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Chapter 1Pseudorandom generatorsRandom numbers or random bit strings are essential in many areas of 
omputers
ien
e, from sorting, routing in networks, and 
omputer algebra to 
ryptography.Most 
omputer systems provide a fun
tion like RAND that delivers elementswhi
h look �random� in some sense. However, there is no pra
ti
al inexpensiveway known to generate truly random numbers. One 
an think of measuringradioa
tive a
tivity, 
urrent ma
hine 
lo
k time or disk usage, user input likekeystroke timing or mouse movement, but these are either expensive or not veryrandom. What else 
an you think of?The most popular type of random generators, based on linear 
ongruentialgeneration, is su

essfully used in many appli
ations. But it is not good enoughfor 
ryptography. So 
ryptographers had to invent their own notion, 
alled (
om-putational) pseudorandom generators, whi
h are the topi
 of this 
hapter.Su
h a generator takes a small amount of true randomness as input and pro-du
es a large amount of pseudorandomness. The de�ning property is that thesepseudorandom elements 
annot be told apart from truly random ones by anye�
ient algorithm.In this 
hapter, we �rst de�ne and illustrate this notion of �distinguishing�between pseudorandom and truly random elements, then see that it is essen-tially equivalent to �predi
ting the next element�, and �nally dis
uss two spe
i�
generators, by Nisan & Wigderson (1994) and by Blum et al. (1986).1.1. True random generatorsRandomness is a vital ingredient for 
ryptography, from the generation of randomkeys to the 
hallenges in identi�
ation s
hemes. There are two types of methodfor generating the required randomness. Both are in
onvenient, expensive, andpotentially inse
ure.A software-based generator measures some pro
ess su
h as
◦ the system 
lo
k,



2 Chapter 1. Pseudorandom generators1.2. Pseudorandom generators
◦ key stroke or mouse movements,
◦ system or network parameters,
◦ the 
ontents of 
ertain registers,
◦ user input.All of these have their problems. A 1 GHz ma
hine running uninterrupted fora whole year (good lu
k!) goes through 365 · 24 · 60 · 60 · 109 or about 254.8
y
les. So even if we took that as random, we would only get about 54 bits. Ina more realisti
 situation, say a smart
ard engaged in an identi�
ation proto
ol,we 
an at best expe
t a few usable bits, 
ertainly not enough for any reasonableproto
ol. Key strokes and mouse movements 
an possibly be observed. Someversions of PGP require a new user to exe
ute about 15 se
onds of energeti
mouse pushing. That's ok, but you would not be prepared to do this every timeyou withdraw money from an ATM. System parameters and register 
ontentsmight be predi
ted or simulated. The most 
ommon method are user-generatedpasswords. With appropriate 
autions, this is quite reasonable, but again one
an expe
t only a few �random� bits.The se
ond type of method are hardware-based generators whi
h measuresome physi
al pro
ess, su
h as
◦ radioa
tive de
ay,
◦ semi 
ondu
tor thermal noise,
◦ 
apa
itor 
harge,
◦ se
tor a

ess times in a sealed hard disk.All of these are expensive and fa
e potential observation or manipulation by anadversary.A random sequen
e is 
orrelated if the probability that a bit is 1 dependson the previous bits. There are methods to remove 
orrelation, but we do not gointo this.Su
h a sequen
e is biased if ea
h bit equals 1 with some probability p, with

0 < p < 1, and hen
e equals 0 with probability 1−p. Von von Neumann suggestedhow to remove su
h a bias: we group the sequen
e into 
onse
utive pairs, andtake 10 to mean 1, 01 to mean 0, and dis
ard 00 and 11.1.2. Pseudorandom generatorsA pseudorandom generator will be a deterministi
 algorithm A with (random)inputs from a small set X and outputs in a large set Y whi
h are �indistinguish-able� from random elements of Y . This notion is de�ned in the next se
tion.
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©2009 J. von zur Gathen 3Often we will have X = {0, 1}k and Y = {0, 1}n for some k < n, and then A isa pseudorandom bit generator.Thus the idea of pseudorandom generators is to take a very small amountof randomness (a random element of X) to produ
e a large amount of pseudo-randomness (an element of Y ). These new elements are not truly random, butshould behave as if they were for the intended appli
ation.A detailed dis
ussion of random generation is in Knuth (1998). Knuth presentsa large array of statisti
al tests for pseudorandomness. It seems hard to de-s
ribe a general strategy for employing these tests; one has to de
ide ea
h timeanew whi
h tests are appropriate for the purpose at hand.In 
ontrast to the underlying notion of statisti
al pseudorandomness, wewill develop a theory of 
omputational pseudorandomness. This is the rightapproa
h for 
ryptographi
al appli
ations. We will see a �universal test�, namelypredi
ting the next pseudorandom element, and establish a strong 
onne
tionwith 
omputational 
omplexity, the theory that asks how �hard� it is to solve agiven problem.What is a random element, say a random bit? Is 0 a random bit? Is 1?These nonsensi
al questions indi
ate that there is no reasonable way to talkabout the randomness of an individual bit, or any �nite bit string. One 
ande�ne randomness for in�nite strings. For our purposes, it is more useful to talkabout �potentially in�nite strings�, namely ma
hines that produ
e individual bits.Then one 
an have su
h a ma
hine produ
e arbitrarily long strings of �random�elements. When X is a �nite set, a (uniform) truly random generator for Xwould produ
e (without any input) a uniformly random element of X, so thatea
h element of X has the same probability 1/#X of o

urring. Nobody knowshow to build su
h a generator (whi
h is e�
ient).The most popular pseudorandom generators are the linear 
ongruentialpseudorandom generators. We have a modulus m ∈ N, two integers a, b, aseed x0 ∈ N, and de�ne(1.1) xi = axi−1 + b remmfor i ≥ 1. These are good enough for many purposes, e.g. in 
omputer algebra,but not for 
ryptography. Suppose that Ali
e and Bob are part of a 
ryptographi
network that uses S
hnorr's identi�
ation s
heme; see ?? for details. Ea
h timeAli
e identi�es herself to Bob, he sends her a random number r as part of theproto
ol. Now, suppose that Bob makes the mistake of taking the r's providedby his ma
hine's rand 
ommand in C, whi
h is based on a linear 
ongruentialgenerator. If Eve listens in to the tra�
 and observes several 
onse
utive valuesof r, she 
an predi
t future values of r, as des
ribed below. Then the identi�
ations
heme is 
ompletely broken. The same would happen if a bank 
omputer usedsu
h a generator to produ
e individual transa
tion numbers. After observing afew of them, an adversary would be able to determine the next ones.



4 Chapter 1. Pseudorandom generators1.2. Pseudorandom generatorsIn the generator (1.1), we have
xi ≡ axi−1 + b mod m,

xi+1 ≡ axi + b mod m.In order to eliminate a and b, we subtra
t and �nd
xi − xi+1 ≡ a(xi−1 − xi) mod m.Similarly we get

xi+1 − xi+2 ≡ a(xi − xi+1) mod m.Multiplying by appropriate quantities, we obtain
(xi − xi+1)

2 ≡ a(xi − xi+1)(xi−1 − xi)

≡ (xi+1 − xi+2)(xi−1 − xi) mod m.Thus from 4 
onse
utive values xi−1, xi, xi+1, xi+2 we get a multiple
m′ = (xi − xi+1)

2 − (xi+1 − xi+2)(xi−1xi)of m. If the required gcds are 1, then we 
an also 
ompute guesses a′ and b′ for
a and b, respe
tively. We 
an then 
ompute the next values xi+3, xi+4, . . . withthese guesses and also observe the generator. Whenever a dis
repan
y o

urs,we re�ne our guesses. One 
an show that after a polynomial number of stepsone arrives at guesses whi
h produ
e the same sequen
e as the original generator(although the a
tual values of a, b, and m may be di�erent from the guessedones). See Boyar (1989).Su
h a generator is useless for 
ryptographi
 purposes, sin
e we 
an predi
tthe next value after having seen enough previous ones.There are variations of these generators that 
ompute internally x0, x1, . . . remmas before, but publish only the middle half (or the top half) of the bits of xi. Thesegenerators are also inse
ure; they fall prey to a short ve
tor atta
k.One may also take just one bit, say xi rem 2. It is not known whether thisyields pseudorandom bits.The following RSA generator is supposed to be se
ure. We have N = pqand e with gcd(e, φ(N)) = 1 as in the RSA system, and a random seed x0 ∈ Z

×
N .We de�ne x1, x2, . . . ∈ Z

×
N by xi+1 = xe

i .Nothing is known about how �random� this sequen
e is, nor whether thereis a way of predi
ting xi from previous values, nor whether su
h a predi
tionalgorithm would also break the RSA system.For the Littlewood pseudorandom number generator, we pi
k (small)integers n < d, whi
h are publi
ly known, and an n-bit string x as (truly random)seed. We 
an also 
onsider x as an integer in binary, and 2−nx is the rationalnumber with binary representation 0.x.
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e of the dth bits of the binary representation of log2((x+
i)2−n) = log(x + i) − n for i = 0, 1, . . .. Thus with n = 10, d = 14 and key
x = 0110100111, the �rst �ve pseudorandom bits are 11001, produ
ed a

ordingto the entries (all in binary) of the following table.

i (x + i)2−n log2(x + i)− n0 0.0110100111 −1.0100011010000111 0.0110101000 −1.0100010110100112 0.0110101001 −1.0100010011001003 0.0110101010 −1.0100001111101014 0.0110101011 −1.010000110000110Littlewood (1953), page 23, proposed this number generator, a
tually with n =
5 and d = 7 in its de
imal version and for use in a key-addition en
ryptions
heme. He says that �it is su�
iently obvious that a single message 
annot beuns
rambled�.This looks quite attra
tive, but is �awed. Wilson (1979) showed a �rst at-ta
k, and Stehlé (2004) gives an atta
k on the original system and even appar-ently stronger variants. His approa
h relies on modern 
ryptanalyti
 te
hniquesin
luding latti
e basis redu
tion and Coppersmith's root �nding method.1.3. DistinguishersWe now want to formalize the notion that the elements generated by a pseudo-random generator should look �random�. The idea is that no e�
ient algorithmshould be able to distinguish between these elements and truly random ones.Re
all that a probability distribution on a �nite set A is a fun
tion p : A −→
R≥0 with ∑

a∈A p(a) = 1. The uniform probability distribution u has
u(a) = 1/#A for all a ∈ A. Together with p, a further fun
tion f : A −→ Bgives a random variable X on B (that is, with values in B), whi
h assumes thevalue b ∈ B with probability ∑

a∈A
f(a)=b

p(a) whi
h we abbreviate asprob(b←− X).We then also have a probability distribution q on B, with q(b) =
∑

f(a)=b p(a). If
B ⊆ R, then the expe
ted value (or average, or mean) of X is

E(X) =
∑

a∈A

p(a)X(a) =
∑

b∈B

b · prob(b←− X).



