
Heads & Tails, summer 2009 1
Bonn-Aahen International Centerfor Information Tehnology

© 2009 Joahim von zur GathenVersion: July 29, 2009
1This text is part of a larger set of leture notes: ross-referenes to other setions arereplaed by ??.This text is not for distribution

Cryptography, July 29, 2009, ©2009 J. von zur Gathen iii
Contents
1 Pseudorandom generators 11.1 True random generators . 11.2 Pseudorandom generators . 21.3 Distinguishers . 51.4 Preditors . 121.5 From short to long generators 191.6 The Nisan�Wigderson generator 221.7 Constrution of good designs 251.8 Deterministi simulation of probabilisti omputation 281.9 The Blum�Blum�Shub generator 291.10 Randomness extration . 35Notes . 39Aronyms 41Bibliography 43Players 45

iv CONTENTSCONTENTS

Cryptography, July 29, 2009, ©2009 J. von zur Gathen 1
Chapter 1Pseudorandom generatorsRandom numbers or random bit strings are essential in many areas of omputersiene, from sorting, routing in networks, and omputer algebra to ryptography.Most omputer systems provide a funtion like RAND that delivers elementswhih look �random� in some sense. However, there is no pratial inexpensiveway known to generate truly random numbers. One an think of measuringradioative ativity, urrent mahine lok time or disk usage, user input likekeystroke timing or mouse movement, but these are either expensive or not veryrandom. What else an you think of?The most popular type of random generators, based on linear ongruentialgeneration, is suessfully used in many appliations. But it is not good enoughfor ryptography. So ryptographers had to invent their own notion, alled (om-putational) pseudorandom generators, whih are the topi of this hapter.Suh a generator takes a small amount of true randomness as input and pro-dues a large amount of pseudorandomness. The de�ning property is that thesepseudorandom elements annot be told apart from truly random ones by anye�ient algorithm.In this hapter, we �rst de�ne and illustrate this notion of �distinguishing�between pseudorandom and truly random elements, then see that it is essen-tially equivalent to �prediting the next element�, and �nally disuss two spei�generators, by Nisan & Wigderson (1994) and by Blum et al. (1986).1.1. True random generatorsRandomness is a vital ingredient for ryptography, from the generation of randomkeys to the hallenges in identi�ation shemes. There are two types of methodfor generating the required randomness. Both are inonvenient, expensive, andpotentially inseure.A software-based generator measures some proess suh as
◦ the system lok,

2 Chapter 1. Pseudorandom generators1.2. Pseudorandom generators
◦ key stroke or mouse movements,
◦ system or network parameters,
◦ the ontents of ertain registers,
◦ user input.All of these have their problems. A 1 GHz mahine running uninterrupted fora whole year (good luk!) goes through 365 · 24 · 60 · 60 · 109 or about 254.8yles. So even if we took that as random, we would only get about 54 bits. Ina more realisti situation, say a smartard engaged in an identi�ation protool,we an at best expet a few usable bits, ertainly not enough for any reasonableprotool. Key strokes and mouse movements an possibly be observed. Someversions of PGP require a new user to exeute about 15 seonds of energetimouse pushing. That's ok, but you would not be prepared to do this every timeyou withdraw money from an ATM. System parameters and register ontentsmight be predited or simulated. The most ommon method are user-generatedpasswords. With appropriate autions, this is quite reasonable, but again onean expet only a few �random� bits.The seond type of method are hardware-based generators whih measuresome physial proess, suh as
◦ radioative deay,
◦ semi ondutor thermal noise,
◦ apaitor harge,
◦ setor aess times in a sealed hard disk.All of these are expensive and fae potential observation or manipulation by anadversary.A random sequene is orrelated if the probability that a bit is 1 dependson the previous bits. There are methods to remove orrelation, but we do not gointo this.Suh a sequene is biased if eah bit equals 1 with some probability p, with

0 < p < 1, and hene equals 0 with probability 1−p. Von von Neumann suggestedhow to remove suh a bias: we group the sequene into onseutive pairs, andtake 10 to mean 1, 01 to mean 0, and disard 00 and 11.1.2. Pseudorandom generatorsA pseudorandom generator will be a deterministi algorithm A with (random)inputs from a small set X and outputs in a large set Y whih are �indistinguish-able� from random elements of Y . This notion is de�ned in the next setion.

Cryptography, July 29, 2009, ©2009 J. von zur Gathen 3Often we will have X = {0, 1}k and Y = {0, 1}n for some k < n, and then A isa pseudorandom bit generator.Thus the idea of pseudorandom generators is to take a very small amountof randomness (a random element of X) to produe a large amount of pseudo-randomness (an element of Y). These new elements are not truly random, butshould behave as if they were for the intended appliation.A detailed disussion of random generation is in Knuth (1998). Knuth presentsa large array of statistial tests for pseudorandomness. It seems hard to de-sribe a general strategy for employing these tests; one has to deide eah timeanew whih tests are appropriate for the purpose at hand.In ontrast to the underlying notion of statistial pseudorandomness, wewill develop a theory of omputational pseudorandomness. This is the rightapproah for ryptographial appliations. We will see a �universal test�, namelyprediting the next pseudorandom element, and establish a strong onnetionwith omputational omplexity, the theory that asks how �hard� it is to solve agiven problem.What is a random element, say a random bit? Is 0 a random bit? Is 1?These nonsensial questions indiate that there is no reasonable way to talkabout the randomness of an individual bit, or any �nite bit string. One ande�ne randomness for in�nite strings. For our purposes, it is more useful to talkabout �potentially in�nite strings�, namely mahines that produe individual bits.Then one an have suh a mahine produe arbitrarily long strings of �random�elements. When X is a �nite set, a (uniform) truly random generator for Xwould produe (without any input) a uniformly random element of X, so thateah element of X has the same probability 1/#X of ourring. Nobody knowshow to build suh a generator (whih is e�ient).The most popular pseudorandom generators are the linear ongruentialpseudorandom generators. We have a modulus m ∈ N, two integers a, b, aseed x0 ∈ N, and de�ne(1.1) xi = axi−1 + b remmfor i ≥ 1. These are good enough for many purposes, e.g. in omputer algebra,but not for ryptography. Suppose that Alie and Bob are part of a ryptographinetwork that uses Shnorr's identi�ation sheme; see ?? for details. Eah timeAlie identi�es herself to Bob, he sends her a random number r as part of theprotool. Now, suppose that Bob makes the mistake of taking the r's providedby his mahine's rand ommand in C, whih is based on a linear ongruentialgenerator. If Eve listens in to the tra� and observes several onseutive valuesof r, she an predit future values of r, as desribed below. Then the identi�ationsheme is ompletely broken. The same would happen if a bank omputer usedsuh a generator to produe individual transation numbers. After observing afew of them, an adversary would be able to determine the next ones.

4 Chapter 1. Pseudorandom generators1.2. Pseudorandom generatorsIn the generator (1.1), we have
xi ≡ axi−1 + b mod m,

xi+1 ≡ axi + b mod m.In order to eliminate a and b, we subtrat and �nd
xi − xi+1 ≡ a(xi−1 − xi) mod m.Similarly we get

xi+1 − xi+2 ≡ a(xi − xi+1) mod m.Multiplying by appropriate quantities, we obtain
(xi − xi+1)

2 ≡ a(xi − xi+1)(xi−1 − xi)

≡ (xi+1 − xi+2)(xi−1 − xi) mod m.Thus from 4 onseutive values xi−1, xi, xi+1, xi+2 we get a multiple
m′ = (xi − xi+1)

2 − (xi+1 − xi+2)(xi−1xi)of m. If the required gcds are 1, then we an also ompute guesses a′ and b′ for
a and b, respetively. We an then ompute the next values xi+3, xi+4, . . . withthese guesses and also observe the generator. Whenever a disrepany ours,we re�ne our guesses. One an show that after a polynomial number of stepsone arrives at guesses whih produe the same sequene as the original generator(although the atual values of a, b, and m may be di�erent from the guessedones). See Boyar (1989).Suh a generator is useless for ryptographi purposes, sine we an preditthe next value after having seen enough previous ones.There are variations of these generators that ompute internally x0, x1, . . . remmas before, but publish only the middle half (or the top half) of the bits of xi. Thesegenerators are also inseure; they fall prey to a short vetor attak.One may also take just one bit, say xi rem 2. It is not known whether thisyields pseudorandom bits.The following RSA generator is supposed to be seure. We have N = pqand e with gcd(e, φ(N)) = 1 as in the RSA system, and a random seed x0 ∈ Z

×
N .We de�ne x1, x2, . . . ∈ Z

×
N by xi+1 = xe

i .Nothing is known about how �random� this sequene is, nor whether thereis a way of prediting xi from previous values, nor whether suh a preditionalgorithm would also break the RSA system.For the Littlewood pseudorandom number generator, we pik (small)integers n < d, whih are publily known, and an n-bit string x as (truly random)seed. We an also onsider x as an integer in binary, and 2−nx is the rationalnumber with binary representation 0.x.

Cryptography, July 29, 2009, ©2009 J. von zur Gathen 5Output is the sequene of the dth bits of the binary representation of log2((x+
i)2−n) = log(x + i) − n for i = 0, 1, Thus with n = 10, d = 14 and key
x = 0110100111, the �rst �ve pseudorandom bits are 11001, produed aordingto the entries (all in binary) of the following table.

i (x + i)2−n log2(x + i)− n0 0.0110100111 −1.0100011010000111 0.0110101000 −1.0100010110100112 0.0110101001 −1.0100010011001003 0.0110101010 −1.0100001111101014 0.0110101011 −1.010000110000110Littlewood (1953), page 23, proposed this number generator, atually with n =
5 and d = 7 in its deimal version and for use in a key-addition enryptionsheme. He says that �it is su�iently obvious that a single message annot beunsrambled�.This looks quite attrative, but is �awed. Wilson (1979) showed a �rst at-tak, and Stehlé (2004) gives an attak on the original system and even appar-ently stronger variants. His approah relies on modern ryptanalyti tehniquesinluding lattie basis redution and Coppersmith's root �nding method.1.3. DistinguishersWe now want to formalize the notion that the elements generated by a pseudo-random generator should look �random�. The idea is that no e�ient algorithmshould be able to distinguish between these elements and truly random ones.Reall that a probability distribution on a �nite set A is a funtion p : A −→
R≥0 with ∑

a∈A p(a) = 1. The uniform probability distribution u has
u(a) = 1/#A for all a ∈ A. Together with p, a further funtion f : A −→ Bgives a random variable X on B (that is, with values in B), whih assumes thevalue b ∈ B with probability ∑

a∈A
f(a)=b

p(a) whih we abbreviate asprob(b←− X).We then also have a probability distribution q on B, with q(b) =
∑

f(a)=b p(a). If
B ⊆ R, then the expeted value (or average, or mean) of X is

E(X) =
∑

a∈A

p(a)X(a) =
∑

b∈B

b · prob(b←− X).

