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2 Michael Nüsken

1. Introduction

We consider elliptic curves from three different sides:

◦ Mathematics view: defines and analyzes their structure and properties.

◦ Computer science view: asks for efficient implementation of operations and properties.

◦ Cryptography view: requires some things to be intractable.

It is an interplay between the three areas and we will have to consider them all again and
again.

1.1. Cryptography. As our main interest is cryptography, let’s start here with two ex-
amples.

Example 1.1 (ElGamal type signatures). ◦ Global setup: We fix a group G, an element
P of finite order `, a hash function hash : {0, 1}∗ → Z`, and a structureless type cast
∗ : G→ Z`.

◦ User setup: Each user chooses a private key α ∈ Z` and computes a public key A = αP
from it. Each signer is henceforth identified by its public key A.

◦ Signature verification: A pair (B, γ) ∈ G × Z×
` is an ElGamal type signature by the

signer A iff the signature verification equation

B∗A+ γB = hash(m)P in G(1.2)

holds.

◦ Signature generation: The signer A can generate such a signature as follows:

(i) Choose a temporary secret β ∈ Z` at random.

(ii) Compute B := γP .

(iii) Solve the Z`-linear signature generation equation

B∗α+ γβ = hash(m) in Z`(1.3)

for γ ∈ Z`.

(iv) Return (B, γ).

Well, so far this is merely a set of protocols (even algorithms). To make it valuable we need
to learn more:

◦ Does it work as wanted? (Mathematics)

◦ Does it perform fast? (Computer science)

◦ Is it secure? And what does that actually mean? (Cryptography) ♦
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Elliptic Curve Cryptography 3

Example 1.4 (ElGamal encryption). ◦ Global setup: We fix a group G, an element P
of finite order `.

◦ User setup: Each user chooses a private key α ∈ Z` and computes a public key A = αP
from it. Each recipient is henceforth identified by its public key A.

◦ Encryption: The sender wants to encrypt a plain-text message M ∈ G for recipient A.

(i) The sender B chooses a temporary secret τ ∈ Z`.

(ii) He computes T := τP and C :=M + τA.

(iii) Return (T,C).

◦ Decryption: The recipient A wants to decrypt a message (T,C) encrypted for her.

(i) She computes M ′ := C − αT
Again, this is a set of algorithms and we need to learn more:

◦ Does it work as wanted? (Mathematics)

◦ Does it perform fast? (Computer science)

◦ Is it secure? And what does that actually mean? (Cryptography) ♦

As you learn in cryptography these two examples are the most prominent ways to sign
and to encrypt messages. Though classically only encryption was important, signatures are
inevitable to authenticate in a world where you possibly do not see your partner.

Both of these schemes need a group. And a major consequence of the security question
is that at least it should be difficult to find the private key α of a user A. That problem
is called the discrete logarithm problem with respect to P in the group G. And it launches
us towards elliptic curves. Since P shall be of finite order, we can immediately ignore any
infinite group.

The simplest finite group is a cyclic groups Z+
` . It consist of the integers 0 through `− 1

and addition is performed by adding the integers and taking the remainder modulo `. Take
P = 1. Now, given α ∈ Z` it is of course easy to compute A = αP = α. But also to find α
from P is trivial. And this situation does not change essentially when you take a different P
in Z`.

The next best examples are the unit groups Z×
p of a finite field Zp. By mathematical

theory this is a cyclic group, so up to changing names we have nothing new, right? Well, no.
The transition from α to A = αP is more complex now. [You might prefer to write Pα since
the operation is called multiplication, but that doesn’t matter.] Though computing A from
α has still polynomial runtime, the best known algorithm for finding α from A has runtime

L
1/3
O(1) (n), where n denotes the bit length of p. [We also need n bits to represent a group

element.]
Side remark: We define the notation

Lec (n) = O
(
2cn

e(log2 n)
1−e
)
.1(1.5)

When e varies from 0 to 1 we pass from polynomial to simply exponential:

◦ L0
O(1) (n) = nO(1) means polynomially bounded, and
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4 Michael Nüsken

◦ L1
c (n) = O (2cn) is simply exponentially bounded.