6 Chapter 1. Pseudorandom generators1.3. DistinguishersExample 1.2. Rolling a fair die 
orresponds to the uniform distribution on A =
{1, 2, 3, 4, 5, 6}. If X(a) = a2 for a ∈ A, thenprob(4←− X) =

1

6
,

E(X) =
1

6
(1 + 4 + 9 + 16 + 25 + 36) =

91

6
. ♦We denote by B

n = {0, 1}n the Boolean n-
ube. The uniform probabilitydistribution un on B
n gives every string x ∈ B

n the same probability 2−n, andthe uniform random variable Un takes on every value x ∈ B
n with probability 2−n.From random variables X1 on A1, X2 on A2, . . . , Xk on Ak we get the produ
tvariable X = X1×· · ·×Xk on A = A1×· · ·×Ak, whi
h by de�nition takes on avalue (a1, . . . , ak) ∈ A with probability prob(a1 ←− X1) · · ·prob(ak ←− Xk). Asan example, we have Un = U1× · · ·×U1 = Un

1 on B
n = B

1× · · ·×B
1. If we havea random variable X on A and a mapping f : A −→ B, we get a random variable

f(X) on B whi
h takes a value b ∈ B with probability prob(b ←− f(X)) =
∑

a∈A
f(a)=b

prob(a←− X). We will use this in the s
enario where π : C ×D −→ Dis the proje
tion and X a random variable on C × D. Then π(X) is 
alled themarginal value of X on B.Now suppose that we have a random variable X on B
n, and a probabilisti
algorithmA with n-bit inputs x ∈ B

n and one bit of output. This gives a randomvariable A(X) on B = {0, 1} whose underlying distribution 
onsists of X and theinternal randomization in A. For a bit b ∈ B, we haveprob(b←− A(X)) =
∑

x∈Bn

prob(x←− X) · prob(b←− A(x)).The expe
ted value of A on X is
E(A(X)) =

∑

b∈B

b · prob(b←− A(X)) = prob(1←− A(X)).For a deterministi
 algorithm, prob(1←− A(x)) = A(x) is either 0 or 1.Example 1.3. LetA be the deterministi
 algorithmwhi
h outputsA((x1, . . . , x6)) =
x3 on any input (x1, . . . , x6) ∈ B

6. Then for the uniform random variable U6 on
B

6 we have
E(A(U6)) = prob(1←− A(U6)) = prob(1←− U1) =

1

2
.The U1 here is the third 
omponent of U6 = U1×U1×U1×U1×U1×U1 = U6

1 . ♦



Cryptography, July 29, 2009, 
©2009 J. von zur Gathen 7Definition 1.4. If we have two random variables X and Y on B
n, and an algo-rithm A as above, then

∆A(X, Y ) = |E(A(X))−E(A(Y ))|is the distinguishing power of A (between X and Y ). If ∆A(X, Y ) ≥ ǫ > 0,then we say that A is an ǫ-distinguisher between X and Y . If su
h an A exists,we say that X and Y are ǫ-distinguishable.The pseudorandom generators that we de�ne below 
annot produ
e truly randomvalues. But we want their values to be pra
ti
ally indistinguishable from randomones, namely ǫ-distinguishable with tiny ǫ (for any e�
ient A).Example 1.5. Suppose that n is even and X takes only values with exa
tly
n/2 ones: if x ∈ B

n and prob(x ←− X) > 0, then w(x) = n
2
. Here w(x) isthe Hamming weight of x, that is, the number of ones in x. Then the followingdeterministi
 algorithm A distinguishes between X and the uniform variable Unon B

n: A(x) = 1⇐⇒ w(x) = n
2
. We have

E(A(X)) = prob(1←− A(X)) = prob(
n

2
←− w(X)) = 1,

EA(Un) = prob(1←− A(Un)) = prob(

n

2
←− w(Un)

)

= 2−n ·#{x ∈ B
n : w(x) =

n

2
} = 2−n

(

n

n/2

)

.Stirling's formula (see Knuth 1973, 1.2.11.2) says that
n! ≈

√
2πn

(n

e

)n

(1 +
1

12n
+

1

288n2
+ . . .).Substituting this into the binomial 
oe�
ient and ignoring all minor terms, we�nd

E(A(Un)) ≈ 2−n

√
2πn(n

e
)n

πn( n
2e

)n
= 2−n 2n

√

πn/2
=

1
√

πn/2
.Thus

|E(A(X))− E(A(Un))| ≈ 1− 1
√

πn/2
≥ ǫfor any ǫ with, say √

π−1√
π

> 0.43 ≥ ǫ > 0, as soon as n ≥ 2. For n = 100, X and
Un are 0.9-distinguishable. ♦Definition 1.6. A bit generator (or generator for short) is a fun
tion f : B

k −→
B

n for some k < n. The 
orresponding random variable on B
n is f(Uk).



8 Chapter 1. Pseudorandom generators1.3. DistinguishersExample 1.7. We 
onsider the generator
f : B

3 −→ B
6given by the following table

x f(x)
000 001101
001 001011
010 011010
011 010110
100 101100
101 100101
110 110100
111 110010Ea
h image word in f(B3) has Hamming weight 3. We 
an easily distinguish therandom variable X = f(U3) from U6 by the distinguisher A from the previousexample. Namely, on input y ∈ B
6, A outputs 1 if w(y) = 3 and 0 otherwise.Then

E(A(U6)) = 2−6 ·
(

6

3

)

=
5

16
, E(A(X)) = 1, ∆A(X, U6) = 1− 5

16
=

11

16
.Thus A is a 11

16
-distinguisher. In su
h a small example, one 
an �nd other distin-guishing properties. The following illustrates a general 
onstru
tion that we willsee a little later.We 
an use the fourth bit of y to distinguish U6 from f(U3), by 
omparing itto the value of 0 or 1 whi
h o

urs less often in the �rst three positions, 
alledthe minority. Thus for y ∈ B

6

B(y) =

{

1 if y4 = minority(y1, y2, y3),
0 otherwise.Sin
e both values for y4 are equally likely in U6 (and independent of y1, y2, y3),we have E(B(U6)) = 1/2.We now 
al
ulate E(B(X)) = prob(1←− B(X)). There are eight values of ywhi
h o

ur as values of X, ea
h with probability 1/8.
y prob(1←− B(y))

001101 1
001011 0
011010 1
010110 1
101100 0
100101 1
110100 0
110010 1
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8
− 1

2
= 1

8
, and B is an

1
8
-distinguisher between U6 and X. This is quite ok, but not as good as thedistinguisher A from above. ♦We now want to de�ne pseudorandom generators. To this end, we 
onsider afamily g = (gk)k∈N of Boolean fun
tions gk with

gk : B
k −→ B

n(k),where n(k) > k for all k ∈ N. Thus ea
h family member gk is a generator from
B

k to B
n(k). On input a uniformly random x ∈ B

k, it produ
es a (mu
h) longeroutput y = gk(x) ∈ B
n(k) whi
h should look �random�. For any k ∈ N, therandom variable X = gk(Uk) assumes the value y ∈ B

n(k) with probabilityprob(y ←− X) = 2−k ·#{x ∈ B
k : gk(x) = y}.At most 2k many y's have positive probability. Sin
e k < n(k), only �very few�values y a
tually o

ur, and X is �very far� from the uniform random variable.But still it might be quite di�
ult to dete
t this di�eren
e. However, it is alwayspossible to dete
t some di�eren
e. For example, we may 
hoose some y0 ∈ gk(B

k),so that prob(y ←− X) ≥ 2−k, and take an algorithm whi
h 
omputes the fun
tion
A(y) = (y = y0) ∈ B. Then

E(A(X)) ≥ 2−k ≫ 2−n(k) = E(A(Un(k))).Thus A distinguishes somewhat between the two distributions, but its distin-guishing power 2−k − 2−n(k) ≈ 2−k is exponentially small in k. We 
an't bebothered with su
h tiny (and unavoidable) di�eren
es, and 
all them �negligible�.We are even a bit more generous and 
all any fun
tion negligible if it is smallerthan any inverse polynomial.Definition 1.8. A fun
tion t : N −→ R is negligible if for all e ≥ 1 there exists
k0 su
h that for all k ≥ k0 we have

|t(k)| ≤ k−e. �For example, t with t(k) = k− logk is negligible, but not exponentially small like
2−k.Now the generators we 
onsider have to be e�
ient, but there must not existe�
ient distinguishers. This gives the following notion.Definition 1.9. A family g = (gk)k∈N as above is a pseudorandom generatorif
◦ it 
an be implemented in polynomial time kO(1),
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◦ for all probabilisti
 polynomial-time algorithmsA, the distinguishing power

∆A(gk(Uk), Un(k)) is a negligible fun
tion of k.
Su
h a generator 
an be used in any e�
ient (polynomial time) algorithm thatrequires truly random bits. Namely, if it was ever observed that the algorithmdid not perform as predi
ted for truly random inputs, then the algorithm woulddistinguish between Un and the pseudorandom generator; but this is not possible.This is, quite appropriately, an �asymptoti
� notion. It does not depend on the�rst hundred (or hundred million) gk's, only on their eventual behavior. We haveseen many 
ryptosystems, su
h as RSA, whi
h 
an be implemented for arbitrarykey lengths. However, there are also 
ryptosystems like Rijndael whi
h have �xedinput lengths and are not part of an in�nite family.We now want to de�ne a ��nite� version of this notion. It should be appli
ableto individual Boolean fun
tions su
h as g : B

3 −→ B
6 from Example 1.7. InDe�nition 1.9 we did not spe
ify the notion of �algorithm�. The reader shouldthink, as usual, of Turing ma
hines or appropriate random a

ess ma
hines. Forour �nite version, Boolean 
ir
uits are appropriate. They have (one-bit) inputgates, and NOT, AND, OR, and XOR gates. The time that su
h a 
ir
uit takesis the number of gates in it (ex
ept for input gates). It is usually 
alled the sizeof the 
ir
uit. Then �algorithm� may also be taken to mean �family of Boolean
ir
uits�. There is a te
hni
al problem with �uniformity� here; see the Notes.