6 Chapter 1. Pseudorandom generators1.3. DistinguishersExample 1.2. Rolling a fair die orresponds to the uniform distribution on A =
{1, 2, 3, 4, 5, 6}. If X(a) = a2 for a ∈ A, thenprob(4←− X) =

1

6
,

E(X) =
1

6
(1 + 4 + 9 + 16 + 25 + 36) =

91

6
. ♦We denote by B

n = {0, 1}n the Boolean n-ube. The uniform probabilitydistribution un on B
n gives every string x ∈ B

n the same probability 2−n, andthe uniform random variable Un takes on every value x ∈ B
n with probability 2−n.From random variables X1 on A1, X2 on A2, . . . , Xk on Ak we get the produtvariable X = X1×· · ·×Xk on A = A1×· · ·×Ak, whih by de�nition takes on avalue (a1, . . . , ak) ∈ A with probability prob(a1 ←− X1) · · ·prob(ak ←− Xk). Asan example, we have Un = U1× · · ·×U1 = Un

1 on B
n = B

1× · · ·×B
1. If we havea random variable X on A and a mapping f : A −→ B, we get a random variable

f(X) on B whih takes a value b ∈ B with probability prob(b ←− f(X)) =
∑

a∈A
f(a)=b

prob(a←− X). We will use this in the senario where π : C ×D −→ Dis the projetion and X a random variable on C × D. Then π(X) is alled themarginal value of X on B.Now suppose that we have a random variable X on B
n, and a probabilistialgorithmA with n-bit inputs x ∈ B

n and one bit of output. This gives a randomvariable A(X) on B = {0, 1} whose underlying distribution onsists of X and theinternal randomization in A. For a bit b ∈ B, we haveprob(b←− A(X)) =
∑

x∈Bn

prob(x←− X) · prob(b←− A(x)).The expeted value of A on X is
E(A(X)) =

∑

b∈B

b · prob(b←− A(X)) = prob(1←− A(X)).For a deterministi algorithm, prob(1←− A(x)) = A(x) is either 0 or 1.Example 1.3. LetA be the deterministi algorithmwhih outputsA((x1, . . . , x6)) =
x3 on any input (x1, . . . , x6) ∈ B

6. Then for the uniform random variable U6 on
B

6 we have
E(A(U6)) = prob(1←− A(U6)) = prob(1←− U1) =

1

2
.The U1 here is the third omponent of U6 = U1×U1×U1×U1×U1×U1 = U6

1 . ♦

Cryptography, July 29, 2009, ©2009 J. von zur Gathen 7Definition 1.4. If we have two random variables X and Y on B
n, and an algo-rithm A as above, then

∆A(X, Y) = |E(A(X))−E(A(Y))|is the distinguishing power of A (between X and Y). If ∆A(X, Y) ≥ ǫ > 0,then we say that A is an ǫ-distinguisher between X and Y . If suh an A exists,we say that X and Y are ǫ-distinguishable.The pseudorandom generators that we de�ne below annot produe truly randomvalues. But we want their values to be pratially indistinguishable from randomones, namely ǫ-distinguishable with tiny ǫ (for any e�ient A).Example 1.5. Suppose that n is even and X takes only values with exatly
n/2 ones: if x ∈ B

n and prob(x ←− X) > 0, then w(x) = n
2
. Here w(x) isthe Hamming weight of x, that is, the number of ones in x. Then the followingdeterministi algorithm A distinguishes between X and the uniform variable Unon B

n: A(x) = 1⇐⇒ w(x) = n
2
. We have

E(A(X)) = prob(1←− A(X)) = prob(
n

2
←− w(X)) = 1,

EA(Un) = prob(1←− A(Un)) = prob(

n

2
←− w(Un)

)

= 2−n ·#{x ∈ B
n : w(x) =

n

2
} = 2−n

(

n

n/2

)

.Stirling's formula (see Knuth 1973, 1.2.11.2) says that
n! ≈

√
2πn

(n

e

)n

(1 +
1

12n
+

1

288n2
+ . . .).Substituting this into the binomial oe�ient and ignoring all minor terms, we�nd

E(A(Un)) ≈ 2−n

√
2πn(n

e
)n

πn(n
2e

)n
= 2−n 2n

√

πn/2
=

1
√

πn/2
.Thus

|E(A(X))− E(A(Un))| ≈ 1− 1
√

πn/2
≥ ǫfor any ǫ with, say √

π−1√
π

> 0.43 ≥ ǫ > 0, as soon as n ≥ 2. For n = 100, X and
Un are 0.9-distinguishable. ♦Definition 1.6. A bit generator (or generator for short) is a funtion f : B

k −→
B

n for some k < n. The orresponding random variable on B
n is f(Uk).

8 Chapter 1. Pseudorandom generators1.3. DistinguishersExample 1.7. We onsider the generator
f : B

3 −→ B
6given by the following table

x f(x)
000 001101
001 001011
010 011010
011 010110
100 101100
101 100101
110 110100
111 110010Eah image word in f(B3) has Hamming weight 3. We an easily distinguish therandom variable X = f(U3) from U6 by the distinguisher A from the previousexample. Namely, on input y ∈ B
6, A outputs 1 if w(y) = 3 and 0 otherwise.Then

E(A(U6)) = 2−6 ·
(

6

3

)

=
5

16
, E(A(X)) = 1, ∆A(X, U6) = 1− 5

16
=

11

16
.Thus A is a 11

16
-distinguisher. In suh a small example, one an �nd other distin-guishing properties. The following illustrates a general onstrution that we willsee a little later.We an use the fourth bit of y to distinguish U6 from f(U3), by omparing itto the value of 0 or 1 whih ours less often in the �rst three positions, alledthe minority. Thus for y ∈ B

6

B(y) =

{

1 if y4 = minority(y1, y2, y3),
0 otherwise.Sine both values for y4 are equally likely in U6 (and independent of y1, y2, y3),we have E(B(U6)) = 1/2.We now alulate E(B(X)) = prob(1←− B(X)). There are eight values of ywhih our as values of X, eah with probability 1/8.
y prob(1←− B(y))

001101 1
001011 0
011010 1
010110 1
101100 0
100101 1
110100 0
110010 1

Cryptography, July 29, 2009, ©2009 J. von zur Gathen 9Therefore E(B(X)) = 5/8, |E(B(X)) − E(B(U6))| = 5
8
− 1

2
= 1

8
, and B is an

1
8
-distinguisher between U6 and X. This is quite ok, but not as good as thedistinguisher A from above. ♦We now want to de�ne pseudorandom generators. To this end, we onsider afamily g = (gk)k∈N of Boolean funtions gk with

gk : B
k −→ B

n(k),where n(k) > k for all k ∈ N. Thus eah family member gk is a generator from
B

k to B
n(k). On input a uniformly random x ∈ B

k, it produes a (muh) longeroutput y = gk(x) ∈ B
n(k) whih should look �random�. For any k ∈ N, therandom variable X = gk(Uk) assumes the value y ∈ B

n(k) with probabilityprob(y ←− X) = 2−k ·#{x ∈ B
k : gk(x) = y}.At most 2k many y's have positive probability. Sine k < n(k), only �very few�values y atually our, and X is �very far� from the uniform random variable.But still it might be quite di�ult to detet this di�erene. However, it is alwayspossible to detet some di�erene. For example, we may hoose some y0 ∈ gk(B

k),so that prob(y ←− X) ≥ 2−k, and take an algorithm whih omputes the funtion
A(y) = (y = y0) ∈ B. Then

E(A(X)) ≥ 2−k ≫ 2−n(k) = E(A(Un(k))).Thus A distinguishes somewhat between the two distributions, but its distin-guishing power 2−k − 2−n(k) ≈ 2−k is exponentially small in k. We an't bebothered with suh tiny (and unavoidable) di�erenes, and all them �negligible�.We are even a bit more generous and all any funtion negligible if it is smallerthan any inverse polynomial.Definition 1.8. A funtion t : N −→ R is negligible if for all e ≥ 1 there exists
k0 suh that for all k ≥ k0 we have

|t(k)| ≤ k−e. �For example, t with t(k) = k− logk is negligible, but not exponentially small like
2−k.Now the generators we onsider have to be e�ient, but there must not existe�ient distinguishers. This gives the following notion.Definition 1.9. A family g = (gk)k∈N as above is a pseudorandom generatorif
◦ it an be implemented in polynomial time kO(1),

10 Chapter 1. Pseudorandom generators1.3. Distinguishers
◦ for all probabilisti polynomial-time algorithmsA, the distinguishing power

∆A(gk(Uk), Un(k)) is a negligible funtion of k.
Suh a generator an be used in any e�ient (polynomial time) algorithm thatrequires truly random bits. Namely, if it was ever observed that the algorithmdid not perform as predited for truly random inputs, then the algorithm woulddistinguish between Un and the pseudorandom generator; but this is not possible.This is, quite appropriately, an �asymptoti� notion. It does not depend on the�rst hundred (or hundred million) gk's, only on their eventual behavior. We haveseen many ryptosystems, suh as RSA, whih an be implemented for arbitrarykey lengths. However, there are also ryptosystems like Rijndael whih have �xedinput lengths and are not part of an in�nite family.We now want to de�ne a ��nite� version of this notion. It should be appliableto individual Boolean funtions suh as g : B

3 −→ B
6 from Example 1.7. InDe�nition 1.9 we did not speify the notion of �algorithm�. The reader shouldthink, as usual, of Turing mahines or appropriate random aess mahines. Forour �nite version, Boolean iruits are appropriate. They have (one-bit) inputgates, and NOT, AND, OR, and XOR gates. The time that suh a iruit takesis the number of gates in it (exept for input gates). It is usually alled the sizeof the iruit. Then �algorithm� may also be taken to mean �family of Booleaniruits�. There is a tehnial problem with �uniformity� here; see the Notes.

Definition 1.10. Let k < n and s be integers, ǫ ≥ 0 real, and f : B
k −→ B

na generator. A probabilisti Boolean iruit C of size s and with distinguishingpower ∆C(f(Uk), Un) ≥ ǫ is alled an (ǫ, s)-distinguisher between f(Uk) and
Un. The funtion f is alled an (ǫ, s)-resilient pseudorandom generator if nosuh C exists.
Example 1.7 ontinued. We take f : B

3 −→ B
6 as above, and implement thetwo distinguishers as Boolean iruits.We start with the seond one, and �rst ompute z = (w(y1, y2, y3) ≥ 2) in the

Cryptography, July 29, 2009, ©2009 J. von zur Gathen 11iruit within dashed lines, and then output z ⊕ y4 :

y1 y2 y3 y4 y5 y6

∧ ∧ ∧

∨

z = ∨

⊕This iruit has 6 gates and is therefore a (1
8
, 6)-distinguisher between f(U3) and

U6. Thus f is not a (1
8
, 6)-resilient pseudorandom generator.To implement the �rst distinguisher �w(y) = 3� as a iruit, we �rst ompute

u =
⊕

1≤i≤6 yi. Thus u = 1 if and only if w(y) is 1, 3, or 5. If we add theondition that
(w(h1) ≥ 2 and w(h2) ≤ 1) or (w(h1) ≤ 1 and w(h2) ≥ 2),where h1 = (y1, y2, y3) and h2 = (y4, y5, y6) are the two halves of y, then weompute preisely the Boolean funtion �w(y) = 3�. We re-use the 5-gate iruitfrom above twie in dashed lines and get the following iruit.
y1 y2 y3 y4 y5 y6

⊕ ⊕ ⊕

⊕

⊕¬ ¬

∧ ∧

∨

∧

u =

12 Chapter 1. Pseudorandom generators1.4. PreditorsThis iruit has 2 · 5 + 11 = 21 gates, so that f is also not (

11
16

, 21
)-resilient. ♦1.4. PreditorsWe onsider probabilisti algorithms that try to predit the next value xi of asequene from the previous bits x1, . . . , xi−1. A good preditor an also be usedas a distinguisher. The main result of this setion is the onverse: from any gooddistinguisher one an build a reasonably good preditor. The proof introduesan important tool: �hybrid� distributions whih �interpolate� between two givendistributions.For two random variables X and Y on the same set B, we writeprob(Y ←− X) =

∑

x∈B

prob(b←− Y) · prob(b←− X)for the probability that both produe the same value. This generalizes the notion
x←− X in a natural way.When X is a random variable on B

n and i ≤ n, we want to onsider the ithsuessor bit under X, namely the following one-bit random variable Xi(y), forany y ∈ B
i−1. Its value is 0 with the same probability as the one with whihstrings (y, 0, z) our under X, for any z ∈ B

n−i, and 1 with the probability of
(y, 1, z) ourring under X. More preisely, for any j ≤ n and w ∈ B

j , we let
p(w, ∗) = prob(w ←− (X1, . . . , Xj))

(1.11)
= prob({w} × Un−j ←− X) = 2−n+j ·

∑

z∈Bn−j

prob((w, z)←− X)be the probability of w as an initial segment under X. Then for b ∈ {0, 1}, weset prob(b←− Xi(y)) = 1/2 if p(y, ∗) = 0, and otherwiseprob(b←− Xi(y)) = p((y, b), ∗)/p(y, ∗).Definition 1.12. Let 1 ≤ i ≤ n be integers.(i) A preditor for the ith bit is a probabilisti algorithm with inputs from
B

i−1 and output in B.(ii) Let X be a random variable on B
n, (X1, . . . , Xi−1) the orresponding vari-able on B

i−1, and P a preditor for the ith bit. Then the suess rate
σP(X) of P on X is

σP(X) =
∑

y∈Bi−1

p(y, ∗) · prob(P(y)←− Xi(y)).