This will ease our life in interpreting run-times between polynomial and exponential.
The third type of examples are elliptic curves. Despite their name they are not only

curves but also additively written groups. If we consider them over a finite base field each
elliptic curve is a finite group. Still mathematically we only consider a cyclic group, namely
all multiples of a fixed group element P , but the transform α 7→ A = αP is again something
new. And the structure of these elliptic curves is so beautifully weird that, while still being
able to compute A given α easily, nobody has yet found a way to solve the discrete logarithm
problem in an arbitrary elliptic curve faster than what is possible in any group. And these
fastest generic algorithms need runtime L1

1
2

(n) = O
(
2

n
2

)
.

Group Exponentiation
runtime

Best known discrete log-
arithm runtime

Z+
` O∼ (n) O∼ (n) ⊂ L0

1+o(1) (n)

Z×
p O∼

(
n2
)

L
1
3

c+o(1) (n), c =
(
64
9

) 1
3

Elliptic curve over Fq O∼
(
n2
)

L1
1
2

(n)

Figure 1.1: Major available groups. Here ` ∈ N≥2, p is a prime, q a prime power. In each
case n is the bit length of the group size or the number of bits required to store a group
element. So n = Θ(log2 `), n = Θ(log2 p), n = Θ(log2 q).

If we use Figure 1.1 to derive the bit size needed to reach a security level of 112 bits,
that is, to have at least runtime 2112, we learn (after running tests for determining missing
O-constants) that we need roughly

◦ n = 2112 for Z+
` (which makes all operations intractable),

◦ n = 2048 for Z×
p , and

◦ n = 224 for an elliptic curve over Fq.

Thus — as long as nobody invents better discrete logarithm algorithms — elliptic curves
provide the shortest signatures at a given security level.

1.2. Books. There are many book on elliptic curves, and quite a bunch of really good
ones.

◦ Menezes (1993)

This book is a reference of relevant definitions and results. It provides only few proofs.

◦ Hankerson, Menezes & Vanstone (2004)

An introductory book covering the most important aspects: Arithmetic, cryptographic
protocols, and implementation.

◦ Washington (2003)

This is the introduction to elliptic curves. The presentation only touches briefly the
cryptographic situation but covers all mathematics.
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Elliptic Curve Cryptography 5

◦ Blake, Seroussi & Smart (1999)

This book provides a steep introduction to elliptic curves and all important aspects for
cryptography.

◦ Blake, Seroussi & Smart (2005)

This extends Blake et al. (1999) in many directions and covers important recent results.

◦ Silverman (1986)

This is the bible. Any detail that you could not find elsewhere, here there’s the way
to it. However, this is the deepest and most mathematical of all books on this list and
sometimes requires to look up other sources.

Much of these notes will follow Washington (2003).

1.3. Planned schedule.

◦ Elliptic curves over Fq.

– Definition and smoothness.

* Projective space and the point at infinity.

– Weierstrass form.

– Transformation and other curve representation forms.

– Singular cubics: structure.

– Group law. Associativity.

– Isomorphisms.

– j-invariant.

– Endomorphisms including scalar multiplication and the Frobenius.

– Trace.

– Size restriction (Hasse, Waterhouse).

– Group structure. Supersingularity.

– Torsion points.

– Division polynomials.

– Divisors.

◦ Elliptic curves over ZN with, say, N = p · q.

? Discrete logarithm problem.

– Baby-step giant-step.

– Pollard-%.

– Pohlig & Hellman.

– Index calculus.

– Generic groups and a lower bound.
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6 Michael Nüsken

– Index calculus for elliptic curves?

◦ Elliptic curve discrete logarithm problem and related.

– Singular cubics have easy DLP.

– Reducing ECDLP to a discrete logarithm in a finite field.

– Weil pairing. Millers algorithm.

– (GHS and Weil descent.)

