 — (1 —
4e2)™ /2.

PROOF. Let z be an input. We assume that the correctness probability of C on
input z is exactly 1/2+ €. The probability of obtaining exactly i correct answers

in k trials is ' '
kf 1 .) 1 k—1
i 9 € 9 € .

7 answers incorrectly if at most m correct answers were given by C. We
set s = %—l—e and t = %—e: 1—s Thus s/t <1, k—m = m+ 1 and
> o<icn (k) = 22m+1 The probability that 7 answers incorrectly is at most

3 (s 3 (o

0<i<m 0<i<m

< (st)"t Yy (l;)

0<i<m

1 m

= (1—4€)™t < (1 —4€*)™/2. O

COROLLARY 1.39. In order to improve the correctness probability from 1/2 + €
to 1 — 4, as above, it is sufficient to take k = [e~21In((26)7")] + 2.

Cryptography, July 29, 2009, (©2009 J. von zur Gathen 35

PrROOF. It is sufficient to choose m so that

(1 —4e)™/2 < 4.

S In 26
" (1 — 4

is good enough. The Brook Taylor expansion of the natural logarithm gives
In(l —z) = —:E+%2 — %3+—... < —z/2 for 0 < z < 1. (Note that the two
logarithms have negative values.) Hence

Thus

In 26 2
M0 2 20,
(1 — 47 = 3 n((20)7)

b= (RO D]y o [RED)]y

2¢2 €2

is sufficient. O

Thus

1.10. Randomness extraction

In this section we will explore the following problem: Assume you are given a
source which generates n bits of “bad” randomness and the goal is to extract m
bits of “good” randomness.

The oldest approach was given by von Neumann (1951). He solved the follow-
ing question: Given a coin B whose probability of giving Heads is p, construct
out of this coin a coin C for which the probability of giving Heads is 1/2. The
solution he gave was to throw the coin B twice. If in the two experiments the
results are different (e.g. first Heads then Tails), the value of the new coin is
defined to be the value of the first throw (in our example Heads). Otherwise the
result is discarded and the coin B is again thrown twice. The probability for the
coin C giving Heads is now equal to the probability of C' giving Tails. However
we will have to throw the coin an expected number of 1/(2p(1 — p)) times twice
in order to extract one fair coin toss. Thus the above procedure extracted in a
suitable sense the randomness hidden in B.

Identify in this section constantly a random variable with its distribution and
make the distinction only if necessary. We are all the time discussing probability
distributions, their distance and the amount of randomness they contain. For the
latter Shannon’s entropy pops into ones mind, but it turns out that it is often
hard to estimate the entropy in a distribution. A more convenient measure is the
so called min-entropy. For a random variable X over (in our case always finite)
set A, the min-entropy of X is defined by

Hoo(X) := minge4 — log, prob(a il X).

1.10. RANDOMNESS EXTRACTION
36 CHAPTER 1. PSEUDORANDOM GENERATORS

L
We observe that if Hy(X) then for all a € A we have prob(a «— X) < 2%,
It is illustrative to compare this value to Shannon’s entropy

H(X)=- Zprob(a il X) log, prob(a il X).

acA

While Shannon measures the “amount of randomness” on average, the min-
entropy captures the “worst-case”. Intuitively the min-entropy measures the num-
ber of random bits that are at least contained in X. More precisely we can think
of X containing at least k random bits if and only if H(X) > k.

Now let XY be two distributions over the (finite) set A. We define their
statistical distance by

1
AX.Y) =3 Y | probla 22 X) — prob(a <2 Y.

a€A

We say that X is e-close to Y if A(X,Y) < ¢ and we call X to be e-quasi-random
if X is e-close to uniform.

Now what is an extractor? Ideally we would like at least to construct a
function E on n-bit strings that extracts a single bit of randomness, i.e. a function
E : B" — B such that for all distributions X on B" with H.(X) > n — 1, the
value E(X) is close to a uniform random bit. However such a function £ does not
exist: Every function £ has a bit b € B such that the set S := {x € B" | E(z) = b}
has not less than 2"~! elements. The distribution Usg that assigns to each element
of S the same probability and to all elements not in .S probability 0 certainly has
Ho(Us) > n — 1 but the output E(X) is constantly b and thus not close to
uniform. This means that we need to be more generous for the definition of an
extractor.