Cryptography, July 29, 2009, ©2009 J. von zur Gathen 13Its predition power is σP(X) − 1/2. If σP(X) ≥ ǫ + 1/2, then P is an
ǫ-preditor for X.(iii) A family (Xk)k∈N of random variables Xk on B

n(k) is omputationallyunpreditable if for any funtion ik with ik ≤ n(k), any probabilistipolynomial-time preditor for the ikth bit of Xk has negligible preditionpower. Here, the preditor is an algorithm whih takes as input k (enodedin unary) and y ∈ B
ik−1.Thus 0 ≤ σP ≤ 1. A very simple (and rather useless) preditor is to outputa uniformly random bit, independent of the input. It has suess rate 1/2 forany X.If σP(X) ≤ 1/2, then �ipping the output bit of P produes a preditor P ′with σP ′(X) = 1− σP(X) ≥ 1/2. For a �good� preditor P, the goal is to makeits predition power σP(X)− 1/2 as large as possible.As in the previous setion, we also have a �nite version of this asymptotinotion. Now X is a random variable on B

n, 1 ≤ i ≤ n, and P is a probabilistiiruit of size s with i− 1 inputs and one output, and is alled an (ǫ, s)-preditorif σP(X) ≥ ǫ + 1/2. We say that X is (ǫ, s)-unpreditable if no suh i and Pexist.Example 1.7 ontinued. We take X = f(U3) on B
6. Sine 0 and 1 ourequally often in eah f(x), we onsider the �minority bit preditor� Mi for the

ith bit. It predits the bit that ours less frequently in the history; if both ourequally often, it predits 0 or 1, eah with probability 1/2.Clearly this algorithm predits the sixth bit always orretly: σM6(X) = 1,and M6 is a 1
2
-preditor. We now ompute its quality as a preditor for thefourth bit:
σM4(X) =

∑

y∈B3

p(y, ∗) · prob(X4(y)←−M4(y)).We only have six y ∈ B
3 with p(y, ∗) > 0.

y p(y, ∗) X4(y) M4(y) prob(X4(y)←−M4(y))
001 1/4 0, 1 1 1/2
011 1/8 0 0 1
010 1/8 1 1 1
101 1/8 1 0 0
100 1/8 1 1 1
110 1/4 0, 1 0 1/2Therefore the suess rate is
1

4
· 1
2

+
1

8
· 1 +

1

8
· 1 +

1

8
· 0 +

1

8
· 1 +

1

4
· 1
2

=
5

8
>

1

2
,andM4 is a 1

8
-preditor. ♦

14 Chapter 1. Pseudorandom generators1.4. PreditorsIt is lear that a preditor an also serve as a distinguisher. Suppose that Xis a random variable on B
n, 1 ≤ i ≤ ℓ, and P is an ǫ-preditor for the ith bitunder X. Then we onsider the following method for obtaining an algorithm A.Algorithm 1.13. Distinguisher A from preditor.Input: y ∈ B

n, and i and P as above.Output: 0 or 1.1. Compute z = P(y1, . . . , yi−1).2. A outputs 1 if yi = z and 0 otherwise.Theorem 1.14. If P is an (ǫ, s)-preditor for the ith bit under X, then A is an
(ǫ, s + 5)-distinguisher between X and Un.Proof. The output of A equals (yi ∧ z) ∨ (¬yi ∧ ¬z), whih is independent ofthe values of yi+1, . . . , yn, and A has size s + 5. We have

E(A(X)) = prob(1←− A(X))

= prob(Xi ←− P(X1, . . . , Xi−1))

= σP(X) ≥ 1

2
+ ǫ.On the other hand, whatever P omputes, the probability that its output P(Ui−1)equals a uniform random bit from U1 is 1/2. Thus the distinguishing power of Abetween X and Un is

|E(A(X))−E(A(Un))| ≥ 1

2
+ ǫ− 1

2
= ǫ. �It is quite surprising that also from any good distinguisher one an obtaina reasonably good preditor. This strong result is due to Yao (1982). Thusdistinguishers and preditors are essentially equivalent. In other words, preditingthe next bit is a �universal test� for pseudorandomness.Theorem 1.15. Let X be a random variable on B

n, and A an (ǫ, s)-distinguisherbetween X and Un. Then there exists an i with 1 ≤ i ≤ n and an (ǫ
n
, s + 1)-preditor for the ith bit under X.Proof. For 0 ≤ i ≤ n, we let πi : B

n −→ B
i be the projetion onto the �rst ioordinates, and

Yi = πi(X)× Un−i.Thus Yi is the random variable on B
n where the �rst i bits are generated a-ording to X, and the other n − i aording to the uniform distribution. These

Cryptography, July 29, 2009, ©2009 J. von zur Gathen 15
Yi are �hybrid� variables, partly made up from X and partly from the uniformdistribution, and they �interpolate� between the extremes Yn = X and Y0 = Un.For 1 ≤ i ≤ n, let ei = E(A(Yi)). The distinguishing power of A is at least ǫ, sothat |en − e0| ≥ ǫ. By �ipping the output bit of A if neessary, we may assumethat e0− en ≥ ǫ. Intuitively, this means that an output 1 of A indiates that theinput is likely to ome from Un, and an output 0 that it omes from Y . Then wehave

ǫ ≤ e0 − en =
∑

1≤i≤n

(ei − 1− ei) ≤ n · max
1≤i≤n

ei−1 − ei.

Hene the maximum is at least ǫ/n, and there exists some i ≤ n with ei− ei−1 ≥
ǫ/n. We now hoose suh an i.We now onstrut a preditor P for the ith bit under X.
Algorithm 1.16. Preditor P.Input: y ∈ B

i−1.Output: 0 or 1.1. Choose yi, . . . , yn ∈ B uniformly at random.2. y∗ ←− (y, yi, . . . , yn). [Thus y∗ ∈ B
n.℄3. z ←− A(y∗).4. Output yi ⊕ z.The intuition why this should work is as follows. If A outputs z = 1, thenprobably (y, yi) omes from Yi, sine ei > ei−1, and if z = 0, then (y, yi) is morelikely to ome from Yi−1. Now Yi−1 and Yi di�er only in the ith plae, where Yiis derived from X while Yi−1 has a uniformly random bit. Thus we take z = 1 asan indiation that yi omes from X, and indeed output yi = yi ⊕ 1⊕ 1 = yi ⊕ zas the predition. But z = 0 indiates that yi is presumably from U1, and thatthe opposite bit yi⊕ 1⊕ 1 = yi⊕ z is a better predition for the ith bit under Xthan yi itself is.

16 Chapter 1. Pseudorandom generators1.4. PreditorsThe suess rate of P on X is
σP(X) =

∑

y∈Bi−1

p(y, ∗) · prob(P(y)←− Xi(y))

=
∑

y∈B
i−1

yi∈B

p(y, ∗) · prob(yi ←− U1 and yi ⊕A((y, yi)× Un−i)⊕ 1←− Xi(y))

=
∑

y∈Bi−1

yi∈B

p(y, ∗) ·
[prob(0←− A((y, yi)× Un−i), yi ⊕ 1←− Xi(y), and yi ←− U1)

+ prob(1←− A((y, yi)× Un−i), yi ←− Xi(y), and yi ←− U1)
]

=
∑

y∈Bi−1

yi∈B

p(y, ∗) ·
[prob(0←− A((y, yi)× Un−i))

− prob(0←− A((y, yi)× Un−i), yi ←− U1, and yi ←− Xi(y))

+ prob(1←− A((y, yi)× Un−i), yi ←− Xi(y), and yi ←− U1)
]

=
∑

y∈Bi−1

yi∈B

p(y, ∗) ·
[prob(0←− A((y, yi)× Un−i))

− prob(0←− A((y, Xi(y)))× Un−i) ·
1

2

+ prob(1←− A((y, Xi(y))× Un−i)) ·
1

2

]

= prob(0←− A(Yi−1))−
1

2
prob(0←− A(Yi)) +

1

2
prob(1←− A(Yi))

= 1− ei−1 −
1− ei

2
+

ei

2
=

1

2
+ ei − ei−1 ≥

1

2
+

ǫ

nSome explanations may be useful. In the seond equation, we sum over the twopossible values for yi hosen in step 1 of P. Now P(y) = yi ⊕ z and Xi(y) takethe same value in two ases:
z = 0 and yi ⊕ 1 = Xi(y), or
z = 1 and yi = Xi(y).These two ases lead to the third equation. In the fourth equation, the �rstsummand of the previous expression is split into the probability that 0 ours asvalue of A((y, yi)×Un−1), without regard to Xi(y), minus the probability that yiours as value of Xi(y)�this is the omplement to the ondition yi⊕1←− Xi(y).For the �fth equation, we use the fat that the event yi ←− U1 is independentof the other events, for both possible hoies of yi, and ours with probability

1/2. �Corollary 1.17. (i) Suppose that eah bit of the generator f : B
k −→ B

n is
(ǫ, s)-unpreditable. Then f(Uk) is (ǫ, s + 1)-indistinguishable from Un.

Cryptography, July 29, 2009, ©2009 J. von zur Gathen 17(ii) Suppose that the generator g = (gk)k∈N is suh that eah bit (that is, foreah sequene (ik)k∈N the ikth bit of gk) is omputationally unpreditable.Then g is a pseudorandom generator.In other words, bit predition is a universal test for pseudorandomness.Example 1.7 ontinued. We apply Yao's onstrution to X = f(U3) on B
6and A as above, with A(y) = 1 if and only if w(y) = 3. We have seen above that

EA(X) = 1 and EA(U6) = 5
16
, and now have to alulate the expeted value of Aon the hybrid distributions Yi = πi(X)× U6−i. These distributions are depitedin Figure 1.1. At the bak, we have f(U3) = Y6, a rugged landsape with eightpeaks and valleys at zero level. The montains get eroded as we move forward, to

Y5, Y4, and Y3, until we arrive at Y2 = Y1 = Y0, a uniformly �at seasape.

