Cryptography

Prof. Dr. Joachim von zur Gathen, Konstantin Ziegler

2. Assignment: MixColumns, CRT and units in \mathbb{Z}_{N}

(Due: Friday, 13 November 2009, 12^{00})

Exercise 2.1 (MixColumns).

The MixColumns-step of the AES-algorithm takes place in the ring

$$
S=\mathbb{F}_{256}[y] /\left\langle y^{4}+1\right\rangle .
$$

(i) The ring S is not a field. In particular, there are nonzero elements in S 2 without a multiplicative inverse. Give an example and explain how you could check that property.
(ii) The output b_{3}, b_{2}, b_{1} and b_{0} of the MixColumns-step for a column with 3 entries a_{3}, a_{2}, a_{1} and a_{0} is determined by the product
$b_{3} y^{3}+b_{2} y^{2}+b_{1} y+b_{0}=\left(02+01 y+01 y^{2}+03 y^{3}\right) \cdot\left(a_{3} y^{3}+a_{2} y^{2}+a_{1} y+a_{0}\right)$.
Expand the product over $\mathbb{F}_{256}[y]$, reduce it modulo $y^{4}+1$ and collect the terms with equal powers of y to obtain equations for b_{3}, b_{2}, b_{1} and b_{0}.
(iii) Find a 4×4-matrix \mathcal{M} with entries from \mathbb{F}_{256} to express this multiplication 2 as a matrix-vector product

$$
\left(\begin{array}{l}
b_{0} \\
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)=\mathcal{M} \cdot\left(\begin{array}{l}
a_{0} \\
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right) .
$$

(iv) Use this matrix-vector product to perform the MixColumns-operation 3 on the following state of AES:
$\left[\begin{array}{llll}00 & 00 & 00 & 00 \\ 7 \mathrm{~A} & 00 & 00 & 00 \\ 01 & 00 & 01 & 00 \\ 00 & 00 & 00 & \mathrm{AA}\end{array}\right]$
(v) The InvMixColumns-operation is the inverse of MixColumns. From exercise 1.3 (iii) you know that the product of $02+01 y+01 y^{2}+03 y^{3}$ with $0 \mathrm{~B} y^{3}+\mathrm{OD} y^{2}+09 y+0 \mathrm{E}$ is 01 in S. Use this information to write down the InvMixColumns-operation on a column b in matrix-vector-notation.

Exercise 2.2 (Chinese Remainder Theorem).

(14 points)
To investigate the structure of rings $\left(\mathbb{Z}_{N},+, \cdot\right)$ with composite N it is useful to pick a suitable factorization $N=a b$ and look at the set $\mathbb{Z}_{a} \times \mathbb{Z}_{b}$ consisting of all pairs (x, y) with $x \in \mathbb{Z}_{a}$ and $y \in \mathbb{Z}_{b}$. We define addition and multiplication on $\mathbb{Z}_{a} \times \mathbb{Z}_{b}$ componentwise.
(i) Consider $20=5 \cdot 4$ and look at the map $\pi_{1}: \mathbb{Z}_{20} \rightarrow \mathbb{Z}_{4}$ which maps an integer $0,1, \ldots, 19 \in \mathbb{Z}_{20}$ to its remainder modulo 4 . Prove that for any two elements $a, b \in \mathbb{Z}_{20}$ the following holds:

$$
\pi_{1}(a+b)=\pi_{1}(a)+\pi_{1}(b) \text { and } \pi_{1}(a \cdot b)=\pi_{1}(a) \cdot \pi_{1}(b)
$$

Fill out a table with rows indexed by \mathbb{Z}_{4} and columns indexed by \mathbb{Z}_{5}.
Note: a map having the properties (\dagger) is called a ring homomorphism.
(ii) Pick two elements $x, y \in \mathbb{Z}_{20}$ (to make it interesting: the sum of the representing integers shall be larger than 20). First, add them in \mathbb{Z}_{20} and then map to $\mathbb{Z}_{5} \times \mathbb{Z}_{4}$. Second, map both to $\mathbb{Z}_{5} \times \mathbb{Z}_{4}$ and add afterwards. What do you observe?
(iii) Pick two elements $x, y \in \mathbb{Z}_{20}$ (to make it interesting: the product of the representing integers shall be larger than 20). First, multiply them in \mathbb{Z}_{20} and then map to $\mathbb{Z}_{5} \times \mathbb{Z}_{4}$. Second, map both to $\mathbb{Z}_{5} \times \mathbb{Z}_{4}$ and multiply afterwards. What do you observe?
(iv) Mark all the invertible elements in $\mathbb{Z}_{5}, \mathbb{Z}_{4}$, and \mathbb{Z}_{20}. What is their relationship?
(v) Revisit the previous four questions under the factorization $20=2 \cdot 10$.

Now consider two relatively prime positive integers $a, b \in \mathbb{Z}_{\geq 2}$.
(vi) Let x be any integer and suppose $x(\bmod a b)$ is invertible. Prove that x $(\bmod a)$ and $x(\bmod b)$ are also invertible.
(vii) Assume that an integer y is invertible modulo a and modulo b. Prove that y is then invertible modulo $a b$.
(viii) Conclude that there is a bijection between $\mathbb{Z}_{a b}^{\times}$and $\mathbb{Z}_{a}^{\times} \times \mathbb{Z}_{b}^{\times}$.

Exercise 2.3 (Units in \mathbb{Z}_{N}).

We prove the following useful
Theorem. Let $N \geq 2$ be a positive integer and consider the ring $\left(\mathbb{Z}_{N},+, \cdot\right)$ and $a \in \mathbb{Z}$. Then the following holds:

$$
a \in \mathbb{Z}_{N}^{\times} \Leftrightarrow \operatorname{gcd}(a, N)=1 .
$$

(i) Assume $a \in \mathbb{Z}_{N}^{\times}$, so that there is a $b \in \mathbb{Z}_{N}$ with $a b=1$ in \mathbb{Z}_{N}. Prove that $\operatorname{gcd}(a, N)=1$.
(ii) Let $a \in \mathbb{Z}_{N}$ and assume $\operatorname{gcd}(a, N)=1$. Prove that there is an element 3 $b \in \mathbb{Z}_{N}$ so that

$$
a \cdot b=1 \text { in } \mathbb{Z}_{N}
$$