Definition 1.10. Let k < n and s be integers, ǫ ≥ 0 real, and f : B
k −→ B

na generator. A probabilisti
 Boolean 
ir
uit C of size s and with distinguishingpower ∆C(f(Uk), Un) ≥ ǫ is 
alled an (ǫ, s)-distinguisher between f(Uk) and
Un. The fun
tion f is 
alled an (ǫ, s)-resilient pseudorandom generator if nosu
h C exists.
Example 1.7 
ontinued. We take f : B

3 −→ B
6 as above, and implement thetwo distinguishers as Boolean 
ir
uits.We start with the se
ond one, and �rst 
ompute z = (w(y1, y2, y3) ≥ 2) in the
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ir
uit within dashed lines, and then output z ⊕ y4 :

y1 y2 y3 y4 y5 y6

∧ ∧ ∧

∨

z = ∨

⊕This 
ir
uit has 6 gates and is therefore a (1
8
, 6)-distinguisher between f(U3) and

U6. Thus f is not a (1
8
, 6)-resilient pseudorandom generator.To implement the �rst distinguisher �w(y) = 3� as a 
ir
uit, we �rst 
ompute

u =
⊕

1≤i≤6 yi. Thus u = 1 if and only if w(y) is 1, 3, or 5. If we add the
ondition that
(w(h1) ≥ 2 and w(h2) ≤ 1) or (w(h1) ≤ 1 and w(h2) ≥ 2),where h1 = (y1, y2, y3) and h2 = (y4, y5, y6) are the two halves of y, then we
ompute pre
isely the Boolean fun
tion �w(y) = 3�. We re-use the 5-gate 
ir
uitfrom above twi
e in dashed lines and get the following 
ir
uit.
y1 y2 y3 y4 y5 y6

⊕ ⊕ ⊕

⊕

⊕¬ ¬

∧ ∧

∨

∧

u =



12 Chapter 1. Pseudorandom generators1.4. Predi
torsThis 
ir
uit has 2 · 5 + 11 = 21 gates, so that f is also not (

11
16

, 21
)-resilient. ♦1.4. Predi
torsWe 
onsider probabilisti
 algorithms that try to predi
t the next value xi of asequen
e from the previous bits x1, . . . , xi−1. A good predi
tor 
an also be usedas a distinguisher. The main result of this se
tion is the 
onverse: from any gooddistinguisher one 
an build a reasonably good predi
tor. The proof introdu
esan important tool: �hybrid� distributions whi
h �interpolate� between two givendistributions.For two random variables X and Y on the same set B, we writeprob(Y ←− X) =

∑

x∈B

prob(b←− Y ) · prob(b←− X)for the probability that both produ
e the same value. This generalizes the notion
x←− X in a natural way.When X is a random variable on B

n and i ≤ n, we want to 
onsider the ithsu

essor bit under X, namely the following one-bit random variable Xi(y), forany y ∈ B
i−1. Its value is 0 with the same probability as the one with whi
hstrings (y, 0, z) o

ur under X, for any z ∈ B

n−i, and 1 with the probability of
(y, 1, z) o

urring under X. More pre
isely, for any j ≤ n and w ∈ B

j , we let
p(w, ∗) = prob(w ←− (X1, . . . , Xj))

(1.11)
= prob({w} × Un−j ←− X) = 2−n+j ·

∑

z∈Bn−j

prob((w, z)←− X)be the probability of w as an initial segment under X. Then for b ∈ {0, 1}, weset prob(b←− Xi(y)) = 1/2 if p(y, ∗) = 0, and otherwiseprob(b←− Xi(y)) = p((y, b), ∗)/p(y, ∗).Definition 1.12. Let 1 ≤ i ≤ n be integers.(i) A predi
tor for the ith bit is a probabilisti
 algorithm with inputs from
B

i−1 and output in B.(ii) Let X be a random variable on B
n, (X1, . . . , Xi−1) the 
orresponding vari-able on B

i−1, and P a predi
tor for the ith bit. Then the su

ess rate
σP(X) of P on X is

σP(X) =
∑

y∈Bi−1

p(y, ∗) · prob(P(y)←− Xi(y)).
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tion power is σP(X) − 1/2. If σP(X) ≥ ǫ + 1/2, then P is an
ǫ-predi
tor for X.(iii) A family (Xk)k∈N of random variables Xk on B

n(k) is 
omputationallyunpredi
table if for any fun
tion ik with ik ≤ n(k), any probabilisti
polynomial-time predi
tor for the ikth bit of Xk has negligible predi
tionpower. Here, the predi
tor is an algorithm whi
h takes as input k (en
odedin unary) and y ∈ B
ik−1.Thus 0 ≤ σP ≤ 1. A very simple (and rather useless) predi
tor is to outputa uniformly random bit, independent of the input. It has su

ess rate 1/2 forany X.If σP(X) ≤ 1/2, then �ipping the output bit of P produ
es a predi
tor P ′with σP ′(X) = 1− σP(X) ≥ 1/2. For a �good� predi
tor P, the goal is to makeits predi
tion power σP(X)− 1/2 as large as possible.As in the previous se
tion, we also have a �nite version of this asymptoti
notion. Now X is a random variable on B

n, 1 ≤ i ≤ n, and P is a probabilisti

ir
uit of size s with i− 1 inputs and one output, and is 
alled an (ǫ, s)-predi
torif σP(X) ≥ ǫ + 1/2. We say that X is (ǫ, s)-unpredi
table if no su
h i and Pexist.Example 1.7 
ontinued. We take X = f(U3) on B
6. Sin
e 0 and 1 o

urequally often in ea
h f(x), we 
onsider the �minority bit predi
tor� Mi for the

ith bit. It predi
ts the bit that o

urs less frequently in the history; if both o

urequally often, it predi
ts 0 or 1, ea
h with probability 1/2.Clearly this algorithm predi
ts the sixth bit always 
orre
tly: σM6(X) = 1,and M6 is a 1
2
-predi
tor. We now 
ompute its quality as a predi
tor for thefourth bit:
σM4(X) =

∑

y∈B3

p(y, ∗) · prob(X4(y)←−M4(y)).We only have six y ∈ B
3 with p(y, ∗) > 0.

y p(y, ∗) X4(y) M4(y) prob(X4(y)←−M4(y))
001 1/4 0, 1 1 1/2
011 1/8 0 0 1
010 1/8 1 1 1
101 1/8 1 0 0
100 1/8 1 1 1
110 1/4 0, 1 0 1/2Therefore the su

ess rate is
1

4
· 1
2

+
1

8
· 1 +

1

8
· 1 +

1

8
· 0 +

1

8
· 1 +

1

4
· 1
2

=
5

8
>

1

2
,andM4 is a 1

8
-predi
tor. ♦



14 Chapter 1. Pseudorandom generators1.4. Predi
torsIt is 
lear that a predi
tor 
an also serve as a distinguisher. Suppose that Xis a random variable on B
n, 1 ≤ i ≤ ℓ, and P is an ǫ-predi
tor for the ith bitunder X. Then we 
onsider the following method for obtaining an algorithm A.Algorithm 1.13. Distinguisher A from predi
tor.Input: y ∈ B

n, and i and P as above.Output: 0 or 1.1. Compute z = P(y1, . . . , yi−1).2. A outputs 1 if yi = z and 0 otherwise.Theorem 1.14. If P is an (ǫ, s)-predi
tor for the ith bit under X, then A is an
(ǫ, s + 5)-distinguisher between X and Un.Proof. The output of A equals (yi ∧ z) ∨ (¬yi ∧ ¬z), whi
h is independent ofthe values of yi+1, . . . , yn, and A has size s + 5. We have

E(A(X)) = prob(1←− A(X))

= prob(Xi ←− P(X1, . . . , Xi−1))

= σP(X) ≥ 1

2
+ ǫ.On the other hand, whatever P 
omputes, the probability that its output P(Ui−1)equals a uniform random bit from U1 is 1/2. Thus the distinguishing power of Abetween X and Un is

|E(A(X))−E(A(Un))| ≥ 1

2
+ ǫ− 1

2
= ǫ. �It is quite surprising that also from any good distinguisher one 
an obtaina reasonably good predi
tor. This strong result is due to Yao (1982). Thusdistinguishers and predi
tors are essentially equivalent. In other words, predi
tingthe next bit is a �universal test� for pseudorandomness.Theorem 1.15. Let X be a random variable on B

n, and A an (ǫ, s)-distinguisherbetween X and Un. Then there exists an i with 1 ≤ i ≤ n and an ( ǫ
n
, s + 1)-predi
tor for the ith bit under X.Proof. For 0 ≤ i ≤ n, we let πi : B

n −→ B
i be the proje
tion onto the �rst i
oordinates, and

Yi = πi(X)× Un−i.Thus Yi is the random variable on B
n where the �rst i bits are generated a
-
ording to X, and the other n − i a

ording to the uniform distribution. These
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Yi are �hybrid� variables, partly made up from X and partly from the uniformdistribution, and they �interpolate� between the extremes Yn = X and Y0 = Un.For 1 ≤ i ≤ n, let ei = E(A(Yi)). The distinguishing power of A is at least ǫ, sothat |en − e0| ≥ ǫ. By �ipping the output bit of A if ne
essary, we may assumethat e0− en ≥ ǫ. Intuitively, this means that an output 1 of A indi
ates that theinput is likely to 
ome from Un, and an output 0 that it 
omes from Y . Then wehave

ǫ ≤ e0 − en =
∑

1≤i≤n

(ei − 1− ei) ≤ n · max
1≤i≤n

ei−1 − ei.

Hen
e the maximum is at least ǫ/n, and there exists some i ≤ n with ei− ei−1 ≥
ǫ/n. We now 
hoose su
h an i.We now 
onstru
t a predi
tor P for the ith bit under X.
Algorithm 1.16. Predi
tor P.Input: y ∈ B

i−1.Output: 0 or 1.1. Choose yi, . . . , yn ∈ B uniformly at random.2. y∗ ←− (y, yi, . . . , yn). [Thus y∗ ∈ B
n.℄3. z ←− A(y∗).4. Output yi ⊕ z.The intuition why this should work is as follows. If A outputs z = 1, thenprobably (y, yi) 
omes from Yi, sin
e ei > ei−1, and if z = 0, then (y, yi) is morelikely to 
ome from Yi−1. Now Yi−1 and Yi di�er only in the ith pla
e, where Yiis derived from X while Yi−1 has a uniformly random bit. Thus we take z = 1 asan indi
ation that yi 
omes from X, and indeed output yi = yi ⊕ 1⊕ 1 = yi ⊕ zas the predi
tion. But z = 0 indi
ates that yi is presumably from U1, and thatthe opposite bit yi⊕ 1⊕ 1 = yi⊕ z is a better predi
tion for the ith bit under Xthan yi itself is.