Figure 1.1: The hybrid distributions from Yao's onstrution.For 0 ≤ i ≤ 6 and any y ∈ f(B3), we denote by
ci(y) =

(

6− i

3− w(y1, . . . , yi)

)the number of extensions (zi+1, . . . , z6) of (y1, . . . , yi) that lead to total Hammingweight 3, that is, with w(y1, . . . , yi, zi+1, . . . , z6) = 3. Then
(

(πi(x)× U6−i)(y)
)

= prob πi(0)(y1, . . . , yi) · 2i−6

= 2i−6 · 2−3#{x ∈ B
3 : (f(x)1, . . . , f(x)i) = (y1, . . . , yi)},

18 Chapter 1. Pseudorandom generators1.4. Preditors
ei = E(A(Yi)) = prob(1←− A(yi)) = prob(3←− w(Yi))

= prob(3←− w((X1, . . . , Xi)× U6−i))

= 2−3 · 2−(6−i) ·#{(x, y) ∈ B
3 × B

6−i :

w(f(x)1, . . . , f(x)i, yi+1, . . . , y6) = 3}
= 2i−9

∑

x∈B3

ci(f(x)).The following two tables give the values of the ci(f(x)) and ei.
x f(x) c0 c1 c2 c3 c4 c5 c6

000 001101 20 10 4 3 2 1 1
001 001011 20 10 4 3 1 1 1
010 011010 20 10 6 3 2 1 1
011 010110 20 10 6 3 2 1 1
100 101100 20 10 6 3 1 1 1
101 100101 20 10 6 3 2 1 1
110 110100 20 10 4 3 1 1 1
111 110010 20 10 4 3 2 1 1

i 0 1 2 3 4 5 6

ei
5
16

5
16

5
16

3
8

13
32

1
2

1

ei − ei−1 0 0 2
32

1
32

3
32

16
32We hek that the sum of these di�erenes equals e6 − e0 = 11/16. The largestof the di�erenes is e6 − e5 = 1/2. Intuitively, it is lear that this points to theminority bit preditorM6 for the last bit, from page 13, with suess probability

1 and 1/2 on f(U3) and U6, respetively. But now we want to trae the generalonstrution. It yields the following preditor P for the sixth bit under X =
f(U3). We �rst hange A to A′ by �ipping its output bit, so that now e5 − e6 =
1/2 > 0. On input y ∈ B

5, P hooses y6 ∈ B uniformly at random, alulates
z =

{

0 if w(y, y6) = 3,
1 otherwise,and outputs y6 ⊕ z. We laim that P(y) = M6(y) for any y ∈ π5(X). Thisfollows from the following table of the values (z,P(y)), where the seond entryindeed always equalsM6(y):

w(y)
2 3

0 (1, 1) (0, 0)
y6

1 (0, 1) (1, 0)

Cryptography, July 29, 2009, ©2009 J. von zur Gathen 19In partiular, we have σP(X) = σM6(X) = 1, and P is also an 1/2-preditor for
X. However, P is not equal toM6, sine on input y = (0, 0, 0, 0, 0), say, we haveprob(1←− P(y)) = 1/2 and prob(1←−M6(y)) = 1. ♦S 1.5. From short to long generatorsIf we have an (ǫ, s)-generator f : B

k → B
n and k < ℓ ≤ n, then by omposing withthe projetion π : B

n → B
ℓ to the �rst ℓ bits we get a funtion g = π ◦ f : B

k −→
B

ℓ. It is also an (ǫ, s)-generator, sine any algorithm that distinguishes g(Uk)from Uℓ an also distinguish f(Uk) from Un, with the same size and quality.Thus it is easy as pie to shorten generators. Can we also make them longer?This is less obvious, but this setion is devoted to showing that this an indeedbe ahieved.We take as our starting point a generator that is as short as possible, namely
f : B

k → B
k+1, and onstrut from it a generator g : B

k → B
n for any n > k. Todo this, we apply f iteratively to k-bit strings, save the �rst bit, and apply fagain to the remaining k bits.

s

s0

f

σ1

s1

f

σ2

s2

f

σ3

s3 . . . f

σn−1

sn−1

f

σn

sn

σFigure 1.2: Long generator gWe de�ne funtions fi that leave the �rst i− 1 bits unhanged, for i ≥ 1, andapply f to the last k bits:
fi = idBi−1

×f :
B

k+i−1 −→ B
k+i, ,

(x1, . . . , xk+i−1) 7−→ (x1, . . . , xi−1, f(xi, . . . , xk+i−1)).We let gi = fi ◦ · · · ◦ f2 ◦ f1 : B
k → B

k+i be the omposition of i of these maps.Thus g1 = f1 = f . We also set g0 = idBk .Theorem 1.18. Let f : B
k → B

k+1 be an (ǫ, s)-resilient generator, that an beomputed by a iruit of size t, let ℓ ≥ 1, and g = gℓ : B
k → B

k+ℓ as above. Then
g is an (ℓǫ, s − ℓt)-resilient generator, and an be omputed with ℓ appliationsof f .

20 Chapter 1. Pseudorandom generators1.5. From short to long generatorsThe idea of the proof is to turn a distinguisher A between g(Uk) and Uk+ℓinto a distinguisher B between f(Uk) and Uk+1. We onsider hybrid randomvariables Y0, Y1 . . . , Yℓ whih interpolate between Yℓ = g(Uk) and Y0 = Uk+ℓ. If Adistinguishes well between Y0 and Yℓ, then it also distinguishes well between Yiand Yi+1 for some i. But these adjaent distributions Yi and Yi+1 are essentiallylike f(Uk) and Uk+1, so that we an also distinguish between these two. Byassumption, this an only be done with bad quality, so that also the quality ofthe initial A is bad.Proof. For 0 ≤ i < ℓ, we �rst de�ne an auxiliary funtion hi = π1 ×
gi−1 : B

k+1 −→ B
k+i, so that
hi(x1, x2, . . . , xk+1) = (x1, gi−1(x2, . . . , xk+1))for all (x1, . . . , xk+1) ∈ B

k+1. The important property onneting f , the g's, andthe h's is that for i ≥ 1 we have hi ◦ f = gi, and hene(1.19) hi(f(Uk)) = gi(Uk), hi(Uk+1) = (U1, gi−1(Uk)).Here, and in similar situations later, the uniform distributions like U1 and Ukare taken independently.Now we let A be an (δ, s)-distinguisher between g(Uk) and Uk+ℓ, that is, analgorithm using time s and so that
E(A(g(Uk)))−E(A(Uk+ℓ)) ≥ δ.(If the left hand quantity is at most −δ, then we �ip the output bit of A toobtain the above inequality.) We will show that the following Algorithm 1.20distinguishes between f(Uk) and Uk+1.Algorithm 1.20. From long to short distinguishers.Input: x ∈ B

k+1.Output: 1 or 0.1. Choose i ∈R {1, . . . , ℓ} uniformly at random.2. Choose y ←− Uℓ−i.3. Exeute A on input (y, hi(x)) ∈ B
ℓ+k and return its output.For any input x ∈ B

k+1 to B, we have(1.21) prob(1←− B(x)) =
1

ℓ

∑

1≤i≤ℓ

prob(1←− A(Uℓ−i, hi(x))).

Cryptography, July 29, 2009, ©2009 J. von zur Gathen 21We onsider for 0 ≤ i ≤ ℓ the hybrid random variable
Yi = Uℓ−i × gi(Uk)with values in B

k+ℓ. Thus Yℓ = gℓ(Uk) and Y0 = Uk+ℓ are the two randomvariables between whih A distinguishes. For any i ≤ ℓ we have
Yi = Uℓ−i × gi(Uk) = Uℓ−i × hi(f(Uk)) if i ≥ 0,

Yi−1 = Uℓ−i+1 × gi−1(Uk) = Uℓ−i × U1 × gi−1(Uk) = Uℓ−i × hi(Uk+1) if i ≥ 1.Now let αi = prob(1 ←− A(Yi)) for 0 ≤ i ≤ ℓ. The assumption about A'sdistinguishing power says that αℓ − α0 ≥ δ. Then using (1.21) we haveprob(1←− B(f(Uk))) =
1

ℓ

∑

1≤i≤ℓ

prob(1←− A(Uℓ−i × hi(f(Uk))))

=
1

ℓ

∑

1≤i≤ℓ

prob(1←− A(Yi)) =
1

ℓ

∑

1≤i≤ℓ

αi,prob(1←− B(Uk+1)) =
1

ℓ

∑

1≤i≤ℓ

prob(1←− A(Uℓ−i × hi(Uk+1)))

=
1

ℓ

∑

1≤i≤ℓ

prob(1←− A(Yi−1)) =
1

ℓ

∑

1≤i≤ℓ

αi−1,

E(B(f(Uk)))− E(B(Uk+1)) = prob(1←− B(f(Uk)))− prob(1←− B(Uk+1))

=
1

ℓ

(

∑

1≤i≤ℓ

αi −
∑

1≤i≤ℓ

αi−1

)

=
1

ℓ
(αℓ − α0) ≥

δ

ℓ
.Thus algorithm B has distinguishing power at least δ/ℓ between f(Uk) and Uk+1.We have to determine the size of B. The random hoies in steps 1 and 2 justorrespond to some further random input gates, and do not ontribute to thesize. For hi(x), we have to apply f exatly i−1 ≤ ℓ−1 times, using size at most

ℓt. The exeution of A takes another s′ gates. The total omes to s′ + ℓt.Sine f is (ǫ, s)-resilient, we have either δ/ℓ ≤ ǫ or s′ + ℓt ≥ s, whih is thelaim. �It is straightforward to apply this onstrution to the asymptoti notion ofpseudorandom generator, whose output annot be distinguished by polynomialsize iruit families from the uniform distribution.Corollary 1.22. Let f = (fk)k∈N be a pseudorandom generator with fk : B
k −→

B
k+1, and p ∈ Z[t] a positive polynomial. Then the above onstrution yields apseudorandom generator g = (gk)k∈N with gk : B

k −→ B
k+p(k).Thus we have the nie result that from the smallest possible pseudorandomgenerators, whih add only one pseudorandom bit, we an obtain pseudorandomgenerators with arbitrary polynomial expansion rate.

22 Chapter 1. Pseudorandom generators1.6. The Nisan�Wigderson generator1.6. The Nisan�Wigderson generatorAll known pseudorandom generators assume that some funtion is hard to om-pute, and then extend few random bits to many bits that look random to all ef-�ient algorithms. The Nisan�Wigderson generator that we desribe now startsfrom a fairly general assumption of this type, and produes a pseudorandomgenerator.We now quantify when a funtion f is hard to approximate. Namely, a prob-abilisti Boolean iruit A an produe a random bit, whih then will equal thevalue of f with probability 1/2. Now f is di�ult if nothing essentially betteris possible, with small iruits. More preisely, let f : B
n −→ B be a Booleanfuntion, ǫ > 0, and s ∈ N. We say that f is (ǫ, s)-hard if for all algorithms (=Boolean iruits) A with n inputs and time s, we have

| prob(f(Un)←− A(Un))− 1

2
| ≤ ǫ

2
.The hardness Hf of f is the maximal integer Hf = h suh that f is (h−1, h)-hard.One an amplify the hardness of a funtion by XORing several opies. Thisis Yao's (1982) famous XOR lemma, whih we state without proof and will notuse later.Theorem 1.23 (Yao's XOR Lemma). Let f1, . . . , fk : B
n −→ B all be (ǫ, s)-hard, δ > 0, and f : B

kn −→ B with
f(x1, . . . , xk) =

⊕

1≤i≤k

fi(xi).Then f is (ǫk + δ, δ2(1− ǫ)2s)-hard.If we have a hard funtion f , then the single bit f(x), for random x ∈ B
n,looks random to any e�ient algorithm. We now show how to get many bits thatlook random by evaluating f at many di�erent, nearly disjoint, subsets of bits ofa larger input. The tool for ahieving this omes from design theory, an area ofombinatoris, and the theory of �nite �elds. A thorough survey of this subjetis in Beth et al. (1993).Let k, n, s, and t be integers. A (k, n, s, t)-design D is a sequene D =

(S1, . . . , Sn) of subsets of {1, . . . , k} suh that for all i, j ≤ n we have1. #Si = s,2. #(Si ∩ Sj) ≤ t if i 6= j.