– Elliptic curve Diffie-Hellman problem.

– Decisional elliptic curve Diffie-Hellman problem.

◦ Counting points.

– Subfield curves and their size (Hasse-Weil).

– Koblitz curves: subfield curves F2 over F2m .

– Schoof’s algorithm.

– (SEA.)

◦ Selecting curves.

– . . . at random. Verifiably?

– Generate parameters. Validate!

– Generate with prescribed size (complex multiplication method).

? Implementation.

– (Field arithmetic.)

– Projective coordinates. Point representation. Other coordinates.

– Point multiplication.

– Montgomery (x-only).

– Curves with endomorphisms.

– Koblitz curves and use of the Frobenius in speeding up point scaling.

+ Fast addition and fast pairings.

– Edwards curves.

– Toric cubic classification, addition complexity.

– Pairing lattices.

– Construction of elliptic curves with small embedding degree.

– Tricks to speed up pairings.

2. Elliptic curves over Fq

We usually work over the field Fq with q elements. [This exists exactly if q is a prime power.]
Sometimes, we use the field R of real numbers, the field Q of rational numbers, or the field
C of complex numbers.
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Elliptic Curve Cryptography 7

2.1. Geometry.

Definition 2.1 (Tentative version). An cubic curve over a field k (for example k = Fq) is
the zero set of a cubic polynomial f in two variables including ‘points at infinity’.

An elliptic curve over a field k is a smooth cubic curve with. . .

Consider a few examples:

1. y − x3 over F27.

2. y2 − x3 over R. This is Neil’s parabola.

3. y2x+ y3 + x3 − 3xy + x− 10 over F13.

4. x3 + y3 + 1 over Q. The fact that this curve has only two points is the case n = 3 of
Fermat’s Last Theorem, which states that an+ bn = cn has only trivial solutions (with
abc = 0).

5. y2 = x3 − x over R

In each case the affine part of the curve is given by C0 =
{
(x, y) ∈ k2 f(x, y) = 0

}
. Points

at infinity are still missing. . .
A general cubic polynomial f(x, y) =

∑
i+j≤3 αijx

iyj in two variables has ten coefficients.
If you look for a curve passing through 9 given points this results in 9 linear equations for
the 10 coefficients αij . There is thus a nontrivial solution and, in the generic case, only one
up to scalar. For short: given 9 points in ‘generic position’ there is exactly one cubic curve
that passes through these points.

To understand what happens at infinity we look at the affine plane k2 in a different way.
Embed k2 in k3 with third coordinate equal to 1:

k2 −→ k3,
(x, y) 7−→ (x, y, 1)

.

Next, a point (x, y) in the affine plane k2 corresponds to the point (x, y, 1) which in turn
defines and is given by a line through the origin of k3 and this point (x, y, 1). Observe that
some lines do not correspond to a point, actually exactly those that are parallel to the plane
z = 1. These represent the points at infinity! See Figure 2.1.

x

y

z

line 1 : 2 : 1
b

affine point (1, 2)

line 2 : −3 : 0

Figure 2.1: How to extend the affine plane with ‘points at infinity’. The line 1 : 2 : 1 defines
the affine point (1, 2). It is the projective point [1 : 2 : 1]. The line 3 : 2 : 0 defines no affine
point. We think of it as a direction in the affine plane. It is the projective point [3 : 2 : 0].
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8 Michael Nüsken

Yet, now we have to rethink our cubic equation. How can we translate it such that a
projective point X : Y : Z solves the equation F (X,Y, Z) = 0 and the solutions still describe
the same affine object? Note that we need that also F (αX,αY, αZ) = 0. This is granted if F
is homogeneous, that is, all monomials in the polynomial F occur with same degree, sayX2Y
is of degree 3 can be combined with Y Z2 or XY Z but not with XZ3 or Z2. Fortunately,
there is a simple way to homogenize a polynomial: let F (X,Y, Z) = f(X/Z, Y/Z) ·Zd where
d = degree f . For example, we obtain:

◦ F = Y Z2 −X3 for f = y − x3.