In the following we will always use the following notation: n denotes the
length of the input z following distribution X, m the length of the extracted
element, k£ denotes the min-entropy of X and d the length of some additional
uniform random input which will allow us to actually construct our extractors.

DEFINITION 1.40 (Extractor). A function E : B" x B¢ — B™ is called a (k,¢)-
extractor if for all distributions X on B™ with H,(X) > k the output E(X,Uy)
is e-quasi-random. Here U, denotes the uniform distribution on d-bit strings.

We call E efficient if it is computable in polynomial time (in the size of the
input). This of course makes only sense if we consider E to be a whole family
of functions and d and m to be suitable functions in n. The extractor is called
nontrivial if m > d. This is because we simply could output the first m bits of
the additional truely random input if d > m.

How do we now construct such an extractor? The idea is to hash in a suitable
sense elements from B™ to B™. To do so we need certain families of hash-functions
that behave (in a statistical sense) very well:

Cryptography, July 29, 2009, (©2009 J. von zur Gathen 37

DEFINITION 1.41 (Universal family of hash functions). Assume you have a fam-
ily of functions H = {hs :B" — B* | s € Bd}. Then H is called universal if for
all 1,z € B™ and all y,,y, € B® we have

prob(y; —= H(zy) and ys < H(z1)) = 272

We are now going to construct an extractor out of any universal family of
hash functions:

DEFINITION 1.42. Let H be a universal family of hash functions of size 2?. The
extractor defined by H is given by

E(:L’, S) = hs($) © S,
the notation denotes concatenation of strings.

In abuse of notations we will write E(x, h) = h(x) o h, identifying the function h
with its index. Note that the number m of produced bits is equal to £ + d.
We will now show that this construction is indeed good:

THEOREM 1.43. If H is a universal family of hash functions and ¢ € k—2log(1/e)—
O(1), then the extractor E(x, h) defined by H is a (k,e/2)-extractor.

PrRoOF. For the proof we will need a certain tool, the so called collision prob-
ability. For a distribution X over B" we define its collision probability as

Col(X) = prob(z =y and = &2 X and Yy Rl X)
= Z prob(z al X) prob(y Rl X)

z,ycB”
= Z prob(z il X)?
TeB”™

The proof has three steps:
1. We show that if H.(X) > k then Col(X) < 1/k.

2. If Col(X) is small, so is the collision probability of the output distribution
of the extractor defined by H.

3. We finish by observing that if the collision probability of a distribution Y
is close to the collision probability of the uniform distribution, then Y is
close to uniform.

1.10. RANDOMNESS EXTRACTION
38 CHAPTER 1. PSEUDORANDOM GENERATORS

Ad 1) We have that

Col(X) = Z prob(z .l X)? < Prax Z prob(z .l X) = Prax < 27°

reB™ rcBn

Here pax denotes the maximum probability for which X assumes a certain value.

Ad 2) We need to analyze Col(E(X, H)) = Col(H(X) o H). We have
Col(H(X)o H)

= prob(H(X)o H = H'(X') o H')
= prob(H = H')prob(H(X) = H'(X') | H = H')
= prob(H = H") prob(H(X) = H(X"))

= prob(H = H') (prob(X = X') + prob(X # X')prob(H(X) = H(X') | X # X")))
<27 (27 + prob(H(X) = H(X) | X # X))

=274 (27" + 27

_ 2—(Z+d) (2210g5—(9(1) + 1)

< 9—(t+d) (82 + 1)

Ad 3) Let Y3, Y3 be any two probability distributions over B™. Then we have the
following fact:

1
(1.44) A(Y1,Ye) < 5272 3~ (prob(y <= i) — prob(y < Y3))?

yeBm

We are now going to estimate the last sum. We have:

3 (prob(y <% ¥1) — prob(y < ¥3))* =

yeBm™

3~ prob(y <= V)2 + Y prob(y <= ¥3) =2 Y prob(y < Y1) prob(y < Y3))

yeBm™ yeBm™ yeBm™

If Y5 = U,, is uniform we obtain:

Z prob(y Pl }/’1)2_'_2—(d+é) —9.9-(d+0) Z prob(y Pl Y1) = Col(Y;) _9—(d+0)

yeBm yeBm

If we set now Y; = H(X) o H, we obtain

Z (prob(y Pl H(X)o H)— prob(y .l Un))? = Col(H(X) o H) — 27449
yeBm™
2

—(d+0) [2 —(d+0) _
< 2702 1) — 27)_W

Cryptography, July 29, 2009, (©2009 J. von zur Gathen 39

From the inequality (1.44) we obtain

1 g2
A(H(X)o H,U,) < 52“‘“)/% / save = ¢/2

This finishes the proof. O

Notes 1.2. The attack on linear congruential generators is due to Reeds (1977) and Boyar
77.

