Cryptography

Prof. Dr. Joachim von zur Gathen, Konstantin Ziegler

4. Assignment: RSA, expected value, Dixon's random squares, and smooth numbers
 (Due: Thursday, 26 November, 23^{59})

Exercise 4.1 (RSA for non-invertible messages).

(6 points)
In the lecture we proved that "RSA works" for messages $m \in \mathbb{Z}_{N}^{\times}$, meaning that the decryption of an encrypted messages returns the message itself. This is also true for messages $m \in \mathbb{Z}_{N} \backslash \mathbb{Z}_{N}^{\times}$. Prove it.

Hint: Use the Chinese Remainder Theorem to transform a congruence modulo N into a system of two congruences modulo p and q.

Exercise 4.2 (Expected value and the birthday paradox).

Given a discrete random variable X, for example the result of a single roll of a fair die. The values that X can take are denoted by x_{i} and the respective probability is given $\operatorname{brob}\left(X=x_{i}\right)$. For the example, the x_{i} are taken from the set $\{1,2,3,4,5,6\}$ with each $\operatorname{prob}\left(X=x_{i}\right)=1 / 6$.

We are interested in the expected value $E(X)$ defined as

$$
E(X)=\sum_{i} x_{i} \cdot \operatorname{prob}\left(X=x_{i}\right) .
$$

In the example above, this returns as the expected value for the roll of a single die

$$
E(X)=\sum_{1 \leq i \leq 6} i \cdot \frac{1}{6}=\frac{21}{6}=3.5
$$

Next, we roll the die until a certain number, say " 2 ", appears for the first time. The random variable Y is now the number of rolls that are performed, until this happens.
(i) What is $\operatorname{prob}(Y=i)$, i.e. the probability that " 2 " appears for the first time in the i th roll?
(ii) Prove that $E(Y)=6$. (You may have use for the generalization of the 4 formula for the geometric series $\sum_{k=n}^{\infty} q^{k}=q^{n} /(1-q)$ for $q<1$.)
(iii) Generalize the preceding steps to prove the more general proposition

Proposition. Suppose that an event A occurs in an experiment with probability p, and we repeat the experiment with independent random choices until A occurs. Then the expected number of executions until A happens is $1 / p$.

Finally, we turn to the birthday paradox.
(iv) Compute the probability that in a group of 23 randomly chosen people, (at least) two have the same birthday. Provide a meaningful formula to justify your computation. (You may assume, that birthdays are evenly distributed among 365 days in a year.)

Exercise 4.3 (Dixon's random squares).
(16 points)
(i) Let $N=q_{1} q_{2} \cdots q_{r}$ be odd with pairwise coprime prime power divisors q_{i} and $r \geq 2$. Show: The equation $x^{2}-1=0$ has exactly 2^{r} solutions in \mathbb{Z}_{N}^{\times}.
Hint: Use the Chinese Remainder Theorem.
Hint: Prove first, that for prime powers q the equation $x^{2}-1=0$ has exactly 2 solutions in \mathbb{Z}_{q}.
(ii) Let S be the set of all (s, t) in \mathbb{Z}_{N}^{2} with $s^{2}=t^{2}$ in \mathbb{Z}_{N}. Prove that for uniformly randomly chosen (s, t) the probability for $s \not \equiv \pm t \bmod N$ is at least $1-2^{1-r}$.
(iii) Find a factor of $N=1517=37 \cdot 41$ using Dixon's random squares method. Choose $B=5$ and execute the algorithm step by step.
(iv) For $N=1845314859041$ compute the value $B=\exp (\sqrt{\ln N \ln \ln N})$ derived in the lecture as well as the promised value $B=\exp \left(\sqrt{\frac{1}{2} \ln N \ln \ln N}\right)$.
(v) Run Dixon's random squares repeatedly on $N=1845314859041$ with $B=320$. Hand in a protocol of a unsuccessful attempt that does not find a factor. Give a short comment about what has happened.

Exercise 4.4 (Smooth numbers)

For Dixon's random squares method B-smooth numbers were important. Denote by $\psi(x, B)$ the number of positive integers less than or equal to x whose prime divisors are at most B. Dickman's rho function $\varrho(x, B)=\psi(x, B) / x$ denotes the fraction of B-smooth integers.
(i) How many 2-smooth numbers are there up to 100 ? [This is $\psi(100,2)$.]
(ii) How many 3-smooth numbers are there up to 10000 ? [This is $\psi(10000,3)$.]

In the lecture we learned that $\varrho(x, B) \approx u^{-u}$ with $u=\ln (x) / \ln (B)$.
(iii) Compute the estimate $x u^{-u}$ of 3 -smooth numbers less than 10000 and the relative error of this estimate. Compare to (ii).

