Cryptography

PROF. DR. JOACHIM VON ZUR GATHEN, KONSTANTIN ZIEGLER

4. Assignment: RSA, expected value, Dixon's random squares, and smooth numbers

(Due: Thursday, 26 November, 23⁵⁹)

Exercise 4.1 (RSA for non-invertible messages).

(6 points)

6

3

In the lecture we proved that "RSA works" for messages $m \in \mathbb{Z}_N^{\times}$, meaning that the decryption of an encrypted messages returns the message itself. This is also true for messages $m \in \mathbb{Z}_N \setminus \mathbb{Z}_N^{\times}$. Prove it.

Hint: Use the Chinese Remainder Theorem to transform a congruence modulo N into a system of two congruences modulo p and q.

Exercise 4.2 (Expected value and the birthday paradox).

(12 points)

Given a discrete random variable X, for example the result of a single roll of a fair die. The values that X can take are denoted by x_i and the respective probability is given by $\operatorname{prob}(X = x_i)$. For the example, the x_i are taken from the set $\{1, 2, 3, 4, 5, 6\}$ with each $\operatorname{prob}(X = x_i) = 1/6$.

We are interested in the *expected value* E(X) defined as

$$E(X) = \sum_{i} x_i \cdot \operatorname{prob}(X = x_i).$$

In the example above, this returns as the expected value for the roll of a single die

$$E(X) = \sum_{1 \le i \le 6} i \cdot \frac{1}{6} = \frac{21}{6} = 3.5$$

Next, we roll the die until a certain number, say "2", appears *for the first time*. The random variable *Y* is now the *number of rolls* that are performed, until this happens.

- (i) What is prob(Y = i), i.e. the probability that "2" appears for the first time 2 in the *i*th roll?
- (ii) Prove that E(Y) = 6. (You may have use for the generalization of the formula for the geometric series $\sum_{k=n}^{\infty} q^k = q^n/(1-q)$ for q < 1.)
- (iii) Generalize the preceding steps to prove the more general proposition

	Proposition. Suppose that an event <i>A</i> occurs in an experiment with probability <i>p</i> , and we repeat the experiment with independent random choices until <i>A</i> occurs. Then the expected number of executions until <i>A</i> happens is $1/p$.
	Finally, we turn to the birthday paradox.
3	(iv) Compute the probability that in a group of 23 randomly chosen people, (at least) two have the same birthday. Provide a meaningful formula to justify your computation. (You may assume, that birthdays are evenly distributed among 365 days in a year.)
	Exercise 4.3 (Dixon's random squares). (16 points)
4	 (i) Let N = q₁q₂ ··· q_r be odd with pairwise coprime prime power divisors q_i and r ≥ 2. Show: The equation x² - 1 = 0 has exactly 2^r solutions in Z[×]_N. <i>Hint</i>: Use the Chinese Remainder Theorem. <i>Hint</i>: Prove first, that for prime powers q the equation x² - 1 = 0 has
	exactly 2 solutions in \mathbb{Z}_q . (ii) Let C he the set of all (a, t) in \mathbb{Z}_q^2 with $z^2 = t^2$ in \mathbb{Z}_q . Prove that for
3	(ii) Let S be the set of all (s,t) in \mathbb{Z}_N^2 with $s^2 = t^2$ in \mathbb{Z}_N . Prove that for uniformly randomly chosen (s,t) the probability for $s \not\equiv \pm t \mod N$ is at least $1 - 2^{1-r}$.
4	(iii) Find a factor of $N = 1517 = 37 \cdot 41$ using Dixon's random squares method. Choose $B = 5$ and execute the algorithm step by step.
1	(iv) For $N = 1845314859041$ compute the value $B = \exp(\sqrt{\ln N \ln \ln N})$ derived in the lecture as well as the promised value $B = \exp(\sqrt{\frac{1}{2} \ln N \ln \ln N})$.
4	(v) Run Dixon's random squares repeatedly on $N = 1845314859041$ with $B = 320$. Hand in a protocol of a <i>unsuccessful</i> attempt that does not find a factor. Give a short comment about what has happened.

Exercise 4.4 (Smooth numbers).

2

(5 points)

For Dixon's random squares method *B*-smooth numbers were important. Denote by $\psi(x, B)$ the number of positive integers less than or equal to *x* whose prime divisors are at most *B*. Dickman's rho function $\varrho(x, B) = \psi(x, B)/x$ denotes the fraction of *B*-smooth integers.

- (i) How many 2-smooth numbers are there up to 100? [This is $\psi(100, 2)$.]
- (ii) How many 3-smooth numbers are there up to 10 000? [This is $\psi(10\,000,3)$.]

In the lecture we learned that $\varrho(x, B) \approx u^{-u}$ with $u = \ln(x) / \ln(B)$.

1

2

(iii) Compute the estimate xu^{-u} of 3-smooth numbers less than 10 000 and 2 the relative error of this estimate. Compare to (ii).

3