16 Chapter 1. Pseudorandom generators1.4. Predi
torsThe su

ess rate of P on X is
σP(X) =

∑

y∈Bi−1

p(y, ∗) · prob(P(y)←− Xi(y))

=
∑

y∈B
i−1

yi∈B

p(y, ∗) · prob(yi ←− U1 and yi ⊕A((y, yi)× Un−i)⊕ 1←− Xi(y))

=
∑

y∈Bi−1

yi∈B

p(y, ∗) ·
[ prob(0←− A((y, yi)× Un−i), yi ⊕ 1←− Xi(y), and yi ←− U1)

+ prob(1←− A((y, yi)× Un−i), yi ←− Xi(y), and yi ←− U1)
]

=
∑

y∈Bi−1

yi∈B

p(y, ∗) ·
[ prob(0←− A((y, yi)× Un−i))

− prob(0←− A((y, yi)× Un−i), yi ←− U1, and yi ←− Xi(y))

+ prob(1←− A((y, yi)× Un−i), yi ←− Xi(y), and yi ←− U1)
]

=
∑

y∈Bi−1

yi∈B

p(y, ∗) ·
[ prob(0←− A((y, yi)× Un−i))

− prob(0←− A((y, Xi(y)))× Un−i) ·
1

2

+ prob(1←− A((y, Xi(y))× Un−i)) ·
1

2

]

= prob(0←− A(Yi−1))−
1

2
prob(0←− A(Yi)) +

1

2
prob(1←− A(Yi))

= 1− ei−1 −
1− ei

2
+

ei

2
=

1

2
+ ei − ei−1 ≥

1

2
+

ǫ

nSome explanations may be useful. In the se
ond equation, we sum over the twopossible values for yi 
hosen in step 1 of P. Now P(y) = yi ⊕ z and Xi(y) takethe same value in two 
ases:
z = 0 and yi ⊕ 1 = Xi(y), or
z = 1 and yi = Xi(y).These two 
ases lead to the third equation. In the fourth equation, the �rstsummand of the previous expression is split into the probability that 0 o

urs asvalue of A((y, yi)×Un−1), without regard to Xi(y), minus the probability that yio

urs as value of Xi(y)�this is the 
omplement to the 
ondition yi⊕1←− Xi(y).For the �fth equation, we use the fa
t that the event yi ←− U1 is independentof the other events, for both possible 
hoi
es of yi, and o

urs with probability

1/2. �Corollary 1.17. (i) Suppose that ea
h bit of the generator f : B
k −→ B

n is
(ǫ, s)-unpredi
table. Then f(Uk) is (ǫ, s + 1)-indistinguishable from Un.
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h that ea
h bit (that is, forea
h sequen
e (ik)k∈N the ikth bit of gk) is 
omputationally unpredi
table.Then g is a pseudorandom generator.In other words, bit predi
tion is a universal test for pseudorandomness.Example 1.7 
ontinued. We apply Yao's 
onstru
tion to X = f(U3) on B
6and A as above, with A(y) = 1 if and only if w(y) = 3. We have seen above that

EA(X) = 1 and EA(U6) = 5
16
, and now have to 
al
ulate the expe
ted value of Aon the hybrid distributions Yi = πi(X)× U6−i. These distributions are depi
tedin Figure 1.1. At the ba
k, we have f(U3) = Y6, a rugged lands
ape with eightpeaks and valleys at zero level. The montains get eroded as we move forward, to

Y5, Y4, and Y3, until we arrive at Y2 = Y1 = Y0, a uniformly �at seas
ape.

Figure 1.1: The hybrid distributions from Yao's 
onstru
tion.For 0 ≤ i ≤ 6 and any y ∈ f(B3), we denote by
ci(y) =

(

6− i

3− w(y1, . . . , yi)

)the number of extensions (zi+1, . . . , z6) of (y1, . . . , yi) that lead to total Hammingweight 3, that is, with w(y1, . . . , yi, zi+1, . . . , z6) = 3. Then
(

(πi(x)× U6−i)(y)
)

= prob πi(0)(y1, . . . , yi) · 2i−6

= 2i−6 · 2−3#{x ∈ B
3 : (f(x)1, . . . , f(x)i) = (y1, . . . , yi)},



18 Chapter 1. Pseudorandom generators1.4. Predi
tors
ei = E(A(Yi)) = prob(1←− A(yi)) = prob(3←− w(Yi))

= prob(3←− w((X1, . . . , Xi)× U6−i))

= 2−3 · 2−(6−i) ·#{(x, y) ∈ B
3 × B

6−i :

w(f(x)1, . . . , f(x)i, yi+1, . . . , y6) = 3}
= 2i−9

∑

x∈B3

ci(f(x)).The following two tables give the values of the ci(f(x)) and ei.
x f(x) c0 c1 c2 c3 c4 c5 c6

000 001101 20 10 4 3 2 1 1
001 001011 20 10 4 3 1 1 1
010 011010 20 10 6 3 2 1 1
011 010110 20 10 6 3 2 1 1
100 101100 20 10 6 3 1 1 1
101 100101 20 10 6 3 2 1 1
110 110100 20 10 4 3 1 1 1
111 110010 20 10 4 3 2 1 1

i 0 1 2 3 4 5 6

ei
5
16

5
16

5
16

3
8

13
32

1
2

1

ei − ei−1 0 0 2
32

1
32

3
32

16
32We 
he
k that the sum of these di�eren
es equals e6 − e0 = 11/16. The largestof the di�eren
es is e6 − e5 = 1/2. Intuitively, it is 
lear that this points to theminority bit predi
torM6 for the last bit, from page 13, with su

ess probability

1 and 1/2 on f(U3) and U6, respe
tively. But now we want to tra
e the general
onstru
tion. It yields the following predi
tor P for the sixth bit under X =
f(U3). We �rst 
hange A to A′ by �ipping its output bit, so that now e5 − e6 =
1/2 > 0. On input y ∈ B

5, P 
hooses y6 ∈ B uniformly at random, 
al
ulates
z =

{

0 if w(y, y6) = 3,
1 otherwise,and outputs y6 ⊕ z. We 
laim that P(y) = M6(y) for any y ∈ π5(X). Thisfollows from the following table of the values (z,P(y)), where the se
ond entryindeed always equalsM6(y):

w(y)
2 3

0 (1, 1) (0, 0)
y6

1 (0, 1) (1, 0)
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ular, we have σP(X) = σM6(X) = 1, and P is also an 1/2-predi
tor for
X. However, P is not equal toM6, sin
e on input y = (0, 0, 0, 0, 0), say, we haveprob(1←− P(y)) = 1/2 and prob(1←−M6(y)) = 1. ♦S 1.5. From short to long generatorsIf we have an (ǫ, s)-generator f : B

k → B
n and k < ℓ ≤ n, then by 
omposing withthe proje
tion π : B

n → B
ℓ to the �rst ℓ bits we get a fun
tion g = π ◦ f : B

k −→
B

ℓ. It is also an (ǫ, s)-generator, sin
e any algorithm that distinguishes g(Uk)from Uℓ 
an also distinguish f(Uk) from Un, with the same size and quality.Thus it is easy as pie to shorten generators. Can we also make them longer?This is less obvious, but this se
tion is devoted to showing that this 
an indeedbe a
hieved.We take as our starting point a generator that is as short as possible, namely
f : B

k → B
k+1, and 
onstru
t from it a generator g : B

k → B
n for any n > k. Todo this, we apply f iteratively to k-bit strings, save the �rst bit, and apply fagain to the remaining k bits.

s

s0

f

σ1

s1

f

σ2

s2

f

σ3

s3 . . . f

σn−1

sn−1

f

σn

sn

σFigure 1.2: Long generator gWe de�ne fun
tions fi that leave the �rst i− 1 bits un
hanged, for i ≥ 1, andapply f to the last k bits:
fi = idBi−1

×f :
B

k+i−1 −→ B
k+i, ,

(x1, . . . , xk+i−1) 7−→ (x1, . . . , xi−1, f(xi, . . . , xk+i−1)).We let gi = fi ◦ · · · ◦ f2 ◦ f1 : B
k → B

k+i be the 
omposition of i of these maps.Thus g1 = f1 = f . We also set g0 = idBk .Theorem 1.18. Let f : B
k → B

k+1 be an (ǫ, s)-resilient generator, that 
an be
omputed by a 
ir
uit of size t, let ℓ ≥ 1, and g = gℓ : B
k → B

k+ℓ as above. Then
g is an (ℓǫ, s − ℓt)-resilient generator, and 
an be 
omputed with ℓ appli
ationsof f .



20 Chapter 1. Pseudorandom generators1.5. From short to long generatorsThe idea of the proof is to turn a distinguisher A between g(Uk) and Uk+ℓinto a distinguisher B between f(Uk) and Uk+1. We 
onsider hybrid randomvariables Y0, Y1 . . . , Yℓ whi
h interpolate between Yℓ = g(Uk) and Y0 = Uk+ℓ. If Adistinguishes well between Y0 and Yℓ, then it also distinguishes well between Yiand Yi+1 for some i. But these adja
ent distributions Yi and Yi+1 are essentiallylike f(Uk) and Uk+1, so that we 
an also distinguish between these two. Byassumption, this 
an only be done with bad quality, so that also the quality ofthe initial A is bad.Proof. For 0 ≤ i < ℓ, we �rst de�ne an auxiliary fun
tion hi = π1 ×
gi−1 : B

k+1 −→ B
k+i, so that
hi(x1, x2, . . . , xk+1) = (x1, gi−1(x2, . . . , xk+1))for all (x1, . . . , xk+1) ∈ B

k+1. The important property 
onne
ting f , the g's, andthe h's is that for i ≥ 1 we have hi ◦ f = gi, and hen
e(1.19) hi(f(Uk)) = gi(Uk), hi(Uk+1) = (U1, gi−1(Uk)).Here, and in similar situations later, the uniform distributions like U1 and Ukare taken independently.Now we let A be an (δ, s)-distinguisher between g(Uk) and Uk+ℓ, that is, analgorithm using time s and so that
E(A(g(Uk)))−E(A(Uk+ℓ)) ≥ δ.(If the left hand quantity is at most −δ, then we �ip the output bit of A toobtain the above inequality.) We will show that the following Algorithm 1.20distinguishes between f(Uk) and Uk+1.Algorithm 1.20. From long to short distinguishers.Input: x ∈ B

k+1.Output: 1 or 0.1. Choose i ∈R {1, . . . , ℓ} uniformly at random.2. Choose y ←− Uℓ−i.3. Exe
ute A on input (y, hi(x)) ∈ B
ℓ+k and return its output.For any input x ∈ B

k+1 to B, we have(1.21) prob(1←− B(x)) =
1

ℓ

∑

1≤i≤ℓ

prob(1←− A(Uℓ−i, hi(x))).
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onsider for 0 ≤ i ≤ ℓ the hybrid random variable
Yi = Uℓ−i × gi(Uk)with values in B

k+ℓ. Thus Yℓ = gℓ(Uk) and Y0 = Uk+ℓ are the two randomvariables between whi
h A distinguishes. For any i ≤ ℓ we have
Yi = Uℓ−i × gi(Uk) = Uℓ−i × hi(f(Uk)) if i ≥ 0,

Yi−1 = Uℓ−i+1 × gi−1(Uk) = Uℓ−i × U1 × gi−1(Uk) = Uℓ−i × hi(Uk+1) if i ≥ 1.Now let αi = prob(1 ←− A(Yi)) for 0 ≤ i ≤ ℓ. The assumption about A'sdistinguishing power says that αℓ − α0 ≥ δ. Then using (1.21) we haveprob(1←− B(f(Uk))) =
1

ℓ

∑

1≤i≤ℓ

prob(1←− A(Uℓ−i × hi(f(Uk))))

=
1

ℓ

∑

1≤i≤ℓ

prob(1←− A(Yi)) =
1

ℓ

∑

1≤i≤ℓ

αi,prob(1←− B(Uk+1)) =
1

ℓ

∑

1≤i≤ℓ

prob(1←− A(Uℓ−i × hi(Uk+1)))

=
1

ℓ

∑

1≤i≤ℓ

prob(1←− A(Yi−1)) =
1

ℓ

∑

1≤i≤ℓ

αi−1,

E(B(f(Uk)))− E(B(Uk+1)) = prob(1←− B(f(Uk)))− prob(1←− B(Uk+1))

=
1

ℓ

(

∑

1≤i≤ℓ

αi −
∑

1≤i≤ℓ

αi−1

)

=
1

ℓ
(αℓ − α0) ≥

δ

ℓ
.Thus algorithm B has distinguishing power at least δ/ℓ between f(Uk) and Uk+1.We have to determine the size of B. The random 
hoi
es in steps 1 and 2 just
orrespond to some further random input gates, and do not 
ontribute to thesize. For hi(x), we have to apply f exa
tly i−1 ≤ ℓ−1 times, using size at most

ℓt. The exe
ution of A takes another s′ gates. The total 
omes to s′ + ℓt.Sin
e f is (ǫ, s)-resilient, we have either δ/ℓ ≤ ǫ or s′ + ℓt ≥ s, whi
h is the
laim. �It is straightforward to apply this 
onstru
tion to the asymptoti
 notion ofpseudorandom generator, whose output 
annot be distinguished by polynomialsize 
ir
uit families from the uniform distribution.Corollary 1.22. Let f = (fk)k∈N be a pseudorandom generator with fk : B
k −→

B
k+1, and p ∈ Z[t] a positive polynomial. Then the above 
onstru
tion yields apseudorandom generator g = (gk)k∈N with gk : B

k −→ B
k+p(k).Thus we have the ni
e result that from the smallest possible pseudorandomgenerators, whi
h add only one pseudorandom bit, we 
an obtain pseudorandomgenerators with arbitrary polynomial expansion rate.