Cryptography, July 29, 2009, ©2009 J. von zur Gathen 23Example 1.24. We take k = 9, n = 12, s = 3, and t = 1, and arrange the nineelements of {1, . . . , 9} in a 3× 3 square like this:
1 2 34 5 67 8 9 .The reason for doing this will be explained after Theorem 1.27. In eah of thefour opies of the square, we have marked three subsets Si: one with •, one with

�, and the third one with �.
• • •
� � �

� � �

�

�

�

�

�

�

•
•
•

�

�

�

•

•
•

�

�

� •
•
•

�

�

�

�

�

�

Thus S1 = {1, 2, 3}, S2 = {4, 5, 6}, S3 = {7, 8, 9}, S4 = {1, 5, 9}, S5 = {3, 4, 8},
S6 = {2, 6, 7}, S7 = {1, 6, 8}, S8 = {2, 4, 9}, S9 = {3, 5, 7}, S10 = {1, 4, 7},
S11 = {2, 5, 8}, and S12 = {3, 6, 9}.Now D = {S1, . . . , S12} is an (9, 12, 3, 1)-design as one easily veri�es. As anexample, S1 ∩ S5 = {3} has only one element. ♦In design theory, one does not usually order the S1, . . . , Sn, but the aboveis more appropriate for our purposes. The general goal in design theory is to �xsome of the four parameters and optimize the others, making n and s as largeand k and t as small as possible.If D is a (k, n, s, t)-design as above and f : B

s −→ B a Boolean funtion, weobtain a Boolean funtion fD : B
k −→ B

n by evaluating f at the subsets of thebits of x given by S1, . . . , Sn. More spei�ally, if x ∈ B
k and Si = {v1, . . . , vs},with 1 ≤ v1 < v2 < · · · < vs ≤ k, then the ith bit of fD(x) is f(xv1 , . . . , xvs).Example 1.24 ontinued. Say we onsider the parity funtion f : B

3 −→ B,so that f(x1, x2, x3) = (x1 + x2 + x3) rem 2. With the design from above, thevalue of fD : B
9 −→ B

12 at x = (0, 1, 1, 1, 1, 0, 0, 0, 1) ∈ B
9 is

fD

0 0 1
1 1 0
0 1 1

 = 001001010100.For example, the seond of the twelve values is omputed as fD(x)2 = f(x4, x5, x6) =
f(110) = 1 + 1 + 0 rem 2 = 0. ♦

24 Chapter 1. Pseudorandom generators1.6. The Nisan�Wigderson generatorWe want to get rid of the two parameters ǫ and s in our notion of (ǫ, s)-resilientpseudorandom generators. To this end, we�somewhat arti�ially�set ǫ = n−1and s = n. Thus we now onsider pseudorandom generators f : B
k −→ B

n forwhih there is no algorithm using time at most n and with
|E(A(f(Uk)))− E(A(Un))| ≥ n−1.This is seemingly more generous than the previous de�nition. One has to showthat from a pseudorandom generator in the new sense one an onstrut one inthe previous sense (with di�erent values of k and n).Theorem 1.25. Let k, n, s be positive integers, s ≥ 2, t = ⌊logs n⌋−1, f : B

s −→
B with hardness Hf > 2n2, and D an (k, n, s, t)-design. Then fD : B

k −→ B
n isan (n−1, n)-resilient pseudorandom generator.Proof. By Theorem 1.15, any ǫ-distinguisher between X = fD(Uk) and Unan be transformed into a ǫ

n
-preditor for some bit under X. So we now assumethat we have a preditor P for the ith bit under X, for some i ≤ n, with σP(X) ≥

1/2 + ǫ and ǫ ≥ n−2, and derive a ontradition to our hardness assumption.By reordering the elements of {1, . . . , k}, we may assume that Si = {1, . . . , s},so that the ith bit depends only on the �rst s omponents of the values of Uk.In order to separate out the dependene on the �rst s and the last k− s bits; wewrite Uk = Us×Uk−s. As in (1.11), we let p(y, ∗) = prob(y ← (X1, . . . , Xi−1)) bethe probability that y ours as an initial segment under X, for y ∈ B
i−1. Then

1/2 + ǫ ≤ σP(X)

=
∑

y∈Bi−1

prob(y ←− (X1, . . . , Xi−1)) · prob(P(y)←− Xi(y))

=
∑

x′∈Bs,x′′∈Bk−s

y=fD(x′,x′′)1...i−1∈B
i−1

prob(x′ ←− Us) · prob(x′′ ←− Uk−s) · prob(f(x′)←− P(y))

= 2−(k−s)
∑

x′′∈Bk−s

r(x′′),where fD(x′, x′′)1...i−1 stands for (fD(x′, x′′)1, . . . , fD(x′, x′′)i−1) ∈ B
i−1, and

r(x′′) = 2−s
∑

x′∈Bs

y=fD(x′,x′′)1...i−1

prob(f(x′)←− P(y)).Thus the average of r over B
k−s is at least 1/2 + ǫ. Then there exists some value

z ∈ B
k−s of x′′ so that r(z) ≥ 1/2 + ǫ; otherwise we would have

2k−s(1/2 + ǫ) > 2k−s max
x′′∈Bk−s

r(x′′) ≥
∑

x′′∈Bk−s

r(x′′) ≥ 2k−s(1/2 + ǫ).

Cryptography, July 29, 2009, ©2009 J. von zur Gathen 25This is just an instane of the general fat that some value is at least as large asthe average value: �not everybody an be below average�.Now we �x suh a z. Thus
r(z) = 2−s

∑

x′∈B
s

y=fD(x′,z)1...i−1

prob(f(x′)←− P(y)) ≥ 1/2 + ǫ.We now have an algorithm for approximating f : ompute y as above, plug it into
P, and use P(y) as an approximation for f(x′).Algorithm 1.26. Ciruit A that approximates f .Input: x′ = (x1, . . . , xs) ∈ B

s.Output: 0 or 1.1. For j = 1, . . . , i− 1 do2. yj ←− fD(x′, z)j , with z as above.3. Output P(y1. . . . , yi−1).We have to show that A approximates f well, and that it an be built with fewgates. The latter seems implausible at �rst, sine in step 2 we have to evaluate
f at some point wi ∈ B

s, given by the bits of (x′, z) in the positions ontained in
Si. But isn't that hard? Yes, omputing f at an arbitrary input is hard, but thewhole setup is designed so that these speial evaluation problems beome easy.Let 1 ≤ j < i. Sine #(Si ∩ Sj) ≤ t = ⌊logs n⌋ − 1 ≤ ⌊log2 n⌋ − 1, and z is�xed, yj depends on at most t bits. It is a general fat that any Boolean funtionon t bits (with one output) an be omputed in time 2t+1, say by writing it indisjuntive (or onjuntive) normal form. Thus yj an be omputed from x′ intime 2t+1 ≤ n, and all of y1, . . . , yi−1 an be omputed with at most n(i−1) ≤ n2operations.What is the probability that A(x′) = f(x′), for x′ ←− Us? We are given our�xed z, and ompute y1, . . . , yi−1 orretly from x′. Thus A(x′) = P(y1, . . . , yi−1),and

2−s
∑

x′∈Bs

prob(f(x′)←− A(x′)) = 2−s
∑

x′∈Bs

y=fD(x′,z)1...i−1

prob(f(x′)←− P(y))

= r(z) ≥ 1/2 + ǫ ≥ 1/2 + n−2.This ontradits the assumption that Hf ≥ 2n2, and proves the laim. �1.7. Constrution of good designsAs in many other �elds of ombinatoris, �nite �elds are the basis for an attrativesolution. Let Fq be a �nite �eld with q elements, so that q is a prime power, t < q

26 Chapter 1. Pseudorandom generators1.7. Constrution of good designsan integer,
P = {f ∈ Fq[x] : deg f ≤ t},
Sf = {(u, f(u)) : u ∈ Fq} ⊆ L = F

2
q for f ∈ P,

k = #L = q2, n = qt+1.Theorem 1.27. The olletion of all these graphs Sf of f ∈ P is a (k, n, q, t)-design.Proof. The only laim to verify is that #(Sf ∩ Sg) ≤ t for distint f and
g ∈ P . But #(Sf ∩Sg) ≥ t+1 means that the two polynomials f and g of degreeat most t have t + 1 values in ommon. Then f − g is a polynomial of degree atmost t with at least t+1 roots, hene the zero polynomial, and we have f = g.�Example 1.24 ontinued. We take q = 3 and t = 1, so that k = 9 = q2,
n = 9 = q1+1, and s = 3 = q. The following piture shows this design.

0

1

2

0 1 2

• • •
� � �

� � �

• : f = 0,

� : f = 1,

� : f = 2,

0

1

2

0 1 2

�

�

�

�

�

�

•
•
•

• : f = x,

� : f = x + 1,

� : f = x + 2,

0

1

2

0 1 2

�

�

�

•

•
•

�

�

�

• : f = 2x,

� : f = 2x + 1,

� : f = 2x + 2.Thus we �nd the �rst nine piees of the design from Example 1.24. ♦In general, this onstrution does not provide the best possible design, but it isvery simple and su�ient for our purposes.
s = q t k = s2 n = st+1

(

k
s

)

3 1 9 9 28
3 2 9 27 84
4 2 16 64 1820Figure 1.3: Some design parameters. Compare n to the number (

k
s

) of all subsetsof size s.

