Cryptography

PROF. DR. JOACHIM VON ZUR GATHEN, KONSTANTIN ZIEGLER

2. Assignment: MixColumns, CRT and units in \mathbb{Z}_N

(Due: Friday, 13 November 2009, 12⁰⁰)

Exercise 2.1 (MixColumns).

(12 points)

The MixColumns-step of the AES-algorithm takes place in the ring

$$S = \mathbb{F}_{256}[y] / \langle y^4 + 1 \rangle$$

- (i) The ring *S* is not a field. In particular, there are nonzero elements in *S* 2 *without* a multiplicative inverse. Give an example and explain how you could check that property.
- (ii) The output b_3 , b_2 , b_1 and b_0 of the MixColumns-step for a column with 3 entries a_3 , a_2 , a_1 and a_0 is determined by the product

$$b_3y^3 + b_2y^2 + b_1y + b_0 = (\mathbf{02} + \mathbf{01}y + \mathbf{01}y^2 + \mathbf{03}y^3) \cdot (a_3y^3 + a_2y^2 + a_1y + a_0)$$

Expand the product over $\mathbb{F}_{256}[y]$, reduce it modulo $y^4 + 1$ and collect the terms with equal powers of y to obtain equations for b_3 , b_2 , b_1 and b_0 .

(iii) Find a 4×4 -matrix \mathcal{M} with entries from \mathbb{F}_{256} to express this multiplication 2 as a matrix-vector product

$$egin{pmatrix} b_0 \ b_1 \ b_2 \ b_3 \end{pmatrix} = \mathcal{M} \cdot egin{pmatrix} a_0 \ a_1 \ a_2 \ a_3 \end{pmatrix}.$$

(iv) Use this matrix-vector product to perform the MixColumns-operation 3 on the following state of AES:

00	00	00	00 00 00 AA	
7A	00	00	00	
01	00	01	00	
00	00	00	AA	

(v) The InvMixColumns-operation is the inverse of MixColumns. From 2 exercise 1.3 (iii) you know that the product of $02 + 01y + 01y^2 + 03y^3$ with $0By^3 + 0Dy^2 + 09y + 0E$ is 01 in *S*. Use this information to write down the InvMixColumns-operation on a column *b* in matrix-vector-notation.

Exercise 2.2 (Chinese Remainder Theorem).

(14 points)

To investigate the structure of rings $(\mathbb{Z}_N, +, \cdot)$ with composite N it is useful to pick a suitable factorization N = ab and look at the set $\mathbb{Z}_a \times \mathbb{Z}_b$ consisting of all pairs (x, y) with $x \in \mathbb{Z}_a$ and $y \in \mathbb{Z}_b$. We define addition and multiplication on $\mathbb{Z}_a \times \mathbb{Z}_b$ componentwise.

(i) Consider $20 = 5 \cdot 4$ and look at the map $\pi_1 : \mathbb{Z}_{20} \to \mathbb{Z}_4$ which maps an integer $0, 1, \ldots, 19 \in \mathbb{Z}_{20}$ to its remainder modulo 4. Prove that for any two elements $a, b \in \mathbb{Z}_{20}$ the following holds:

(†)
$$\pi_1(a+b) = \pi_1(a) + \pi_1(b)$$
 and $\pi_1(a \cdot b) = \pi_1(a) \cdot \pi_1(b)$.

Fill out a table with rows indexed by \mathbb{Z}_4 and columns indexed by \mathbb{Z}_5 . Note: a map having the properties (†) is called a *ring homomorphism*.

- (ii) Pick two elements $x, y \in \mathbb{Z}_{20}$ (to make it interesting: the sum of the representing integers shall be larger than 20). First, add them in \mathbb{Z}_{20} and then map to $\mathbb{Z}_5 \times \mathbb{Z}_4$. Second, map both to $\mathbb{Z}_5 \times \mathbb{Z}_4$ and add afterwards. What do you observe?
- (iii) Pick two elements $x, y \in \mathbb{Z}_{20}$ (to make it interesting: the product of the representing integers shall be larger than 20). First, multiply them in \mathbb{Z}_{20} and then map to $\mathbb{Z}_5 \times \mathbb{Z}_4$. Second, map both to $\mathbb{Z}_5 \times \mathbb{Z}_4$ and multiply afterwards. What do you observe?
- (iv) Mark all the invertible elements in \mathbb{Z}_5 , \mathbb{Z}_4 , and \mathbb{Z}_{20} . What is their relationship?
- (v) Revisit the previous four questions under the factorization $20 = 2 \cdot 10$.

Now consider two relatively prime positive integers $a, b \in \mathbb{Z}_{\geq 2}$.

- (vi) Let x be any integer and suppose $x \pmod{ab}$ is invertible. Prove that $x \pmod{a}$ and $x \pmod{b}$ are also invertible.
- (vii) Assume that an integer y is invertible modulo a and modulo b. Prove that y is then invertible modulo ab.
- (viii) Conclude that there is a bijection between \mathbb{Z}_{ab}^{\times} and $\mathbb{Z}_{a}^{\times} \times \mathbb{Z}_{b}^{\times}$.

2

1

1

2

4

1

2

|1|

Exercise 2.3 (Units in \mathbb{Z}_N).

We prove the following useful

Theorem. Let $N \ge 2$ be a positive integer and consider the ring $(\mathbb{Z}_N, +, \cdot)$ and $a \in \mathbb{Z}$. Then the following holds:

$$a \in \mathbb{Z}_N^{\times} \Leftrightarrow \gcd(a, N) = 1$$

- (i) Assume $a \in \mathbb{Z}_N^{\times}$, so that there is a $b \in \mathbb{Z}_N$ with ab = 1 in \mathbb{Z}_N . Prove that $\exists \gcd(a, N) = 1$.
- (ii) Let $a \in \mathbb{Z}_N$ and assume gcd(a, N) = 1. Prove that there is an element 3 $b \in \mathbb{Z}_N$ so that $a \cdot b = 1$ in \mathbb{Z}_N .

3

(6 points)