Cryptography

PROF. DR. JOACHIM VON ZUR GATHEN, KONSTANTIN ZIEGLER

10 Assignment: Security Reductions and r-safe moduli

(Due: Thursday, 28 January 2010, 23⁵⁹)

You have encountered several levels of security:

- Unbreakability,
- Universal Unforgeability,
- Existential Unforgeability (EUF);

along with different means for an attacker:

- Key-Only Attack,
- Non-adaptive Chosen Message Attack,
- Chosen Message Attack (CMA).

Pairing an adversarial goal with an attack model defines a security notion, e.g. EUF-CMA.

Exercise 10.1. Security notions (4 points)

Consider the ElGamal signature scheme. Assume that the DL is hard and decide for each of the 9 security notions whether the scheme is

- secure,
- not secure
- or the answer is unknown.

What can you say, if you assume that DL is easy? Use the connections between the security notions to simplify your argument.

Exercise 10.2 (Security reduction). (3 points) For a signature scheme, a message is first hashed and then the hash value is signed. Assume that the signature scheme is secure in the EUF-CMA model. Does that imply that the hash function is collision resistant? Prove your answer.

Exercise 10.3 (Generating r-safe RSA moduli). (5 points) An example for an r-safe modulus pq is given by SOPHIE-GERMAIN primes p = 2u+1, where u > r is also prime, and similarly for q. It is conjectured, but not proven, that there are infinitely many SOPHIE-GERMAIN primes.

- (i) Write a small program that picks on input r and x random integers $a \le x$ until a is a Sophie-Germain prime 2u + 1 with u > r. Run your program for $r = 2^{10}$, $x = 2^{60}$ several times to get a good estimate for the expected number of picks.
 - Repeat the experiment with increasing x, say by factors of 2, to get an idea for the behaviour as x increases. Compare the behaviour to $x/\log^2 x$.
- (ii) Modify your program to find primes p where (p-1)/2 has no prime factor smaller than r. How many loops do you observe on average for $r=2^{10}$ and $x=2^{60}$?

As above, study the behaviour for increasing x and compare it to $x/\log^2 x$.