Elliptic curve cryptography, winter 2009
Michael Nüsken, Daniel Loebenberger

7. Exercise sheet
Hand in solutions until Monday, 14 December 2009, 23:59

Exercise 7.1 (Count it!). (10+10 points)

Let \(E: y^2 = x^3 + ax + b \) be an elliptic curve defined over \(\mathbb{F}_q \) with characteristic neither 2 nor 3. Denote by \(E(\mathbb{F}_q) \) the set of \(\mathbb{F}_q \)-rational points on the curve \(E \) and write \(\#E(\mathbb{F}_q) \) for the number of \(\mathbb{F}_q \)-rational points on the curve.

(i) Show that \(\#E(\mathbb{F}_q) \leq 2q + 1 \).

(ii) Show that we always have \(\#E(\mathbb{F}_q) = \infty \).

(iii) Consider the (generalized) Legendre symbol

\[
\left(\frac{a}{\mathbb{F}_q} \right) := \begin{cases}
0 & \text{if } a = 0, \\
1 & \text{if there is } b \in \mathbb{F}_q \text{ with } b^2 = a, \\
-1 & \text{if there is no } b \in \mathbb{F}_q \text{ with } b^2 = a.
\end{cases}
\]

Prove that \(\#E(\mathbb{F}_q) = q + 1 + \sum_{x \in \mathbb{F}_q} \left(\frac{x^3 + ax + b}{\mathbb{F}_q} \right) \).

(iv) Consider the curve \(E: x^3 + x + 1 \) over \(\mathbb{F}_5 \). Compute \(\#E(\mathbb{F}_5) \) using the formula from (iii).

(v) Consider the same situation over \(\mathbb{F}_{5^2} = \mathbb{F}_5[x]/(x^2 + x + 1) \). Compute \(\#E(\mathbb{F}_{5^2}) \) using the formula from (iii).

(vi) Let \(E \) be now any curve in Weierstraß form defined over \(\mathbb{F}_q \) and let \(E^{(d)} \) be its twist by a nonsquare \(d \in \mathbb{F}_q^\times \) as in Exercise 5.1. Write \(\#E(\mathbb{F}_q) = q + 1 - t \). Show that \(\#E^{(d)}(\mathbb{F}_q) = q + 1 + t \). Hint: Use the results from Exercise 5.1. Note that we always have \(\left(\frac{a}{\mathbb{F}_q} \right) \cdot \left(\frac{b}{\mathbb{F}_q} \right) = \left(\frac{ab}{\mathbb{F}_q} \right) \).

Exercise 7.2 (Torsion). (11 points)

In class we considered the \(n \)-torsion of an elliptic curve \(E \) defined over \(\mathbb{F}_q \) for \(n = 2, 3 \). In this exercise we will extend the results from the lecture:

(i) Prove by direct computations that in characteristic neither 2 nor 3 we have \(E[4] \cong \mathbb{Z}_4 \times \mathbb{Z}_4 \). Hint: Consider points \(P \) with \(2P = -2P \).
(ii) Consider now E in characteristic 2. Show by direct computations that $E[3] \simeq \mathbb{Z}_3 \times \mathbb{Z}_3$. Hint: Write $P = (x_1, y_1)$ and $2P = (x_2, y_2)$. Then for E: $y^2 + xy = x^3 + a_2 x^2 + a_6$ we have
\[
x_2 = \frac{x_1^4 + a_6}{x_1^2} \quad \text{and} \quad y_2 = x_2 + m(x_2 - x_1) + y_1, \text{ with } m = \frac{a_1 + x_1^2}{x_1}.
\]
Otherwise if E: $y^2 + a_3 y = x^3 + a_4 x + a_6$ then
\[
x_2 = m^2 \quad \text{and} \quad y_2 = a_3 + m(m^2 - x_1) + y_1, \text{ with } m = \frac{x_1^2 + a_4}{a_3}.
\]

Exercise 7.3 (Torsion of arbitrary abelian groups). (7 points)

Let G be any (finite) additively written abelian group and denote by $G[n]$ the set of all points of order dividing n. Prove that if $n = a \cdot b$ with $\gcd(a, b) = 1$ then $G[n] \simeq G[a] \times G[b]$. Hint: Extended Euclidean Algorithm!

Exercise 7.4 (Division polynomials). (0+20 points)

The goal of this exercise is to prove the statement from the lecture that for $n \in \mathbb{Z}$ we have
\[
nP = \left(\frac{\phi_n(x)}{\psi_n(x)}, \frac{\omega_n(x, y)}{\psi_n(x, y)^3} \right).
\]
The goal of this exercise is to prove that. Hint: Start from the cases $n = 1$, $n = 2$. Do $n = 3$ and $n = 4$ with a computer algebra system of your choice. Try to prove the general statement by induction. Warning: This seems to be extremely tricky!