1.3. The two notions of probability distribution p on a set A and random variable X on A
are equivalent in the following sense. From p we get the random variable X = id, as described

in the text, and from some X, we get p with p(a) = prob(a .l X). These associations are
inverse to each other, that is, starting from some p and taking X = id, we get the distribution
p back in the way described. Similarly, for any X, the random variable corresponding to the p
which corresponds to X equals X.

A fundamental notion in complexity theory is the complexity class P of all Boolean predicates
(= one-output Boolean functions = languages) which can be computed by a (deterministic)
Turing machine in polynomial time. We can also consider the class P, of all such predicates
which can be computed by a family (C,,)nen of Boolean circuits C,,, where C,, has n inputs and
its size is polynomial in n. Then P C Peire, but the two classes are not identical, because the
circuit for n inputs may be constructed in a manner totally different from that for n — 1 inputs,
while a Turing machine has only “one” behavior for all input sizes. This can be mended by
stipulating that the circuits C,, have to be “uniformly constructed” in dependence on n. With
the appropriate technical definitions, we have Peire(uniform) = P. Alternatively, we can allow
Turing machines a special “advice tape”; this gives the complexity class P/ poly, which equals
Peire- For the rather technical details, we refer to ??7. If we think of C as representing an
electrical circuit, then the time that a signal takes corresponds to the length of a longest path
from inputs to outputs; this is called the depth of the circuit.

1.4. In Definition 1.12 (iii), the predictor actually also has to compute i; from k, so that i
depends “uniformly” on k (see Notes 1.3).

40

CHAPTER 1.

Notes
PSEUDORANDOM GENERATORS

Cryptography, July 29, 2009, (©2009 J. von zur Gathen 41

Acronyms

AES Advanced Encryption Standard
ATM Automatic Teller Machine
CBC Cipher Block Chaining

CESG Communications-Electronics Security
Group

CFB Cipher Feedback

DEC Digital Equipment Corporation
DES Data Encryption Standard
DSA Digital Signature Algorithm
DSS Digital Signature Standard
ECB Electronic Codebook

EFF Electronic Frontiers Foundation

FIPS Federal Information Processing
Standard

IBM International Business Machines

IDEA International Data Encryption
Algorithm

MARS A candidate cipher for AES. missing
long name

MD4 Message Digest 4
MD5 Message Digest 5
NBS National Bureau of Standards

NIST National Institute of Standards and
Technology

NSA National Security Agency
OFB Output Feedback
PIN Personal Identification Number

PKCS Public Key Cryptography Standard
RSA Inc. issued some of these.

PRG Pseudo Random number Generator

RSA Rivest, Shamir and Adleman
Cryptosystem

RC6

SHA Secure Hash Algorithm

SHS Secure Hash Standard

TDEA Triple Data Encryption Algorithm

42

CHAPTER 1.

Notes
PSEUDORANDOM GENERATORS

Cryptography, July 29, 2009, (©2009 J. von zur Gathen 43

Bibliography

The numbers in brackets at the end of a reference are the pages on which it is cited. Names of

authors and titles are usually given in the same form as on the article or book.

THOMAS BETH, DIETER JUNGNICKEL & HANFRIED LENZ (1993). Design
Theory. Cambridge University Press. First edition 1985. |22]

L. BLum, M. BLuM & M. SHUB (1986). A simple unpredictable pseudo-random
number generator. SIAM Journal on Computing 15(2), 364 383. [1]

Ravi B. BoppPANA & MICHAEL SIPSER (1990). The Complexity of Finite
Functions. In Handbook of Theoretical Computer Science, J. VAN LEEUWEN,
editor, volume A, 757-804. North-Holland. 27|

JOAN BOYAR (1989). Inferring Sequences Produced by Pseudo-Random Num-
ber Generators. Journal of the ACM 36(1), 129-141. [4]

DoNALD E. KNuTH (1973). The Art of Computer Programming, vol.1: Fun-
damental Algorithms. Addison-Wesley, Reading MA, 2nd edition. [7|