◦ F = Y 2Z −X3 for f = y2 − x3.

◦ F = Y 2X + Y 3 +X3 − 3XY Z +XZ2 − 10Z3 for f = y2x+ y3 + x3 − 3xy + x− 10.

Now every solution of F = 0 defines an entire line of solutions, which we consider as a
projective point. Now the curve is defined by

C =
{
X : Y : Z ∈ P2(k) F (X,Y, Z) = 0

}
.

As the picture showed the difference is that we have a few more ‘points’ than before. It turns
out that this is important. . .

Let’s try to find the points at infinity in a few of our examples.

◦ Consider f = y − x3. The homogeneous version is given by F = Y Z2 −X3. And the
points at infinity are those lines with Z = 0: F (X,Y, 0) = −X3, thus we find X = 0
and since (0, 0, 0) does not define a line we must choose Y 6= 0. However, it does not
matter which value we take as we anyways take the line through that point. Thus the
only point at infinity of the curve f = 0 is 0 : 1 : 0. This is in direction of the y-axis.

◦ We have F = Y 2Z −X3 for f = y2 − x3. Fixing Z = 0 implies X3 = 0 and so again
0 : 1 : 0 is the only point at infinity on this curve.

◦ f = y2x+y3+x3−3xy+x−10. With Z = 0 we find F (X,Y, 0) = Y 2X+Y 3+X3. As
Y = 0 forces all coordinates 0 we have Y 6= 0 and choose Y = 1. Thus we have to solve
F (X, 1, 0) == 1 +X + X3. Over F13 this has the only solution X = −6: −6 : 1 : 0
is the only (rational) point at infinity. You may expect two further solutions. They
do exist but they are only in F132 . [That’s similar to x2 + 1 over the reals. It has no
solution in the real numbers but two in the complex numbers.]

You can easily change coordinates in many ways. Any invertible matrix A ∈ k3×3 defines a
projective coordinate change:

P2k −→ P2k,
X : Y : Z 7−→ U : V : W,

where



U
V
W


 = A



X
Y
Z




Scaling X,Y, Z will scale U, V,W and thus the projective point X : Y : Z will map to the
projective point U : V : W [this is fine also if you consider a projective point as a line in k3

or a set of points in k3]. Such a map is determined by the image of three points, for example,
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Elliptic Curve Cryptography 9

the x-direction 1 : 0 : 0, the y-direction 0 : 1 : 0, and the affine origin 0 : 0 : 1. Thus if you
want the line at infinity, consisting of all points X : Y : 0, to map to the line through 1 : 0 : 1
and 0 : 1 : 1, then simply use

A =



1 0 0
0 1 0
1 1 1


 .

Thus the point X : Y : Z is mapped to the point X : Y : X+Y +Z. Or, in affine coordinates,
the point (x, y) is mapped to the point ( x

x+y+1 ,
y

x+y+1). In this affine map we find quotients
of linear polynomials; this is typical. Further, this map is of course not defined on the line
x+ y = −1. The reason is that the projective map maps this line to the line at infinity.

The next question takes up the word ‘smooth’ from the definition. To explain this we
have first to define tangents to a plane curve. In school you consider the graph of a function
g and a point (x0, y0) on it, that is, y0 = g(x0). The tangent in (x0, y0) is the graph of the
function tx0 : k → k, x 7→ y0 + g′(x0)(x − x0) [recall the Taylor series]. If we describe the
graph of g as a plane curve then it is the set of solutions of f(x, y) = y − g(x). Rewriting
the tangent as a set we obtain

Tx0 =




(x, y) ∈ k2

[
fx(x0, y0) fy(x0, y0)

]
︸ ︷︷ ︸

=:(grad f)T (x0,y0)

·
[
x− x0
y − y0

]
= 0




.

