Cryptography

PROF. DR. JOACHIM VON ZUR GATHEN, KONSTANTIN ZIEGLER

8 Assignment: Hashing and Discrete Logging
(Due: Thursday, 14 January 2010, 23%9)

Exercise 8.1 (Hashing long messages). We start with the already familiar
hash function

hci ZdXZd%Z;,

(z,y) — g*2"
using the prime number p = 1031,d = 1030 and the two generators g = 14
and z = 835. This hash function cannot hash more than 21 bits of information.
But we want more. In the lecture you have been introduced to the MERKLE-

DAMGARD construction for hashing long messages. The starting point is a
function of the form

h: 7§ — 7,
x +— h(zx)
with m >t + 2. We pick m = 20,¢ = 11 and use h¢ from above to define the
image h(z) for x € Z3' as follows:
1. Read the bit-string x € Z," as the binary representation of an integer
x.
2. Let a and b be quotient and remainder of z under division by d.
3. Let ¢ = he(a,b).
4. Interpret the binary representation of ¢ as a bit-string in Z5 and define
this to be h(z).
The construction is illustrated by the following diagram
h: 7Y --» 7
A T

Zax Lg% 7.

Now, it is your turn. Use the MERKLE-DAMGARD construction on h to con-
struct a hash function
ne: | zy -z
n>0

for hashing messages of arbitrary length n.

(i) (8 points) Implement A* in a CAS of your choice. What is ~2*("00000000")?
Compute also the hash of the binary representation of your Student ID.

We proved in the security reduction for h*, that every collision for hA* leads
to a collision of h in polynomial time. Several cases have to be distinguished.
We revisit them by examples.

To make them more interesting we want to use messages with letters ins-
tead of bits. Therefore we identify each letter with the last five bits of the
corresponding binary ASCII encoding, i.e.

<blank> 00000 | = 11101
A 00001 | Y 11001 | > 11110
B 00010 | Z 11010 | 7 11111
C 00011 | ; 11011

< 11100

Consider the following six messages (all starting and ending with a non-space
character):

X; = Merry Christmas and a Happy New Year

X| = 7PDASADM;T AVPUAX<WBDFHMRBJKFAD D;M

X5 = Frohe Weihnachten und ein Gutes Neues Jahr
X, = VICYH<IDW<USHDES>ZORJNDTAB?WYX >;< ZDF<QRQI
X3 = Joyeux Noel et une Bonne Annee

X3 = RULZYY?FYYSOZEEWUFRB<GRCIFDMNBXYXVWZHJ

(ii) (12 points) These messages provide three collisions (X;, X!) for h*. Find
the corresponding collisions of A and document your steps properly.

(iii) (6 bonus points) Try to compute dlog, z from the collisions of . What
did you expect?

Exercise 8.2 (Algorithms for Discrete Logarithms). You have encountered
several algorithms for the discrete logarithm problem in a multiplicative
group Z;. You have also seen the results on their time and storage requi-
rements. Now it is time to put these results into perspective and gain some
hands-on experience.

We start with the multiplicative group G = Z; where p is the following
8-digit prime:
41723027

As usual the first task is to determine a generator g of G which will serve as
the base for our discrete logarithms. You do not have to find one for yourself,
since we have hidden one in the following set of group elements:

S = {4,y = 1063,1069, y~* = 12049830,41723026} C G

You can rule out some of the elements right away. In fact, given the additional
information that there is exactly one generator in this set, you can determine
it without any computation.

(i) (3+3 bonus points) Find the generator g of G in the set S and give a
complete argument for your decision. Avoid computations to get bonus
points.

We want to consider two algorithms to solve the problem of the discrete
logarithm:

e Chinese remaindering, where you call Pollard’s rho method with Floyd’s
trick for the computations in the subgroups

e Index calculus

(ii) (12 points) Implement the two algorithms in a CAS of your choice. Use
them to compute the discrete logarithm dlog, x where x is

24122008.

These algorithms rely on random choices, so several calls — even for the same
x — will result in different CPU times.

(iii)

(4 points) Add a variable to your programs that outputs the total time
that was needed for the computation and compare the average over 10
runs.

(+4 points) Formulate expectations for the runtime of your algorithm
depending on the bit-length of x. Try and find experimental evidence
for your claim.

(+4 points) Formulate expectations for the runtime of your algorithm
for different group orders, based on the estimates that were established
in the lecture. Put your predictions to a test by using different groups
(maybe of order near 2p,4p,8p,...) and document your results in a
table.

	8