22 Chapter 1. Pseudorandom generators1.6. The Nisan�Wigderson generator1.6. The Nisan�Wigderson generatorAll known pseudorandom generators assume that some fun
tion is hard to 
om-pute, and then extend few random bits to many bits that look random to all ef-�
ient algorithms. The Nisan�Wigderson generator that we des
ribe now startsfrom a fairly general assumption of this type, and produ
es a pseudorandomgenerator.We now quantify when a fun
tion f is hard to approximate. Namely, a prob-abilisti
 Boolean 
ir
uit A 
an produ
e a random bit, whi
h then will equal thevalue of f with probability 1/2. Now f is di�
ult if nothing essentially betteris possible, with small 
ir
uits. More pre
isely, let f : B
n −→ B be a Booleanfun
tion, ǫ > 0, and s ∈ N. We say that f is (ǫ, s)-hard if for all algorithms (=Boolean 
ir
uits) A with n inputs and time s, we have

| prob(f(Un)←− A(Un))− 1

2
| ≤ ǫ

2
.The hardness Hf of f is the maximal integer Hf = h su
h that f is (h−1, h)-hard.One 
an amplify the hardness of a fun
tion by XORing several 
opies. Thisis Yao's (1982) famous XOR lemma, whi
h we state without proof and will notuse later.Theorem 1.23 (Yao's XOR Lemma). Let f1, . . . , fk : B
n −→ B all be (ǫ, s)-hard, δ > 0, and f : B

kn −→ B with
f(x1, . . . , xk) =

⊕

1≤i≤k

fi(xi).Then f is (ǫk + δ, δ2(1− ǫ)2s)-hard.If we have a hard fun
tion f , then the single bit f(x), for random x ∈ B
n,looks random to any e�
ient algorithm. We now show how to get many bits thatlook random by evaluating f at many di�erent, nearly disjoint, subsets of bits ofa larger input. The tool for a
hieving this 
omes from design theory, an area of
ombinatori
s, and the theory of �nite �elds. A thorough survey of this subje
tis in Beth et al. (1993).Let k, n, s, and t be integers. A (k, n, s, t)-design D is a sequen
e D =

(S1, . . . , Sn) of subsets of {1, . . . , k} su
h that for all i, j ≤ n we have1. #Si = s,2. #(Si ∩ Sj) ≤ t if i 6= j.
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©2009 J. von zur Gathen 23Example 1.24. We take k = 9, n = 12, s = 3, and t = 1, and arrange the nineelements of {1, . . . , 9} in a 3× 3 square like this:
1 2 34 5 67 8 9 .The reason for doing this will be explained after Theorem 1.27. In ea
h of thefour 
opies of the square, we have marked three subsets Si: one with •, one with

�, and the third one with �.
• • •
� � �

� � �

�

�

�

�

�

�

•
•
•

�

�

�

•

•
•

�

�

� •
•
•

�

�

�

�

�

�

Thus S1 = {1, 2, 3}, S2 = {4, 5, 6}, S3 = {7, 8, 9}, S4 = {1, 5, 9}, S5 = {3, 4, 8},
S6 = {2, 6, 7}, S7 = {1, 6, 8}, S8 = {2, 4, 9}, S9 = {3, 5, 7}, S10 = {1, 4, 7},
S11 = {2, 5, 8}, and S12 = {3, 6, 9}.Now D = {S1, . . . , S12} is an (9, 12, 3, 1)-design as one easily veri�es. As anexample, S1 ∩ S5 = {3} has only one element. ♦In design theory, one does not usually order the S1, . . . , Sn, but the aboveis more appropriate for our purposes. The general goal in design theory is to �xsome of the four parameters and optimize the others, making n and s as largeand k and t as small as possible.If D is a (k, n, s, t)-design as above and f : B

s −→ B a Boolean fun
tion, weobtain a Boolean fun
tion fD : B
k −→ B

n by evaluating f at the subsets of thebits of x given by S1, . . . , Sn. More spe
i�
ally, if x ∈ B
k and Si = {v1, . . . , vs},with 1 ≤ v1 < v2 < · · · < vs ≤ k, then the ith bit of fD(x) is f(xv1 , . . . , xvs).Example 1.24 
ontinued. Say we 
onsider the parity fun
tion f : B

3 −→ B,so that f(x1, x2, x3) = (x1 + x2 + x3) rem 2. With the design from above, thevalue of fD : B
9 −→ B

12 at x = (0, 1, 1, 1, 1, 0, 0, 0, 1) ∈ B
9 is

fD





0 0 1
1 1 0
0 1 1



 = 001001010100.For example, the se
ond of the twelve values is 
omputed as fD(x)2 = f(x4, x5, x6) =
f(110) = 1 + 1 + 0 rem 2 = 0. ♦



24 Chapter 1. Pseudorandom generators1.6. The Nisan�Wigderson generatorWe want to get rid of the two parameters ǫ and s in our notion of (ǫ, s)-resilientpseudorandom generators. To this end, we�somewhat arti�
ially�set ǫ = n−1and s = n. Thus we now 
onsider pseudorandom generators f : B
k −→ B

n forwhi
h there is no algorithm using time at most n and with
|E(A(f(Uk)))− E(A(Un))| ≥ n−1.This is seemingly more generous than the previous de�nition. One has to showthat from a pseudorandom generator in the new sense one 
an 
onstru
t one inthe previous sense (with di�erent values of k and n).Theorem 1.25. Let k, n, s be positive integers, s ≥ 2, t = ⌊logs n⌋−1, f : B

s −→
B with hardness Hf > 2n2, and D an (k, n, s, t)-design. Then fD : B

k −→ B
n isan (n−1, n)-resilient pseudorandom generator.Proof. By Theorem 1.15, any ǫ-distinguisher between X = fD(Uk) and Un
an be transformed into a ǫ

n
-predi
tor for some bit under X. So we now assumethat we have a predi
tor P for the ith bit under X, for some i ≤ n, with σP(X) ≥

1/2 + ǫ and ǫ ≥ n−2, and derive a 
ontradi
tion to our hardness assumption.By reordering the elements of {1, . . . , k}, we may assume that Si = {1, . . . , s},so that the ith bit depends only on the �rst s 
omponents of the values of Uk.In order to separate out the dependen
e on the �rst s and the last k− s bits; wewrite Uk = Us×Uk−s. As in (1.11), we let p(y, ∗) = prob(y ← (X1, . . . , Xi−1)) bethe probability that y o

urs as an initial segment under X, for y ∈ B
i−1. Then

1/2 + ǫ ≤ σP(X)

=
∑

y∈Bi−1

prob(y ←− (X1, . . . , Xi−1)) · prob(P(y)←− Xi(y))

=
∑

x′∈Bs,x′′∈Bk−s

y=fD(x′,x′′)1...i−1∈B
i−1

prob(x′ ←− Us) · prob(x′′ ←− Uk−s) · prob(f(x′)←− P(y))

= 2−(k−s)
∑

x′′∈Bk−s

r(x′′),where fD(x′, x′′)1...i−1 stands for (fD(x′, x′′)1, . . . , fD(x′, x′′)i−1) ∈ B
i−1, and

r(x′′) = 2−s
∑

x′∈Bs

y=fD(x′,x′′)1...i−1

prob(f(x′)←− P(y)).Thus the average of r over B
k−s is at least 1/2 + ǫ. Then there exists some value

z ∈ B
k−s of x′′ so that r(z) ≥ 1/2 + ǫ; otherwise we would have

2k−s(1/2 + ǫ) > 2k−s max
x′′∈Bk−s

r(x′′) ≥
∑

x′′∈Bk−s

r(x′′) ≥ 2k−s(1/2 + ǫ).
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e of the general fa
t that some value is at least as large asthe average value: �not everybody 
an be below average�.Now we �x su
h a z. Thus
r(z) = 2−s

∑

x′∈B
s

y=fD(x′,z)1...i−1

prob(f(x′)←− P(y)) ≥ 1/2 + ǫ.We now have an algorithm for approximating f : 
ompute y as above, plug it into
P, and use P(y) as an approximation for f(x′).Algorithm 1.26. Cir
uit A that approximates f .Input: x′ = (x1, . . . , xs) ∈ B

s.Output: 0 or 1.1. For j = 1, . . . , i− 1 do2. yj ←− fD(x′, z)j , with z as above.3. Output P(y1. . . . , yi−1).We have to show that A approximates f well, and that it 
an be built with fewgates. The latter seems implausible at �rst, sin
e in step 2 we have to evaluate
f at some point wi ∈ B

s, given by the bits of (x′, z) in the positions 
ontained in
Si. But isn't that hard? Yes, 
omputing f at an arbitrary input is hard, but thewhole setup is designed so that these spe
ial evaluation problems be
ome easy.Let 1 ≤ j < i. Sin
e #(Si ∩ Sj) ≤ t = ⌊logs n⌋ − 1 ≤ ⌊log2 n⌋ − 1, and z is�xed, yj depends on at most t bits. It is a general fa
t that any Boolean fun
tionon t bits (with one output) 
an be 
omputed in time 2t+1, say by writing it indisjun
tive (or 
onjun
tive) normal form. Thus yj 
an be 
omputed from x′ intime 2t+1 ≤ n, and all of y1, . . . , yi−1 
an be 
omputed with at most n(i−1) ≤ n2operations.What is the probability that A(x′) = f(x′), for x′ ←− Us? We are given our�xed z, and 
ompute y1, . . . , yi−1 
orre
tly from x′. Thus A(x′) = P(y1, . . . , yi−1),and

2−s
∑

x′∈Bs

prob(f(x′)←− A(x′)) = 2−s
∑

x′∈Bs

y=fD(x′,z)1...i−1

prob(f(x′)←− P(y))

= r(z) ≥ 1/2 + ǫ ≥ 1/2 + n−2.This 
ontradi
ts the assumption that Hf ≥ 2n2, and proves the 
laim. �1.7. Constru
tion of good designsAs in many other �elds of 
ombinatori
s, �nite �elds are the basis for an attra
tivesolution. Let Fq be a �nite �eld with q elements, so that q is a prime power, t < q



26 Chapter 1. Pseudorandom generators1.7. Constru
tion of good designsan integer,
P = {f ∈ Fq[x] : deg f ≤ t},
Sf = {(u, f(u)) : u ∈ Fq} ⊆ L = F

2
q for f ∈ P,

k = #L = q2, n = qt+1.Theorem 1.27. The 
olle
tion of all these graphs Sf of f ∈ P is a (k, n, q, t)-design.Proof. The only 
laim to verify is that #(Sf ∩ Sg) ≤ t for distin
t f and
g ∈ P . But #(Sf ∩Sg) ≥ t+1 means that the two polynomials f and g of degreeat most t have t + 1 values in 
ommon. Then f − g is a polynomial of degree atmost t with at least t+1 roots, hen
e the zero polynomial, and we have f = g.�Example 1.24 
ontinued. We take q = 3 and t = 1, so that k = 9 = q2,
n = 9 = q1+1, and s = 3 = q. The following pi
ture shows this design.