The gradient gradf(x0, y0) is also called normal vector to the curve f = 0 for obvious reasons.
We can now notice that the set Tx0 is a line iff the normal vector is nonzero. A point of
the curve is called non-smooth or singular iff this normal vector vanishes, all other points
are called smooth or regular. The curve is smooth iff all its points are regular. Equivalently,
the affine curve is smooth iff the set

{
(x, y) ∈ k2 f(x, y) = 0, fx(x, y) = 0, fy(x, y) = 0

}
(of

singular points of the curve f = 0) is empty. Let’s check our examples:

◦ f = y− x3 over F27. We obtain fx = −3x2 and fy = 1. Since fy is always nonzero, all
points of

{
(x, y) ∈ K2 f(x, y) = 0

}
are smooth.

However, this curve has a point at infinity which is somehow out of view. To bring it
back in view we can use a projective coordinate change which moves the line at infinity
in view. Use the coordinate change mapping 1 : 0 : 0 to 1 : 0 : 0, 0 : 1 : 0 to 0 : 0 : 1,
and 0 : 0 : 1 to 0 : 1 : 0. [The affine coordinate change is (x, y) 7→ (x/y, 1/y).] We
obtain the new affine equation h = y2− x3 which is Neil’s parabola. The only point of
f = 0 at infinity was 0 : 1 : 0 which is now the affine point 0 : 0 : 1. That’s our next
example:

◦ f = y2 − x3 over R. Here, fx = −3x2, fy = 2y and so the only critical point is
(x, y) = (0, 0) and this is indeed on the curve and thus singular. This curve is not
smooth. Since the first example is the ‘same’ projective curve we also observe that the
point at infinity is regular, and so the only singular point of Neil’s parabola is (0, 0)
and the only singular point of the first example is its point 0 : 1 : 0 at infinity.

◦ f = y2x + y3 + x3 − 3xy + x − 10 over F13. We find fx = y2 + 3x2 − 3y + 1, fy =
2yx+3y2−3x. Searching for singular points is cumbersome here. Trying all (x, y) ∈ F13

shows that all (affine) points are regular. A little further work shows that also the points
at infinity are regular.
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10 Michael Nüsken

Moreover, one can check that the polynomials f , fx, fy cannot have a common solution
over any extension field of F13, for example by exhibiting a relation af + bfx+ cfy = 1
with some polynomials a, b, c ∈ F13[x, y].

◦ f = x3 + y3 + 1 over Q. We find fx = 3x2 and fy = 3y2. The only possible singular
point is (x, y) = (0, 0), but it’s not on the curve. So the affine part of the curve is
smooth.

◦ f = y2 − x3 + x over R. We compute fx = −3x2 + 1 and fy = 2y. Thus any singular
point must have y = 0, and f(x, 0) = −x(x− 1)(x+ 1) = 0. But neither x = 0, x = 1,
nor x = −1 make fx vanish. Thus also for this curve there is no affine singular point.

It would be helpful to be able to check smoothness also at infinity. We have seen one
way to do so: change coordinates and check again. However, that’s somehow cumbersome.
Instead we’d like to translate our condition to the projective language.

Claim 2.2. Given a polynomial f ∈ k[x1, . . . , xn], its homogenization

F (X) = Xdeg f
n+1 f

(
X1

Xn+1
, . . . ,

Xn

Xn+1

)
∈ k[X1, . . . , Xn+1],

and a point c on {f = 0}, that is with f(c) = 0. Let i be such that ci 6= 0. Then the following
are equivalent:

(i) The point c is a singular point.

(ii) All derivatives of f vanish at c.

(iii) All derivatives of F vanish at (c1, . . . , cn, 1).

(iv) All derivatives of F vanish at (βc1, . . . , βcn, β) for some β ∈ k×.

(v) All derivatives of g(x) := F (x1, . . . , xi−1, 1, xi, . . . , xn)
vanish at the point ( c1ci , . . . ,

ci−1

ci
, ci+1

ci
, . . . , cnci ,

1
ci
).