Cryptography, July 29, 2009, ©2009 J. von zur Gathen 27Corollary 1.28.(i) For any positive integers s > t, where s is a prime power, there exists an
(s2, st+1, s, t)-design.(ii) For any positive integers k, n, t, and a prime power s with k ≥ s2 and
t ≥ logs n− 1 there exists a (k, n, s, t)-design.Proof. In (i) we have reorded the above onstrution. For (ii), we use (i)and note that n = slogs n ≤ st+1. �Corollary 1.29. Let n and s be positive integers, with s a prime power, and

f : B
s −→ B with hardness Hf ≥ 2n2. Then the Nisan�Wigderson generator is apseudorandom generator from B

s2 to B
n.In partiular, if n is exponential in s, say n = 2s/4, then we have a pseudoran-dom generator that turns short random strings into exponentially long pseudo-random ones.The orollary has the form:(1.30) If there is a hard problem, then a pseudorandom generator exists.Most statements about the existene of pseudorandom generators have thisform. We have a substantial olletion of problems that we think are hard, butunfortunately it is even harder to prove this. In fat, very few suh resultsare known; we will mention one below. On the other hand, almost all Booleanfuntions on s inputs require time at least 2s/s to ompute them exatly. This iseasily proved by a ounting argument; see Muller (1956) and Boppana & Sipser(1990), Theorem 2.4. Thus hard funtions do exist; an unresolved di�ulty is to�nd nie and natural suh funtions. But for our appliation we would have tosolve a yet more di�ult problem: to show that some funtions are even hard toapproximate.One of the interesting onsequenes of Nisan and Wigderson's work is that thislamentable situation of relying on the hardness of funtions is unavoidable: theonverse of (1.30) also holds! If we an prove that something is a pseudorandomgenerator, then we have automatially proved some problem to be hard!Reall the omplexity lasses

P ⊆ ZPP ⊆ RP ⊆ BPP ⊆ NP ⊆ EXPT IME .We say that a generator g = (gk)k∈N, with gk : B
k −→ B

n(k) for all k, is quikif it an be implemented in time exponential in k. A funtion r : N −→ N isalled reasonable if for all k, k′ ∈ N we have
k ≤ r(k) ≤ 2k,

28 Chapter 1. Pseudorandom generators1.8. Deterministi simulation of probabilisti omputation
r(k) ≤ r(k′) if k ≤ k′,

(r(k))2 ≤ r(k2).Theorem 1.31. Let r : N −→ N be reasonable. Then the following statementsare equivalent:(i) For some c > 0 there exists a funtion in EXPT IME with hardness r(kc).(ii) For some c > 0 there exists a quik pseudorandom generator g with gk : Bk −→
B

r(kc).Proof. We only prove (i)=⇒ (ii). Let f = (fs)s∈N be a funtion in EXPT IMEwith fs : B
s −→ B for all s and hardness Hfs ≥ r(sc). We build a pseudorandomgenerator g = (gk) with gk : B

k −→ B
n, with n = r(kc/4 − 1)/2. Let k ∈ N and

s = ⌊k1/2⌋. Then Hfs ≥ r(sc) ≥ r(kc/2−1) ≥ r((kc/4−1)2) ≥ (r(kc/4−1))2 = 2n2.Now the orollary says that we indeed have a pseudorandom generator from
B

s2 −→ B
n. Sine s2 ≤ k, this gives a pseudorandom generator B

k −→ B
n. �1.8. Deterministi simulation of probabilisti omputationA fundamental question about probabilisti omputations is whether randomnessreally helps, or whether it an in e�et be eliminated without too muh ost.Suppose that A is a probabilisti algorithm omputing some funtion f intime t. In partiular, it uses at most t(n) random bits on inputs of size n. Wean simulate A by deterministi algorithm B whih makes all 2t(n) hoies ofthese bits one after the other, simulates A on eah of them, and then ountsthe outomes and takes the majority opinion as output. Of ourse, this is anexponential inrease in ost, from t(n) to 2t(n).Now if t(n) is polynomial in n and we have a good pseudorandom generator,we may take its output instead of the random bits required in A. Then we onlyhave to try out all possible hoies for the seeds to the pseudorandom generator.This may be exponentially less than 2t(n).Nisan and Wigderson assume that there exists a funtion in DT IME (2O(n))with the properties at left, and onlude the inlusions of omplexity lasses atright. Not approximable by BPP ⊆ ⋂

ǫ>0DT IME(2nǫ
)polynomial-sized iruitsFor some ǫ > 0, not approximable BPP ⊆ DT IME(2(logn)c

)by iruits of size 2nǫ for some c > 0Hardness ≥ 2ǫn for some ǫ > 0 BPP = P

Cryptography, July 29, 2009, ©2009 J. von zur Gathen 29Generally speaking, (too) few hardness results have been proven. One of the fewsuesses deals with iruits of onstant depth d. Håstad proved a lower bound onapproximability (of the parity funtion). Nisan and Wigderson use this to obtaina pseudorandom generator B
k −→ B

n with exponential expansion nk1/(2d+6) whihno iruit of polynomial size and with depth at most d an distinguish from theuniform distribution more than negligible advantage.1.9. The Blum�Blum�Shub generatorThis generator takes N = p · q with distint odd primes p and q as in RSA, asseed a random square x0 ∈ Z
×
N , then omputes xi ≡ x2

i−1 remN , and returns thelow order bit
x0 rem 2, x1 rem 2,Why the hell should this be seure?For a ∈ Z and a prime p, the Legendre symbol is

(

a

p

)

=

1 if a mod p ∈ Z
×
p is a square,

−1 if a mod p ∈ Z
×
p is a nonsquare,

0 if p|a.Fermat's Little Theorem says that ap−1 = 1 in Zp for all a 6= 0. If a = b2, then
a(p−1)/2 = (b2)(p−1)/2 = bp−1 = 1. Thus x(p−1)/2 − 1 has the (p− 1)/2 squares asits roots, and sine its degree is (p − 1)/2, there are no others. It follows that
(

a
p

)

≡ a(p−1)/2 (mod p).Now p−1
2

elements of Z
×
p are squares, and p−1

2
are nonsquares, so that halfof the elements of Z

×
p have Legendre symbol 1, and half have −1. The Jaobisymbol is de�ned in our situation as

(

a

pq

)

=

(

a

p

)

·
(

a

q

)

.By the Chinese Remainder Theorem, an element a ∈ Z
×
N is a square modulo Nif and only if it is a square modulo p and modulo q. We have

(− 1

p

)

= 1 ⇐⇒ p ≡ 1 mod 4.Let � = �N = {a ∈ Z
×
N : ∃b ∈ Z

×
N a = b2} be the set of squares modulo N , and

⊠ = ⊠N = {a ∈ Z
×
N :

(

a
N

)

= 1 and a 6∈ �} be the set of nonsquares modulo
N with Jaobi symbol 1. (They are also alled pseudosquares in the literature,but this is a very di�erent use of �pseudo� from pseudoprimes�whih are usuallyprimes�and �pseudorandom� elements�whih behave like random elements; theelements of ⊠ are never squares.)

30 Chapter 1. Pseudorandom generators1.9. The Blum�Blum�Shub generator
(

a
q

)

= 1
(

a
q

)

= −1
(

a
N

)

= 1
(

a
N

)

= −1
(

a
p

)

= 1 �N

�p×�q �p×⊠q

(u,−v) (u, v)
(

a
N

)

= −1
(

a
N

)

= 1
(

a
p

)

= −1 ⊠N

⊠p×�q ⊠p×⊠q

(−u,−v) (−u, v)Figure 1.4: The values u and v are explained in the text.It is easy to ompute (

a
N

) by a method similar to the Eulidean algorithm.This takes O(k2) bit operations if a and N are k-bit numbers (and presumably
O(M(k) logk) with fast arithmeti). Thus we an quikly tell whether a ∈ � ∪⊠.The quadrati residuosity problemmodulo N is to deide on input a ∈ � ∪⊠whether a ∈ �. Of ourse, given the fators p and q, this beomes easy sine wean ompute (

a
p

) and (

a
q

). But no polynomial-time algorithm is known if thesefators are not provided, and we will assume that in fat this is a hard problem.Let �p, ⊠p ⊂ Z
×
p be the sets of squares and nonsquares, respetively, andsimilarly for q. Under the Chinese remainder isomorphism

χ : Z
×
N −→ Z

×
p × Z

×
qwe have

χ(�N) = �p×�q,

χ(⊠N) = ⊠p×⊠q .We onsider the squaring map σp : Z
×
p −→ �p ⊆ Z

×
p with σp(a) = a2. If p ≡

3 mod 4, then −1 is not a square modulo p, and exatly one of the two squareroots a and −a of a2 is a square.We now assume that p ≡ q ≡ 3 mod 4. Then N = pq is alled a Bluminteger, after Manuel Blum. If χ(a) = (u, v), then χ(a2) has the four squareroots
(u, v), (−u, v), (u,−v), (−u,−v).

Cryptography, July 29, 2009, ©2009 J. von zur Gathen 31Exatly one of them is a square, and χ−1 of this square is alled the prinipal(square) root of a2. If, say, u is a square modulo p and v a nonsquare modulo
q, then (u,−v) is the square among the four. This situation is illustrated inFigure 1.4.Example 1.32. We let p = 3 and q = 7, so that N = 21. Then �3 = {1},
⊠3 = {2}, �7 = {1, 2, 4}, and ⊠7 = {3, 5, 6}. Figure 1.4 now looks as follows:Not surprisingly, 1 is the prinipal root of 1, and 4 that of 16. But also 16 is

1, 2, 4 3, 5, 6
1↔ (1, 1) 10↔ (1, 3)

1 16↔ (1, 2) 19↔ (1, 5)
4↔ (1, 4) 13↔ (1, 6)
8↔ (2, 1) 17↔ (2, 3)

2 2↔ (2, 2) 5↔ (2, 5)
11↔ (2, 4) 20↔ (2, 6)Figure 1.5:the prinipal root of 4. In other words, −5 ≡ 16 mod 21 is the prinipal root of

25 ≡ 4 mod 21. ♦From an algebrai point of view, � is a subgroup of Z
×
N with φ(N)/4 elements.The squaring map σ : Z

×
N −→ � is a homomorphism whih always maps fourelements (±u,±v) to one, namely to (u2, v2). � has four osets �, ⊠, and, say,

C0 and C1, and in eah oset lies exatly one of these four square roots. Inpartiular, σ indues a bijetion on �. Multipliation by −1 gives a bijetionbetween � and ⊠ (and between C0 and C1). The residue lass group Z
×
N/ � isisomorphi to {±1} × {±1} ∼= Z2 × Z2, with � ↔ (1, 1) and ⊠ ↔ (−1,−1).Here {±1} is the �multipliative version� of Z2. The orresponding mapping

Z
×
N −→ {±1} × {±1} is given by a 7−→

(

(

a
p

)

,
(

a
q

)

).Our ultimate goal is to prove the following result.Theorem 1.33. Let N be a k-bit Blum integer, onsider the Blum�Blum�Shubgenerator g : B
k −→ B

n for some n > k, and suppose that A is an ǫ-distinguisherbetween g(uk) and un, for ǫ = n−e for some e > 0. Then for any δ > 0 one antest quadrati residuosity by a probabilisti algorithm T with error probabilityat most δ. If A uses time polynomial in n, then B uses time polynomial in n, ǫ−1and log δ−1.