0

1

2

0 1 2

• • •
� � �

� � �

• : f = 0,

� : f = 1,

� : f = 2,

0

1

2

0 1 2

�

�

�

�

�

�

•
•
•

• : f = x,

� : f = x + 1,

� : f = x + 2,

0

1

2

0 1 2

�

�

�

•

•
•

�

�

�

• : f = 2x,

� : f = 2x + 1,

� : f = 2x + 2.Thus we �nd the �rst nine pie
es of the design from Example 1.24. ♦In general, this 
onstru
tion does not provide the best possible design, but it isvery simple and su�
ient for our purposes.
s = q t k = s2 n = st+1

(

k
s

)

3 1 9 9 28
3 2 9 27 84
4 2 16 64 1820Figure 1.3: Some design parameters. Compare n to the number (

k
s

) of all subsetsof size s.
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©2009 J. von zur Gathen 27Corollary 1.28.(i) For any positive integers s > t, where s is a prime power, there exists an
(s2, st+1, s, t)-design.(ii) For any positive integers k, n, t, and a prime power s with k ≥ s2 and
t ≥ logs n− 1 there exists a (k, n, s, t)-design.Proof. In (i) we have re
orded the above 
onstru
tion. For (ii), we use (i)and note that n = slogs n ≤ st+1. �Corollary 1.29. Let n and s be positive integers, with s a prime power, and

f : B
s −→ B with hardness Hf ≥ 2n2. Then the Nisan�Wigderson generator is apseudorandom generator from B

s2 to B
n.In parti
ular, if n is exponential in s, say n = 2s/4, then we have a pseudoran-dom generator that turns short random strings into exponentially long pseudo-random ones.The 
orollary has the form:(1.30) If there is a hard problem, then a pseudorandom generator exists.Most statements about the existen
e of pseudorandom generators have thisform. We have a substantial 
olle
tion of problems that we think are hard, butunfortunately it is even harder to prove this. In fa
t, very few su
h resultsare known; we will mention one below. On the other hand, almost all Booleanfun
tions on s inputs require time at least 2s/s to 
ompute them exa
tly. This iseasily proved by a 
ounting argument; see Muller (1956) and Boppana & Sipser(1990), Theorem 2.4. Thus hard fun
tions do exist; an unresolved di�
ulty is to�nd ni
e and natural su
h fun
tions. But for our appli
ation we would have tosolve a yet more di�
ult problem: to show that some fun
tions are even hard toapproximate.One of the interesting 
onsequen
es of Nisan and Wigderson's work is that thislamentable situation of relying on the hardness of fun
tions is unavoidable: the
onverse of (1.30) also holds! If we 
an prove that something is a pseudorandomgenerator, then we have automati
ally proved some problem to be hard!Re
all the 
omplexity 
lasses

P ⊆ ZPP ⊆ RP ⊆ BPP ⊆ NP ⊆ EXPT IME .We say that a generator g = (gk)k∈N, with gk : B
k −→ B

n(k) for all k, is qui
kif it 
an be implemented in time exponential in k. A fun
tion r : N −→ N is
alled reasonable if for all k, k′ ∈ N we have
k ≤ r(k) ≤ 2k,



28 Chapter 1. Pseudorandom generators1.8. Deterministi
 simulation of probabilisti
 
omputation
r(k) ≤ r(k′) if k ≤ k′,

(r(k))2 ≤ r(k2).Theorem 1.31. Let r : N −→ N be reasonable. Then the following statementsare equivalent:(i) For some c > 0 there exists a fun
tion in EXPT IME with hardness r(kc).(ii) For some c > 0 there exists a qui
k pseudorandom generator g with gk : Bk −→
B

r(kc).Proof. We only prove (i)=⇒ (ii). Let f = (fs)s∈N be a fun
tion in EXPT IMEwith fs : B
s −→ B for all s and hardness Hfs ≥ r(sc). We build a pseudorandomgenerator g = (gk) with gk : B

k −→ B
n, with n = r(kc/4 − 1)/2. Let k ∈ N and

s = ⌊k1/2⌋. Then Hfs ≥ r(sc) ≥ r(kc/2−1) ≥ r((kc/4−1)2) ≥ (r(kc/4−1))2 = 2n2.Now the 
orollary says that we indeed have a pseudorandom generator from
B

s2 −→ B
n. Sin
e s2 ≤ k, this gives a pseudorandom generator B

k −→ B
n. �1.8. Deterministi
 simulation of probabilisti
 
omputationA fundamental question about probabilisti
 
omputations is whether randomnessreally helps, or whether it 
an in e�e
t be eliminated without too mu
h 
ost.Suppose that A is a probabilisti
 algorithm 
omputing some fun
tion f intime t. In parti
ular, it uses at most t(n) random bits on inputs of size n. We
an simulate A by deterministi
 algorithm B whi
h makes all 2t(n) 
hoi
es ofthese bits one after the other, simulates A on ea
h of them, and then 
ountsthe out
omes and takes the majority opinion as output. Of 
ourse, this is anexponential in
rease in 
ost, from t(n) to 2t(n).Now if t(n) is polynomial in n and we have a good pseudorandom generator,we may take its output instead of the random bits required in A. Then we onlyhave to try out all possible 
hoi
es for the seeds to the pseudorandom generator.This may be exponentially less than 2t(n).Nisan and Wigderson assume that there exists a fun
tion in DT IME (2O(n))with the properties at left, and 
on
lude the in
lusions of 
omplexity 
lasses atright. Not approximable by BPP ⊆ ⋂

ǫ>0DT IME(2nǫ
)polynomial-sized 
ir
uitsFor some ǫ > 0, not approximable BPP ⊆ DT IME(2(logn)c

)by 
ir
uits of size 2nǫ for some c > 0Hardness ≥ 2ǫn for some ǫ > 0 BPP = P
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esses deals with 
ir
uits of 
onstant depth d. Håstad proved a lower bound onapproximability (of the parity fun
tion). Nisan and Wigderson use this to obtaina pseudorandom generator B
k −→ B

n with exponential expansion nk1/(2d+6) whi
hno 
ir
uit of polynomial size and with depth at most d 
an distinguish from theuniform distribution more than negligible advantage.1.9. The Blum�Blum�Shub generatorThis generator takes N = p · q with distin
t odd primes p and q as in RSA, asseed a random square x0 ∈ Z
×
N , then 
omputes xi ≡ x2

i−1 remN , and returns thelow order bit
x0 rem 2, x1 rem 2, . . . .Why the hell should this be se
ure?For a ∈ Z and a prime p, the Legendre symbol is

(

a

p

)

=











1 if a mod p ∈ Z
×
p is a square,

−1 if a mod p ∈ Z
×
p is a nonsquare,

0 if p|a.Fermat's Little Theorem says that ap−1 = 1 in Zp for all a 6= 0. If a = b2, then
a(p−1)/2 = (b2)(p−1)/2 = bp−1 = 1. Thus x(p−1)/2 − 1 has the (p− 1)/2 squares asits roots, and sin
e its degree is (p − 1)/2, there are no others. It follows that
(

a
p

)

≡ a(p−1)/2 (mod p).Now p−1
2

elements of Z
×
p are squares, and p−1

2
are nonsquares, so that halfof the elements of Z

×
p have Legendre symbol 1, and half have −1. The Ja
obisymbol is de�ned in our situation as

(

a

pq

)

=

(

a

p

)

·
(

a

q

)

.By the Chinese Remainder Theorem, an element a ∈ Z
×
N is a square modulo Nif and only if it is a square modulo p and modulo q. We have

( − 1

p

)

= 1 ⇐⇒ p ≡ 1 mod 4.Let � = �N = {a ∈ Z
×
N : ∃b ∈ Z

×
N a = b2} be the set of squares modulo N , and

⊠ = ⊠N = {a ∈ Z
×
N :

(

a
N

)

= 1 and a 6∈ �} be the set of nonsquares modulo
N with Ja
obi symbol 1. (They are also 
alled pseudosquares in the literature,but this is a very di�erent use of �pseudo� from pseudoprimes�whi
h are usuallyprimes�and �pseudorandom� elements�whi
h behave like random elements; theelements of ⊠ are never squares.)
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(

a
q

)

= 1
(

a
q

)

= −1
(

a
N

)

= 1
(

a
N

)

= −1
(

a
p

)

= 1 �N

�p×�q �p×⊠q

(u,−v) (u, v)
(

a
N

)

= −1
(

a
N

)

= 1
(

a
p

)

= −1 ⊠N

⊠p×�q ⊠p×⊠q

(−u,−v) (−u, v)Figure 1.4: The values u and v are explained in the text.It is easy to 
ompute (

a
N

) by a method similar to the Eu
lidean algorithm.This takes O(k2) bit operations if a and N are k-bit numbers (and presumably
O(M(k) logk) with fast arithmeti
). Thus we 
an qui
kly tell whether a ∈ � ∪⊠.The quadrati
 residuosity problemmodulo N is to de
ide on input a ∈ � ∪⊠whether a ∈ �. Of 
ourse, given the fa
tors p and q, this be
omes easy sin
e we
an 
ompute (

a
p

) and (

a
q

). But no polynomial-time algorithm is known if thesefa
tors are not provided, and we will assume that in fa
t this is a hard problem.Let �p, ⊠p ⊂ Z
×
p be the sets of squares and nonsquares, respe
tively, andsimilarly for q. Under the Chinese remainder isomorphism

χ : Z
×
N −→ Z

×
p × Z

×
qwe have

χ(�N) = �p×�q,

χ(⊠N) = ⊠p×⊠q .We 
onsider the squaring map σp : Z
×
p −→ �p ⊆ Z

×
p with σp(a) = a2. If p ≡

3 mod 4, then −1 is not a square modulo p, and exa
tly one of the two squareroots a and −a of a2 is a square.We now assume that p ≡ q ≡ 3 mod 4. Then N = pq is 
alled a Bluminteger, after Manuel Blum. If χ(a) = (u, v), then χ(a2) has the four squareroots
(u, v), (−u, v), (u,−v), (−u,−v).
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tly one of them is a square, and χ−1 of this square is 
alled the prin
ipal(square) root of a2. If, say, u is a square modulo p and v a nonsquare modulo
q, then (u,−v) is the square among the four. This situation is illustrated inFigure 1.4.Example 1.32. We let p = 3 and q = 7, so that N = 21. Then �3 = {1},
⊠3 = {2}, �7 = {1, 2, 4}, and ⊠7 = {3, 5, 6}. Figure 1.4 now looks as follows:Not surprisingly, 1 is the prin
ipal root of 1, and 4 that of 16. But also 16 is