DONALD E. KNUTH (1998). The Art of Computer Programming, vol. 2, Seminu-
merical Algorithms. Addison-Wesley, Reading MA, 3rd edition. ISBN 0-201-
89684-2. First edition 1969. |3]

J. E. LITTLEWOOD (1953). A Mathematician’s Miscellany. Methuen & Co.
Ltd., London, 136. 5]

D. E. MULLER (1956). Complexity in Electronic Switching Circuits. IRE
Transactions on Electronic Computers 5, 15 19. [27]

JOHN VON NEUMANN (1951). Various techniques used in connection with ran-
dom digits. Monte Carlo methods. National Bureau of Standards, Applied Math-
ematics Series 12, 36-38. [35]

NoOAM NISAN & Avi WIGDERSON (1994). Hardness vs Randomness. Journal
of Computer and System Sciences 49, 149-167. |1]

BIBLIOGRAPHY
44 BIBLIOGRAPHY

JAMES REEDS (1977). “Cracking” a random number generator. Cryptologia
1(1), 20-26. [39]

DAMIEN STEHLE (2004). Breaking Littlewood’s Cipher. Cryptologia
XXVIII(4), 341 357. [5]

D. WILSON (1979). Littlewood’s cipher. Cryptologia 3, 120 121 and 172 176.

[5]

ANDREW C. YAO (1982). Theory and Applications of Trapdoor Functions. In

Proceedings of the 23rd Annual IEEE Symposium on Foundations of Computer
Science, Chicago 1L, 80 91. IEEE Computer Society Press. [14]

Cryptography, July 29, 2009, (©2009 J. von zur Gathen 45

Players

The numbers in brackets at the end of a reference are the pages on which it is cited. Names of

authors and titles are usually given in the same form as on the article or book.

LENORE BLuwMm (1943-). *?//?, New York, USA. +{7//?7. URL http://
tulsagrad.ou.edu/statistics/biographies/LenoreBlume.htm. [iii, 29, 30,
31, 32, 34]

MANUEL BLuMm (1938-). *26 April 1938, Caracas, Venezuela. 17//7. URL
http://en.wikipedia.org/wiki/Manuel_Blum. [iii, 29, 30, 31, 32, 34|

JoHAN HAsTAD (1960-). *?//?. 17//?. URL http://www.nada.kth.se/
~johanh/cv.pdf. [29]

RICHARD WESLEY HAMMING (1915-1998). *11 February 1915, Chicago, Illi-
nois. 17 January 1998, Monterey, California. URL http://en.wikipedia.org/
wiki/Richard_Hamming. |7, 8, 17]

CARL GuUSTAV JACOB JACOBI (1804-1851). *10 December 1804, Potsdam,
Kingdom of Prussia. 18 February 1851, Berlin, Kingdom of Prussia. URL
http://en.wikipedia.org/wiki/Carl_Gustav_Jakob_Jacobi. |29|

DoNALD ERVIN KNUTH (1938-). *10 January 1938, Milwaukee, Wisconsin,
USA. t7//7. URL http://en.wikipedia.org/wiki/Donald_Ervin_Knuth. |3

ADRIEN-MARIE LEGENDRE (1752-1833). *18 September 1752, Paris, France.
110 January 1833, Paris, France. URL http://en.wikipedia.org/wiki/
Legendre. |29

JOHN VON NEUMANN (1903-1957). *28 December 1903, Budapest, Austria-
Hungary. 18 February 1957, Washington, D.C., USA. URL http://en.
wikipedia.org/wiki/Von_Neumann. |2|

NoOAM NISAN (777?). *?//?.1¥7//?7. URL http://www.cs.huji.ac.il/ noam/.
liii, 22, 24, 27, 28, 29|

CLAUS-PETER SCHNORR (1943-). *4 August 1943. {7//7. URL http://de.
wikipedia.org/wiki/Claus-Peter_Schnorr. |3|

PLAYERS
46 PLAYERS

MICHAEL SHUB (1942777-). *?//?. t?//?7. URL http://www.math.toronto.
edu/shub/. [iii, 29, 30, 31, 32, 34|

BROOK TAYLOR (1685-1731). *18 August 1685, Edmonton, Middlesex, Eng-
land. 130 November 1731, London, England. URL http://en.wikipedia.org/
wiki/Brook_Taylor.

Avi WIGDERSON (1956-). *9 September 1956. 17//7. URL http://math.ias.
edu/~avi/avicvl.pdf. [iii, 22, 24, 27, 28, 29|