32 Chapter 1. Pseudorandom generators1.9. The Blum�Blum�Shub generatorWe note that A only has to work well on most inputs, while on any singleinput x to B, the error probability is at most δ.The proof proeeds in four steps:distinguisher step 1−→ postditor step 2−→ squareness distinguisherstep 3−→ weak squareness test step 4−→ strong squareness test.A postditor (or previous bit preditor) works like our old friends thepreditors, only it predits the previous bit x0 from x1, . . . , xn. Yao's methodyields the �rst step.Step 1: From A we obtain an ǫ
n
-postditor.In Step 2, we build a squareness distinguisher B from a postditor P.Algorithm 1.34. Squareness distinguisher B.Input: A Blum integer N and a ∈ � ∪⊠ ⊆ {0, . . . , N − 1}.Output: �a ∈ �� or �a ∈ ⊠�.1. Compute x1 = a2 remN .2. Compute the output y1 = x1 rem 2, . . . , yn = xn rem 2 of the Blum�Blum�Shub generator.3. Compute z = P(y1, . . . , yn).4. If a ≡ z mod 2 then output �a ∈ �� else output �a ∈ ⊠�.The idea is that P always postdits elements from a long sequene of repeatedsquares, so that the postdited z is likely to be the low order bit of a square. Thetwo square roots modulo N in � ∪⊠ of x1 ≡ a2 mod N are a and −a remN =

N − a, and a 6≡ N − a mod 2 sine N is odd.Lemma 1.35. Suppose that P is an ǫ-postditor. Then for a ∈ � ∪⊠ hosenuniformly at random, the output of the squareness distinguisher is orret withprobability at least 1/2 + ǫ.Proof. By assumption, we have
1

2
+ ǫ ≤ σP(p) =

∑

a∈�∪⊠

p(a) prob(a0 = P(y1, . . . , yn))

= p0 ·
∑

a∈�∪⊠

prob(a0 = P(y1, . . . , yn))

= p0 ·
[

∑

a∈�

prob(B(a) = �a ∈ ��) +
∑

a∈⊠

prob(B(a) = �a ∈ ⊠�)]
= p0 ·

∑

a∈�∪⊠

prob(B(a) is orret),where a0 is the low order bit of a1, p is the uniform distribution on � ∪⊠, so that
p(a) = p0 = (#(� ∪⊠))−1 = 2/(p − 1)(q − 1) for all a ∈ � ∪⊠, y1, . . . , yn are

Cryptography, July 29, 2009, ©2009 J. von zur Gathen 33omputed as in step 2 of B, and �prob� refers to the internal distribution of theprobabilisti algorithms P and B. We note that #Z
×
N = (p−1)(q−1) = ϕ(N).�Step 3. Our algorithm B distinguishes (slightly) the squares in � from thenonsquares in ⊠. If B were deterministi, then for slightly more than half theinputs from � ∪⊠ its answer would be orret. (In general, the orretnessprobabilities sum to just over 1/2.) We now build a muh stronger result fromthis: a probabilisti algorithm C whose suess probability on any input is slightlymore than 1/2. For any problem, any algorithm with C's properties also has B'sproperties, but in general one annot go the other way around. Here we sueedin this by �smearing� the (non)squareness of a single input x uniformly aross thewhole of � ∪⊠.Algorithm 1.36. Weak squareness test C.Input: x ∈ � ∪⊠.Output: �x ∈ �� or �x ∈ ⊠�.1. Choose r ∈ Z

×
N and b ∈ {0, 1} uniformly at random.2. Compute z = (−1)br2x remN .3. Call B with input z, and let c ∈ {0, 1} be the output bit c = (B(z) = �z ∈ ��).[Thus c is 1 if and only if B answers �z ∈ ��.℄4. Output �x ∈ �� if b⊕ c = 1 and �x ∈ ⊠� otherwise.Theorem 1.37. For any input x ∈ � ∪⊠, this test C answers orretly withprobability at least 1/2 + ǫ.Proof. We �rst laim that if B answers orretly, then so does C. Let x ∈ �.Then

b = 0⇐⇒ z ∈ � ⇐⇒ (B(z) = �z ∈ ��)⇐⇒ c = 1.Thus for both possible values of b, we have b⊕c = 1, and C(x) is orret. Similarly,for x ∈ ⊠ we �nd
b = 0⇐⇒ z ∈ ⊠ ⇐⇒ (B(z) = �z ∈ ⊠�)⇐⇒ c = 0,so that b⊕ c = 0. This proves the laim.Now let x ∈ � ∪⊠ be an input, and y ∈ � ∪⊠ arbitrary. We laim thatthere exists exatly four hoies for (b, r) so that y = (−1)br2x remN . Firstsuppose that x ∈ �. The elements r2 rem N form preisely the set � of squares,and eah element of � omes from four values of r. Sine � is a group, theelements r2x remN also make up �, eah element ourring four times. Nowmultipliation by 1 = (−1)0 does not hange anything, while multipliation by

−1 = (−1)1 maps � bijetively to ⊠.

34 Chapter 1. Pseudorandom generators1.9. The Blum�Blum�Shub generatorSimilarly, if x ∈ ⊠, then r2x remN forms ⊠, four times, and (−1)br2x remNgives � ∪⊠.In partiular, for any input x ∈ � ∪⊠, the element z omputed in the algo-rithm is a uniform random element of � ∪⊠. The suess probability of B onsuh inputs z is at least 1/2 + ǫ, so that C also has at least this suess probabil-ity. �Now omes the �nal Step 4. We have a Monte Carlo test C for squarenesswith suess probability at least 1/2 + ǫ. We now improve this to 1 − δ for any
δ > 0.This method for bumping up suess probabilities works for any Monte Carloalgorithm. So we have a set � ⊆ B

n and a probabilisti algorithm C whih answers�x ∈ �� or �x 6∈ �� on input x, and the output is orret with probability exatly
1/2 + ǫ for every x ∈ B

n.We let k = 2m + 1 for m ∈ N, and onsider the test T whih, on input x,runs C exatly k times and outputs the majority answer.Theorem 1.38. The test T answers orretly with probability at least 1− (1−
4ǫ2)m/2.Proof. Let x be an input. We assume that the orretness probability of C oninput x is exatly 1/2 + ǫ. The probability of obtaining exatly i orret answersin k trials is

(

k

i

) (

1

2
+ ǫ

)i (
1

2
− ǫ

)k−i

.

T answers inorretly if at most m orret answers were given by C. Weset s = 1
2

+ ǫ and t = 1
2
− ǫ = 1 − s. Thus s/t ≤ 1, k − m = m + 1 and

∑

0≤i≤n

(

k
i

)

= 22m+1. The probability that T answers inorretly is at most
∑

0≤i≤m

(

k

i

)

sitk−i = smtk−m
∑

0≤i≤m

(

k

i

)

(s/t)m−i

≤ (st)mt
∑

0≤i≤m

(

k

i

)

=

(

1

4
− ǫ2

)m

t · 22m

= (1− 4ǫ2)mt ≤ (1− 4ǫ2)m/2. �Corollary 1.39. In order to improve the orretness probability from 1/2 + ǫto 1− δ, as above, it is su�ient to take k = ⌈ǫ−2 ln((2δ)−1)⌉+ 2.

Cryptography, July 29, 2009, ©2009 J. von zur Gathen 35Proof. It is su�ient to hoose m so that
(1− 4ǫ2)m/2 ≤ δ.Thus

m ≥
⌈ ln 2δln(1− 4ǫ2)

⌉is good enough. The Brook Taylor expansion of the natural logarithm givesln(1 − x) = −x + x2

2
− x3

3
+ − . . . ≤ −x/2 for 0 ≤ x < 1. (Note that the twologarithms have negative values.) Heneln 2δln(1− 4ǫ2)

≤ 2

4ǫ2
ln((2δ)−1).Thus

k = 2m + 1 = 2

⌈ ln((2δ)−1)

2ǫ2

⌉

+ 1 ≤
⌈ ln((2δ)−1)

ǫ2

⌉

+ 2is su�ient. �1.10. Randomness extrationIn this setion we will explore the following problem: Assume you are given asoure whih generates n bits of �bad� randomness and the goal is to extrat mbits of �good� randomness.The oldest approah was given by von Neumann (1951). He solved the follow-ing question: Given a oin B whose probability of giving Heads is p, onstrutout of this oin a oin C for whih the probability of giving Heads is 1/2. Thesolution he gave was to throw the oin B twie. If in the two experiments theresults are di�erent (e.g. �rst Heads then Tails), the value of the new oin isde�ned to be the value of the �rst throw (in our example Heads). Otherwise theresult is disarded and the oin B is again thrown twie. The probability for theoin C giving Heads is now equal to the probability of C giving Tails. Howeverwe will have to throw the oin an expeted number of 1/(2p(1− p)) times twiein order to extrat one fair oin toss. Thus the above proedure extrated in asuitable sense the randomness hidden in B.Identify in this setion onstantly a random variable with its distribution andmake the distintion only if neessary. We are all the time disussing probabilitydistributions, their distane and the amount of randomness they ontain. For thelatter Shannon's entropy pops into ones mind, but it turns out that it is oftenhard to estimate the entropy in a distribution. A more onvenient measure is theso alled min-entropy. For a random variable X over (in our ase always �nite)set A, the min-entropy of X is de�ned by
H∞(X) := mina∈A− log2 prob(a←− X).

36 Chapter 1. Pseudorandom generators1.10. Randomness extrationWe observe that if H∞(X) then for all a ∈ A we have prob(a←− X) ≤ 2−k.It is illustrative to ompare this value to Shannon's entropy
H(X) = −

∑

a∈A

prob(a←− X) log2 prob(a←− X).While Shannon measures the �amount of randomness� on average, the min-entropy aptures the �worst-ase�. Intuitively the min-entropy measures the num-ber of random bits that are at least ontained in X. More preisely we an thinkof X ontaining at least k random bits if and only if H∞(X) ≥ k.Now let X, Y be two distributions over the (�nite) set A. We de�ne theirstatistial distane by
∆(X, Y) :=

1

2

∑

a∈A

| prob(a←− X)− prob(a←− Y)|.We say that X is ε-lose to Y if ∆(X, Y) ≤ ε and we all X to be ε-quasi-randomif X is ε-lose to uniform.Now what is an extrator? Ideally we would like at least to onstrut afuntion E on n-bit strings that extrats a single bit of randomness, i.e. a funtion
E : B

n → B suh that for all distributions X on B
n with H∞(X) ≥ n − 1, thevalue E(X) is lose to a uniform random bit. However suh a funtion E does notexist: Every funtion E has a bit b ∈ B suh that the set S := {x ∈ B

n E(x) = b}has not less than 2n−1 elements. The distribution US that assigns to eah elementof S the same probability and to all elements not in S probability 0 ertainly has
H∞(US) ≥ n − 1 but the output E(X) is onstantly b and thus not lose touniform. This means that we need to be more generous for the de�nition of anextrator.In the following we will always use the following notation: n denotes thelength of the input x following distribution X, m the length of the extratedelement, k denotes the min-entropy of X and d the length of some additionaluniform random input whih will allow us to atually onstrut our extrators.Definition 1.40 (Extrator). A funtion E : B

n × B
d → B

m is alled a (k, ε)-extrator if for all distributions X on B
n with H∞(X) ≥ k the output E(X, Ud)is ε-quasi-random. Here Ud denotes the uniform distribution on d-bit strings.We all E e�ient if it is omputable in polynomial time (in the size of theinput). This of ourse makes only sense if we onsider E to be a whole familyof funtions and d and m to be suitable funtions in n. The extrator is allednontrivial if m > d. This is beause we simply ould output the �rst m bits ofthe additional truely random input if d ≥ m.How do we now onstrut suh an extrator? The idea is to hash in a suitablesense elements from B

n to B
m. To do so we need ertain families of hash-funtionsthat behave (in a statistial sense) very well:

Cryptography, July 29, 2009, ©2009 J. von zur Gathen 37Definition 1.41 (Universal family of hash funtions). Assume you have a fam-ily of funtions H =
{

hs : B
n → Bℓ s ∈ B

d
}. Then H is alled universal if forall x1, x2 ∈ B

n and all y1, y2 ∈ Bℓ we haveprob(y1 ←− H(x1) and y2 ←− H(x1)) = 2−2ℓ.We are now going to onstrut an extrator out of any universal family ofhash funtions:Definition 1.42. Let H be a universal family of hash funtions of size 2d. Theextrator de�ned by H is given by
E(x, s) = hs(x) ◦ s,the notation denotes onatenation of strings.In abuse of notations we will write E(x, h) = h(x) ◦ h, identifying the funtion hwith its index. Note that the number m of produed bits is equal to ℓ + d.We will now show that this onstrution is indeed good:Theorem 1.43. If H is a universal family of hash funtions and ℓ ∈ k−2 log(1/ε)−

O(1), then the extrator E(x, h) de�ned by H is a (k, ε/2)-extrator.Proof. For the proof we will need a ertain tool, the so alled ollision prob-ability. For a distribution X over B
n we de�ne its ollision probability asCol(X) = prob(x = y and x←− X and y ←− X)

=
∑

x,y∈Bn

prob(x←− X) prob(y ←− X)

=
∑

x∈Bn

prob(x←− X)2The proof has three steps:1. We show that if H∞(X) ≥ k then Col(X) ≤ 1/k.2. If Col(X) is small, so is the ollision probability of the output distributionof the extrator de�ned by H .3. We �nish by observing that if the ollision probability of a distribution Yis lose to the ollision probability of the uniform distribution, then Y islose to uniform.