1, 2, 4 3, 5, 6
1↔ (1, 1) 10↔ (1, 3)

1 16↔ (1, 2) 19↔ (1, 5)
4↔ (1, 4) 13↔ (1, 6)
8↔ (2, 1) 17↔ (2, 3)

2 2↔ (2, 2) 5↔ (2, 5)
11↔ (2, 4) 20↔ (2, 6)Figure 1.5:the prin
ipal root of 4. In other words, −5 ≡ 16 mod 21 is the prin
ipal root of

25 ≡ 4 mod 21. ♦From an algebrai
 point of view, � is a subgroup of Z
×
N with φ(N)/4 elements.The squaring map σ : Z

×
N −→ � is a homomorphism whi
h always maps fourelements (±u,±v) to one, namely to (u2, v2). � has four 
osets �, ⊠, and, say,

C0 and C1, and in ea
h 
oset lies exa
tly one of these four square roots. Inparti
ular, σ indu
es a bije
tion on �. Multipli
ation by −1 gives a bije
tionbetween � and ⊠ (and between C0 and C1). The residue 
lass group Z
×
N/ � isisomorphi
 to {±1} × {±1} ∼= Z2 × Z2, with � ↔ (1, 1) and ⊠ ↔ (−1,−1).Here {±1} is the �multipli
ative version� of Z2. The 
orresponding mapping

Z
×
N −→ {±1} × {±1} is given by a 7−→

(

(

a
p

)

,
(

a
q

)

).Our ultimate goal is to prove the following result.Theorem 1.33. Let N be a k-bit Blum integer, 
onsider the Blum�Blum�Shubgenerator g : B
k −→ B

n for some n > k, and suppose that A is an ǫ-distinguisherbetween g(uk) and un, for ǫ = n−e for some e > 0. Then for any δ > 0 one 
antest quadrati
 residuosity by a probabilisti
 algorithm T with error probabilityat most δ. If A uses time polynomial in n, then B uses time polynomial in n, ǫ−1and log δ−1.



32 Chapter 1. Pseudorandom generators1.9. The Blum�Blum�Shub generatorWe note that A only has to work well on most inputs, while on any singleinput x to B, the error probability is at most δ.The proof pro
eeds in four steps:distinguisher step 1−→ postdi
tor step 2−→ squareness distinguisherstep 3−→ weak squareness test step 4−→ strong squareness test.A postdi
tor (or previous bit predi
tor) works like our old friends thepredi
tors, only it predi
ts the previous bit x0 from x1, . . . , xn. Yao's methodyields the �rst step.Step 1: From A we obtain an ǫ
n
-postdi
tor.In Step 2, we build a squareness distinguisher B from a postdi
tor P.Algorithm 1.34. Squareness distinguisher B.Input: A Blum integer N and a ∈ � ∪⊠ ⊆ {0, . . . , N − 1}.Output: �a ∈ �� or �a ∈ ⊠�.1. Compute x1 = a2 remN .2. Compute the output y1 = x1 rem 2, . . . , yn = xn rem 2 of the Blum�Blum�Shub generator.3. Compute z = P(y1, . . . , yn).4. If a ≡ z mod 2 then output �a ∈ �� else output �a ∈ ⊠�.The idea is that P always postdi
ts elements from a long sequen
e of repeatedsquares, so that the postdi
ted z is likely to be the low order bit of a square. Thetwo square roots modulo N in � ∪⊠ of x1 ≡ a2 mod N are a and −a remN =

N − a, and a 6≡ N − a mod 2 sin
e N is odd.Lemma 1.35. Suppose that P is an ǫ-postdi
tor. Then for a ∈ � ∪⊠ 
hosenuniformly at random, the output of the squareness distinguisher is 
orre
t withprobability at least 1/2 + ǫ.Proof. By assumption, we have
1

2
+ ǫ ≤ σP(p) =

∑

a∈�∪⊠

p(a) prob(a0 = P(y1, . . . , yn))

= p0 ·
∑

a∈�∪⊠

prob(a0 = P(y1, . . . , yn))

= p0 ·
[

∑

a∈�

prob(B(a) = �a ∈ ��) +
∑

a∈⊠

prob(B(a) = �a ∈ ⊠�)]
= p0 ·

∑

a∈�∪⊠

prob(B(a) is 
orre
t),where a0 is the low order bit of a1, p is the uniform distribution on � ∪⊠, so that
p(a) = p0 = (#(� ∪⊠))−1 = 2/(p − 1)(q − 1) for all a ∈ � ∪⊠, y1, . . . , yn are
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omputed as in step 2 of B, and �prob� refers to the internal distribution of theprobabilisti
 algorithms P and B. We note that #Z
×
N = (p−1)(q−1) = ϕ(N).�Step 3. Our algorithm B distinguishes (slightly) the squares in � from thenonsquares in ⊠. If B were deterministi
, then for slightly more than half theinputs from � ∪⊠ its answer would be 
orre
t. (In general, the 
orre
tnessprobabilities sum to just over 1/2.) We now build a mu
h stronger result fromthis: a probabilisti
 algorithm C whose su

ess probability on any input is slightlymore than 1/2. For any problem, any algorithm with C's properties also has B'sproperties, but in general one 
annot go the other way around. Here we su

eedin this by �smearing� the (non)squareness of a single input x uniformly a
ross thewhole of � ∪⊠.Algorithm 1.36. Weak squareness test C.Input: x ∈ � ∪⊠.Output: �x ∈ �� or �x ∈ ⊠�.1. Choose r ∈ Z

×
N and b ∈ {0, 1} uniformly at random.2. Compute z = (−1)br2x remN .3. Call B with input z, and let c ∈ {0, 1} be the output bit c = (B(z) = �z ∈ ��).[Thus c is 1 if and only if B answers �z ∈ ��.℄4. Output �x ∈ �� if b⊕ c = 1 and �x ∈ ⊠� otherwise.Theorem 1.37. For any input x ∈ � ∪⊠, this test C answers 
orre
tly withprobability at least 1/2 + ǫ.Proof. We �rst 
laim that if B answers 
orre
tly, then so does C. Let x ∈ �.Then

b = 0⇐⇒ z ∈ � ⇐⇒ (B(z) = �z ∈ ��)⇐⇒ c = 1.Thus for both possible values of b, we have b⊕c = 1, and C(x) is 
orre
t. Similarly,for x ∈ ⊠ we �nd
b = 0⇐⇒ z ∈ ⊠ ⇐⇒ (B(z) = �z ∈ ⊠�)⇐⇒ c = 0,so that b⊕ c = 0. This proves the 
laim.Now let x ∈ � ∪⊠ be an input, and y ∈ � ∪⊠ arbitrary. We 
laim thatthere exists exa
tly four 
hoi
es for (b, r) so that y = (−1)br2x remN . Firstsuppose that x ∈ �. The elements r2 rem N form pre
isely the set � of squares,and ea
h element of � 
omes from four values of r. Sin
e � is a group, theelements r2x remN also make up �, ea
h element o

urring four times. Nowmultipli
ation by 1 = (−1)0 does not 
hange anything, while multipli
ation by

−1 = (−1)1 maps � bije
tively to ⊠.
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ular, for any input x ∈ � ∪⊠, the element z 
omputed in the algo-rithm is a uniform random element of � ∪⊠. The su

ess probability of B onsu
h inputs z is at least 1/2 + ǫ, so that C also has at least this su

ess probabil-ity. �Now 
omes the �nal Step 4. We have a Monte Carlo test C for squarenesswith su

ess probability at least 1/2 + ǫ. We now improve this to 1 − δ for any
δ > 0.This method for bumping up su

ess probabilities works for any Monte Carloalgorithm. So we have a set � ⊆ B

n and a probabilisti
 algorithm C whi
h answers�x ∈ �� or �x 6∈ �� on input x, and the output is 
orre
t with probability exa
tly
1/2 + ǫ for every x ∈ B

n.We let k = 2m + 1 for m ∈ N, and 
onsider the test T whi
h, on input x,runs C exa
tly k times and outputs the majority answer.Theorem 1.38. The test T answers 
orre
tly with probability at least 1− (1−
4ǫ2)m/2.Proof. Let x be an input. We assume that the 
orre
tness probability of C oninput x is exa
tly 1/2 + ǫ. The probability of obtaining exa
tly i 
orre
t answersin k trials is

(

k

i

) (

1

2
+ ǫ

)i (
1

2
− ǫ

)k−i

.

T answers in
orre
tly if at most m 
orre
t answers were given by C. Weset s = 1
2

+ ǫ and t = 1
2
− ǫ = 1 − s. Thus s/t ≤ 1, k − m = m + 1 and

∑

0≤i≤n

(

k
i

)

= 22m+1. The probability that T answers in
orre
tly is at most
∑

0≤i≤m

(

k

i

)

sitk−i = smtk−m
∑

0≤i≤m

(

k

i

)

(s/t)m−i

≤ (st)mt
∑

0≤i≤m

(

k

i

)

=

(

1

4
− ǫ2

)m

t · 22m

= (1− 4ǫ2)mt ≤ (1− 4ǫ2)m/2. �Corollary 1.39. In order to improve the 
orre
tness probability from 1/2 + ǫto 1− δ, as above, it is su�
ient to take k = ⌈ǫ−2 ln((2δ)−1)⌉+ 2.
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ient to 
hoose m so that
(1− 4ǫ2)m/2 ≤ δ.Thus

m ≥
⌈ ln 2δln(1− 4ǫ2)

⌉is good enough. The Brook Taylor expansion of the natural logarithm givesln(1 − x) = −x + x2

2
− x3

3
+ − . . . ≤ −x/2 for 0 ≤ x < 1. (Note that the twologarithms have negative values.) Hen
eln 2δln(1− 4ǫ2)

≤ 2

4ǫ2
ln((2δ)−1).Thus

k = 2m + 1 = 2

⌈ ln((2δ)−1)

2ǫ2

⌉

+ 1 ≤
⌈ ln((2δ)−1)

