Cryptography

PROF. DR. JOACHIM VON ZUR GATHEN, KONSTANTIN ZIEGLER

5. Assignment: Pollard's *ρ* method and polynomial-time reductions (Due: Thursday, 03 December 2009, 23⁵⁹)

Exerc	ise 5.1 (An example of Pollard's ρ method). (8 points)	
(i)	Complete the table below, which represents a run of Pollard's ρ algorithm for $N = 100181$ and the initial value $x_0 = 399$, up to $i = 6$.	3
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
(ii)	The smallest prime divisor of N is 17. Describe the idea of the algorithm [by looking at x_i rem 17 and y_i rem 17 and in particular, why we stopped at $i = 6$.	3
(iii)	Complete the factorization of <i>N</i> using Pollard's ρ algorithm.	2
Exerc	ise 5.2 (Polynomial-time reduction). (6 points)	
Consider the following two decision problems		
0	Primes: On input of an integer x , decide whether x is a prime.	
0	Factor: On input of two integers k, x , decide whether x has a factor at most k .	
(i)	Reduce one problem to the other and use the appropriate notation.	2
(ii)	How can you use an efficient algorithm for Factor to actually factor an [integer?	2
(iii)	In (i), suppose there was a reduction in the other direction as well. What [would that imply? Is such a reduction likely to exist?	2