38 Chapter 1. Pseudorandom generators1.10. Randomness extrationAd 1) We have thatCol(X) =
∑

x∈Bn

prob(x←− X)2 ≤ pmax ∑

x∈Bn

prob(x←− X) = pmax ≤ 2−kHere pmax denotes the maximum probability for whih X assumes a ertain value.Ad 2) We need to analyze Col(E(X, H)) = Col(H(X) ◦H). We haveCol(H(X) ◦H)

= prob(H(X) ◦H = H ′(X ′) ◦H ′)

= prob(H = H ′) prob(H(X) = H ′(X ′) | H = H ′)

= prob(H = H ′) prob(H(X) = H(X ′))

= prob(H = H ′) (prob(X = X ′) + prob(X 6= X ′) prob(H(X) = H(X ′) | X 6= X ′)))

≤ 2−d
(

2−k + prob(H(X) = H(X ′) | X 6= X ′)
)

= 2−d
(

2−k + 2−ℓ
)

= 2−(ℓ+d)
(

22 log ε−O(1) + 1
)

≤ 2−(ℓ+d)
(

ε2 + 1
)Ad 3) Let Y1, Y2 be any two probability distributions over B

m. Then we have thefollowing fat:(1.44) ∆(Y1, Y2) ≤
1

2
2m/2

√

∑

y∈Bm

(prob(y ←− Y1)− prob(y ←− Y2))2We are now going to estimate the last sum. We have:
∑

y∈Bm

(prob(y ←− Y1)− prob(y ←− Y2))
2 =

∑

y∈Bm

prob(y ←− Y1)
2 +

∑

y∈Bm

prob(y ←− Y2)
2 − 2

∑

y∈Bm

prob(y ←− Y1) prob(y ←− Y2))If Y2 = Um is uniform we obtain:
∑

y∈Bm

prob(y ←− Y1)
2 +2−(d+ℓ)−2 ·2−(d+ℓ)

∑

y∈Bm

prob(y ←− Y1) = Col(Y1)−2−(d+ℓ)If we set now Y1 = H(X) ◦H , we obtain
∑

y∈Bm

(prob(y ←− H(X) ◦H)− prob(y ←− Um))2 = Col(H(X) ◦H)− 2−(d+ℓ)

≤ 2−(d+ℓ)(ε2 + 1)− 2−(d+ℓ) =
ε2

2d+ℓ

Cryptography, July 29, 2009, ©2009 J. von zur Gathen 39From the inequality (1.44) we obtain
∆(H(X) ◦H, Um) ≤ 1

2
2(d+ℓ)/2

√

ε2

2d+ℓ
= ε/2This �nishes the proof. �Notes 1.2. The attak on linear ongruential generators is due to Reeds (1977) and Boyar??.1.3. The two notions of probability distribution p on a set A and random variable X on Aare equivalent in the following sense. From p we get the random variable X = id, as desribedin the text, and from some X , we get p with p(a) = prob(a ←−− X). These assoiations areinverse to eah other, that is, starting from some p and taking X = id, we get the distribution

p bak in the way desribed. Similarly, for any X , the random variable orresponding to the pwhih orresponds to X equals X .A fundamental notion in omplexity theory is the omplexity lass P of all Boolean prediates(= one-output Boolean funtions = languages) whih an be omputed by a (deterministi)Turing mahine in polynomial time. We an also onsider the lass Pir of all suh prediateswhih an be omputed by a family (Cn)n∈N of Boolean iruits Cn, where Cn has n inputs andits size is polynomial in n. Then P ⊂ Pir, but the two lasses are not idential, beause theiruit for n inputs may be onstruted in a manner totally di�erent from that for n−1 inputs,while a Turing mahine has only �one� behavior for all input sizes. This an be mended bystipulating that the iruits Cn have to be �uniformly onstruted� in dependene on n. Withthe appropriate tehnial de�nitions, we have Pir(uniform) = P . Alternatively, we an allowTuring mahines a speial �advie tape�; this gives the omplexity lass P/ poly, whih equals
Pir. For the rather tehnial details, we refer to ???. If we think of C as representing aneletrial iruit, then the time that a signal takes orresponds to the length of a longest pathfrom inputs to outputs; this is alled the depth of the iruit.1.4. In De�nition 1.12 (iii), the preditor atually also has to ompute ik from k, so that ikdepends �uniformly� on k (see Notes 1.3).

40 Chapter 1. Pseudorandom generatorsNotes

Cryptography, July 29, 2009, ©2009 J. von zur Gathen 41
Aronyms
AES Advaned Enryption StandardATM Automati Teller MahineCBC Cipher Blok ChainingCESG Communiations-Eletronis SeurityGroupCFB Cipher FeedbakDEC Digital Equipment CorporationDES Data Enryption StandardDSA Digital Signature AlgorithmDSS Digital Signature StandardECB Eletroni CodebookEFF Eletroni Frontiers FoundationFIPS Federal Information ProessingStandardIBM International Business MahinesIDEA International Data EnryptionAlgorithmMARS A andidate ipher for AES. missinglong name

MD4 Message Digest 4MD5 Message Digest 5NBS National Bureau of StandardsNIST National Institute of Standards andTehnologyNSA National Seurity AgenyOFB Output FeedbakPIN Personal Identi�ation NumberPKCS Publi Key Cryptography StandardRSA In. issued some of these.PRG Pseudo Random number GeneratorRSA Rivest, Shamir and AdlemanCryptosystemRC6SHA Seure Hash AlgorithmSHS Seure Hash StandardTDEA Triple Data Enryption Algorithm

42 Chapter 1. Pseudorandom generatorsNotes

Cryptography, July 29, 2009, ©2009 J. von zur Gathen 43
BibliographyThe numbers in brakets at the end of a referene are the pages on whih it is ited. Names ofauthors and titles are usually given in the same form as on the artile or book.Thomas Beth, Dieter Jungnikel & Hanfried Lenz (1993). DesignTheory. Cambridge University Press. First edition 1985. [22℄L. Blum,M. Blum &M. Shub (1986). A simple unpreditable pseudo-randomnumber generator. SIAM Journal on Computing 15(2), 364�383. [1℄Ravi B. Boppana & Mihael Sipser (1990). The Complexity of FiniteFuntions. In Handbook of Theoretial Computer Siene, J. van Leeuwen,editor, volume A, 757�804. North-Holland. [27℄Joan Boyar (1989). Inferring Sequenes Produed by Pseudo-Random Num-ber Generators. Journal of the ACM 36(1), 129�141. [4℄Donald E. Knuth (1973). The Art of Computer Programming, vol.1: Fun-damental Algorithms. Addison-Wesley, Reading MA, 2nd edition. [7℄Donald E. Knuth (1998). The Art of Computer Programming, vol. 2, Seminu-merial Algorithms. Addison-Wesley, Reading MA, 3rd edition. ISBN 0-201-89684-2. First edition 1969. [3℄J. E. Littlewood (1953). A Mathematiian's Misellany. Methuen & Co.Ltd., London, 136. [5℄D. E. Muller (1956). Complexity in Eletroni Swithing Ciruits. IRETransations on Eletroni Computers 5, 15�19. [27℄John von Neumann (1951). Various tehniques used in onnetion with ran-dom digits. Monte Carlo methods. National Bureau of Standards, Applied Math-ematis Series 12, 36�38. [35℄Noam Nisan & Avi Wigderson (1994). Hardness vs Randomness. Journalof Computer and System Sienes 49, 149�167. [1℄

44 BIBLIOGRAPHYBIBLIOGRAPHYJames Reeds (1977). �Craking� a random number generator. Cryptologia1(1), 20�26. [39℄Damien Stehlé (2004). Breaking Littlewood's Cipher. CryptologiaXXVIII(4), 341�357. [5℄D. Wilson (1979). Littlewood's ipher. Cryptologia 3, 120�121 and 172�176.[5℄Andrew C. Yao (1982). Theory and Appliations of Trapdoor Funtions. InProeedings of the 23rd Annual IEEE Symposium on Foundations of ComputerSiene, Chiago IL, 80�91. IEEE Computer Soiety Press. [14℄

Cryptography, July 29, 2009, ©2009 J. von zur Gathen 45
PlayersThe numbers in brakets at the end of a referene are the pages on whih it is ited. Names ofauthors and titles are usually given in the same form as on the artile or book.Lenore Blum (1943-). *?//?, New York, USA. †?//?. URL http://tulsagrad.ou.edu/statistis/biographies/LenoreBlume.htm. [iii, 29, 30,31, 32, 34℄Manuel Blum (1938-). *26 April 1938, Caraas, Venezuela. †?//?. URLhttp://en.wikipedia.org/wiki/Manuel_Blum. [iii, 29, 30, 31, 32, 34℄Johan Håstad (1960-). *?//?. †?//?. URL http://www.nada.kth.se/~johanh/v.pdf. [29℄Rihard Wesley Hamming (1915-1998). *11 February 1915, Chiago, Illi-nois. †7 January 1998, Monterey, California. URL http://en.wikipedia.org/wiki/Rihard_Hamming. [7, 8, 17℄Carl Gustav Jaob Jaobi (1804-1851). *10 Deember 1804, Potsdam,Kingdom of Prussia. †18 February 1851, Berlin, Kingdom of Prussia. URLhttp://en.wikipedia.org/wiki/Carl_Gustav_Jakob_Jaobi. [29℄Donald Ervin Knuth (1938-). *10 January 1938, Milwaukee, Wisonsin,USA. †?//?. URL http://en.wikipedia.org/wiki/Donald_Ervin_Knuth. [3℄Adrien-Marie Legendre (1752-1833). *18 September 1752, Paris, Frane.
†10 January 1833, Paris, Frane. URL http://en.wikipedia.org/wiki/Legendre. [29℄John von Neumann (1903-1957). *28 Deember 1903, Budapest, Austria-Hungary. †8 February 1957, Washington, D.C., USA. URL http://en.wikipedia.org/wiki/Von_Neumann. [2℄Noam Nisan (????). *?//?. †?//?. URL http://www.s.huji.a.il/~noam/.[iii, 22, 24, 27, 28, 29℄Claus-Peter Shnorr (1943-). *4 August 1943. †?//?. URL http://de.wikipedia.org/wiki/Claus-Peter_Shnorr. [3℄

46 PLAYERSPLAYERSMihael Shub (1942???-). *?//?. †?//?. URL http://www.math.toronto.edu/shub/. [iii, 29, 30, 31, 32, 34℄Brook Taylor (1685-1731). *18 August 1685, Edmonton, Middlesex, Eng-land. †30 November 1731, London, England. URL http://en.wikipedia.org/wiki/Brook_Taylor.Avi Wigderson (1956-). *9 September 1956. †?//?. URL http://math.ias.edu/~avi/aviv1.pdf. [iii, 22, 24, 27, 28, 29℄