ǫ2

⌉

+ 2is su�
ient. �1.10. Randomness extra
tionIn this se
tion we will explore the following problem: Assume you are given asour
e whi
h generates n bits of �bad� randomness and the goal is to extra
t mbits of �good� randomness.The oldest approa
h was given by von Neumann (1951). He solved the follow-ing question: Given a 
oin B whose probability of giving Heads is p, 
onstru
tout of this 
oin a 
oin C for whi
h the probability of giving Heads is 1/2. Thesolution he gave was to throw the 
oin B twi
e. If in the two experiments theresults are di�erent (e.g. �rst Heads then Tails), the value of the new 
oin isde�ned to be the value of the �rst throw (in our example Heads). Otherwise theresult is dis
arded and the 
oin B is again thrown twi
e. The probability for the
oin C giving Heads is now equal to the probability of C giving Tails. Howeverwe will have to throw the 
oin an expe
ted number of 1/(2p(1− p)) times twi
ein order to extra
t one fair 
oin toss. Thus the above pro
edure extra
ted in asuitable sense the randomness hidden in B.Identify in this se
tion 
onstantly a random variable with its distribution andmake the distin
tion only if ne
essary. We are all the time dis
ussing probabilitydistributions, their distan
e and the amount of randomness they 
ontain. For thelatter Shannon's entropy pops into ones mind, but it turns out that it is oftenhard to estimate the entropy in a distribution. A more 
onvenient measure is theso 
alled min-entropy. For a random variable X over (in our 
ase always �nite)set A, the min-entropy of X is de�ned by
H∞(X) := mina∈A− log2 prob(a←− X).
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tionWe observe that if H∞(X) then for all a ∈ A we have prob(a←− X) ≤ 2−k.It is illustrative to 
ompare this value to Shannon's entropy
H(X) = −

∑

a∈A

prob(a←− X) log2 prob(a←− X).While Shannon measures the �amount of randomness� on average, the min-entropy 
aptures the �worst-
ase�. Intuitively the min-entropy measures the num-ber of random bits that are at least 
ontained in X. More pre
isely we 
an thinkof X 
ontaining at least k random bits if and only if H∞(X) ≥ k.Now let X, Y be two distributions over the (�nite) set A. We de�ne theirstatisti
al distan
e by
∆(X, Y ) :=

1

2

∑

a∈A

| prob(a←− X)− prob(a←− Y )|.We say that X is ε-
lose to Y if ∆(X, Y ) ≤ ε and we 
all X to be ε-quasi-randomif X is ε-
lose to uniform.Now what is an extra
tor? Ideally we would like at least to 
onstru
t afun
tion E on n-bit strings that extra
ts a single bit of randomness, i.e. a fun
tion
E : B

n → B su
h that for all distributions X on B
n with H∞(X) ≥ n − 1, thevalue E(X) is 
lose to a uniform random bit. However su
h a fun
tion E does notexist: Every fun
tion E has a bit b ∈ B su
h that the set S := {x ∈ B

n E(x) = b}has not less than 2n−1 elements. The distribution US that assigns to ea
h elementof S the same probability and to all elements not in S probability 0 
ertainly has
H∞(US) ≥ n − 1 but the output E(X) is 
onstantly b and thus not 
lose touniform. This means that we need to be more generous for the de�nition of anextra
tor.In the following we will always use the following notation: n denotes thelength of the input x following distribution X, m the length of the extra
tedelement, k denotes the min-entropy of X and d the length of some additionaluniform random input whi
h will allow us to a
tually 
onstru
t our extra
tors.Definition 1.40 (Extra
tor). A fun
tion E : B

n × B
d → B

m is 
alled a (k, ε)-extra
tor if for all distributions X on B
n with H∞(X) ≥ k the output E(X, Ud)is ε-quasi-random. Here Ud denotes the uniform distribution on d-bit strings.We 
all E e�
ient if it is 
omputable in polynomial time (in the size of theinput). This of 
ourse makes only sense if we 
onsider E to be a whole familyof fun
tions and d and m to be suitable fun
tions in n. The extra
tor is 
allednontrivial if m > d. This is be
ause we simply 
ould output the �rst m bits ofthe additional truely random input if d ≥ m.How do we now 
onstru
t su
h an extra
tor? The idea is to hash in a suitablesense elements from B

n to B
m. To do so we need 
ertain families of hash-fun
tionsthat behave (in a statisti
al sense) very well:
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tions). Assume you have a fam-ily of fun
tions H =
{

hs : B
n → Bℓ s ∈ B

d
}. Then H is 
alled universal if forall x1, x2 ∈ B

n and all y1, y2 ∈ Bℓ we haveprob(y1 ←− H(x1) and y2 ←− H(x1)) = 2−2ℓ.We are now going to 
onstru
t an extra
tor out of any universal family ofhash fun
tions:Definition 1.42. Let H be a universal family of hash fun
tions of size 2d. Theextra
tor de�ned by H is given by
E(x, s) = hs(x) ◦ s,the notation denotes 
on
atenation of strings.In abuse of notations we will write E(x, h) = h(x) ◦ h, identifying the fun
tion hwith its index. Note that the number m of produ
ed bits is equal to ℓ + d.We will now show that this 
onstru
tion is indeed good:Theorem 1.43. If H is a universal family of hash fun
tions and ℓ ∈ k−2 log(1/ε)−

O(1), then the extra
tor E(x, h) de�ned by H is a (k, ε/2)-extra
tor.Proof. For the proof we will need a 
ertain tool, the so 
alled 
ollision prob-ability. For a distribution X over B
n we de�ne its 
ollision probability asCol(X) = prob(x = y and x←− X and y ←− X)

=
∑

x,y∈Bn

prob(x←− X) prob(y ←− X)

=
∑

x∈Bn

prob(x←− X)2The proof has three steps:1. We show that if H∞(X) ≥ k then Col(X) ≤ 1/k.2. If Col(X) is small, so is the 
ollision probability of the output distributionof the extra
tor de�ned by H .3. We �nish by observing that if the 
ollision probability of a distribution Yis 
lose to the 
ollision probability of the uniform distribution, then Y is
lose to uniform.
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tionAd 1) We have thatCol(X) =
∑

x∈Bn

prob(x←− X)2 ≤ pmax ∑

x∈Bn

prob(x←− X) = pmax ≤ 2−kHere pmax denotes the maximum probability for whi
h X assumes a 
ertain value.Ad 2) We need to analyze Col(E(X, H)) = Col(H(X) ◦H). We haveCol(H(X) ◦H)

= prob(H(X) ◦H = H ′(X ′) ◦H ′)

= prob(H = H ′) prob(H(X) = H ′(X ′) | H = H ′)

= prob(H = H ′) prob(H(X) = H(X ′))

= prob(H = H ′) (prob(X = X ′) + prob(X 6= X ′) prob(H(X) = H(X ′) | X 6= X ′)))

≤ 2−d
(

2−k + prob(H(X) = H(X ′) | X 6= X ′)
)

= 2−d
(

2−k + 2−ℓ
)

= 2−(ℓ+d)
(

22 log ε−O(1) + 1
)

≤ 2−(ℓ+d)
(

ε2 + 1
)Ad 3) Let Y1, Y2 be any two probability distributions over B

m. Then we have thefollowing fa
t:(1.44) ∆(Y1, Y2) ≤
1

2
2m/2

√

∑

y∈Bm

(prob(y ←− Y1)− prob(y ←− Y2))2We are now going to estimate the last sum. We have:
∑

y∈Bm

(prob(y ←− Y1)− prob(y ←− Y2))
2 =

∑

y∈Bm

prob(y ←− Y1)
2 +

∑

y∈Bm

prob(y ←− Y2)
2 − 2

∑

y∈Bm

prob(y ←− Y1) prob(y ←− Y2))If Y2 = Um is uniform we obtain:
∑

y∈Bm

prob(y ←− Y1)
2 +2−(d+ℓ)−2 ·2−(d+ℓ)

∑

y∈Bm

prob(y ←− Y1) = Col(Y1)−2−(d+ℓ)If we set now Y1 = H(X) ◦H , we obtain
∑

y∈Bm

(prob(y ←− H(X) ◦H)− prob(y ←− Um))2 = Col(H(X) ◦H)− 2−(d+ℓ)

≤ 2−(d+ℓ)(ε2 + 1)− 2−(d+ℓ) =
ε2

2d+ℓ
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∆(H(X) ◦H, Um) ≤ 1

2
2(d+ℓ)/2

√

ε2

2d+ℓ
= ε/2This �nishes the proof. �Notes 1.2. The atta
k on linear 
ongruential generators is due to Reeds (1977) and Boyar??.1.3. The two notions of probability distribution p on a set A and random variable X on Aare equivalent in the following sense. From p we get the random variable X = id, as des
ribedin the text, and from some X , we get p with p(a) = prob(a ←−− X). These asso
iations areinverse to ea
h other, that is, starting from some p and taking X = id, we get the distribution

p ba
k in the way des
ribed. Similarly, for any X , the random variable 
orresponding to the pwhi
h 
orresponds to X equals X .A fundamental notion in 
omplexity theory is the 
omplexity 
lass P of all Boolean predi
ates(= one-output Boolean fun
tions = languages) whi
h 
an be 
omputed by a (deterministi
)Turing ma
hine in polynomial time. We 
an also 
onsider the 
lass P
ir
 of all su
h predi
ateswhi
h 
an be 
omputed by a family (Cn)n∈N of Boolean 
ir
uits Cn, where Cn has n inputs andits size is polynomial in n. Then P ⊂ P
ir
, but the two 
lasses are not identi
al, be
ause the
ir
uit for n inputs may be 
onstru
ted in a manner totally di�erent from that for n−1 inputs,while a Turing ma
hine has only �one� behavior for all input sizes. This 
an be mended bystipulating that the 
ir
uits Cn have to be �uniformly 
onstru
ted� in dependen
e on n. Withthe appropriate te
hni
al de�nitions, we have P
ir
(uniform) = P . Alternatively, we 
an allowTuring ma
hines a spe
ial �advi
e tape�; this gives the 
omplexity 
lass P/ poly, whi
h equals
P
ir
. For the rather te
hni
al details, we refer to ???. If we think of C as representing anele
tri
al 
ir
uit, then the time that a signal takes 
orresponds to the length of a longest pathfrom inputs to outputs; this is 
alled the depth of the 
ir
uit.1.4. In De�nition 1.12 (iii), the predi
tor a
tually also has to 
ompute ik from k, so that ikdepends �uniformly� on k (see Notes 1.3).
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A
ronyms
AES Advan
ed En
ryption StandardATM Automati
 Teller Ma
hineCBC Cipher Blo
k ChainingCESG Communi
ations-Ele
troni
s Se
urityGroupCFB Cipher Feedba
kDEC Digital Equipment CorporationDES Data En
ryption StandardDSA Digital Signature AlgorithmDSS Digital Signature StandardECB Ele
troni
 CodebookEFF Ele
troni
 Frontiers FoundationFIPS Federal Information Pro
essingStandardIBM International Business Ma
hinesIDEA International Data En
ryptionAlgorithmMARS A 
andidate 
ipher for AES. missinglong name

MD4 Message Digest 4MD5 Message Digest 5NBS National Bureau of StandardsNIST National Institute of Standards andTe
hnologyNSA National Se
urity Agen
yOFB Output Feedba
kPIN Personal Identi�
ation NumberPKCS Publi
 Key Cryptography StandardRSA In
. issued some of these.PRG Pseudo Random number GeneratorRSA Rivest, Shamir and AdlemanCryptosystemRC6SHA Se
ure Hash AlgorithmSHS Se
ure Hash StandardTDEA Triple Data En
ryption Algorithm
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