(vi) Let A ∈ kn×n invertible. Define G(U) = F (A−1U), and B = A(c1, . . . , cn, 1). Clearly,
G(B) = 0. Then all derivatives of G vanish at B.

The proof is a simple exercise. The claim shows that the definition is invariant under coor-
dinate changes and it does not matter which view we take whether it’s projective or affine.

For us: to check whether the (projective closure of the) curve given by a polynomial f is
smooth we check whether the equations F = 0, FX = 0, FY = 0, FZ = 0 has no nontrivial
solution [in other words: the only solution is (0, 0, 0)].

One final observation: the curve given by f = x(2y−x2) over the field Q has only regular
points. Still we do not want to call it an elliptic curve, since it is the union of two curves.
Curves that are not the proper union of two curves are called irreducible.

So we arrive at the following, now complete definition:
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Definition 2.3. An elliptic curve over a field k is a smooth, cubic, irreducible, projective
curve with a rational (flex) point.

Remark: a reducible curve is the union of two curves. For us that means f = gh for some
non constant polynomials g, h. Then F = GH , and then FX = GXH + GHX . Thus, any
point of the intersection is automatically singular. Since our field usually is not algebraically
closed, we have no guarantee that the intersection is non-empty.

When we consider the tangents at points of a real curve [—to do—] a few points show
a special behavior: the tangent passes from one side to the other, the sign of the curvature
changes. Usually, a tangent intersects the curve twice [like y = x2 at (x, y) = (0, 0)], here it
intersects the curve three times [like y = x3 at (x, y) = (0, 0)]. Intersection multiplicities can
be considered over any field.

Maybe this is the point where we should remark that each line intersect the curve exactly
three times, well, provided the field is algebraically closed and intersections are counted with
multiplicity. Over an arbitrary field and ignoring multiplicities every line intersects at most
three times and ‘most’ lines do intersect three times. Well, this is the historic definition of
degree of a curve!

2.2. Weierstraß form. Let’s reconsider the tangent at a flex. By definition it already
does intersect the curve three times, so it cannot intersect the curve anywhere else. This
makes it best suited for putting the curve in a simpler form by moving it to infinity and
its tangent to the line at infinity. The result of this (rational) coordinate transformation
is the generalized Weierstraß form [Exercise!]. We say that a cubic curve is in generalized

Weierstraß form if it is given by an equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

To remember the numbering notice that each term has weighted degree six, if we consider x
of degree 2, y of degree 3, and ai of degree i. It can be proved that every cubic curve with
a rational point can be transformed into this form by a birational isomorphism. The basic
problem is, given a rational point, to exhibit a rational flex point. That this can always be
done however either relies on deep mathematical results (Riemann-Roch) or on cumbersome
calculations (Nagell algorithm, see Silverman (1986) [or Connell (1999)]).

Yet, it’s rather simple to eliminate further coefficients from the generalized Weierstraß
form. The coordinate change x = u−α, y = v will lead to a different presentation of the right
hand side which when we choose α carefully will be simpler than before. Clearly, the left
hand side will have the same form and the right hand side will be u3+(−3α+a2)u2+ã4u+ã6.
Assume 3 6= 0 in our base field k, that is, chark 6= 3. Then we can take α = a2

3 and so
obtain a new equation with ã2 = 0. Actually, this is barely a special case of how to get rid
of the second coefficient of a polynomial provided it’s degree is not zero in the base field.
So assuming chark 6= 2 we can do that with respect to the variable y on the left hand side
y2 +(a1x+ a3)y of the Weierstraß equation and by setting y = v− 1

2 (a1x+ a3) the left hand
side becomes v2 + 1

22 (a1x+ a3)
2 and we obtain the equation

v2 = x3 + a2x
2 + a4x+ a6 −

a21x
2 + 2a3a1x+ a23

4

= x3 +

(
a2 −

1

4
a21

)

︸ ︷︷ ︸
=:ã2

x2 +

(
a4 −

1

2
a3a1

)

︸ ︷︷ ︸
=:ã4

x+

(
a6 −

a23
4

)

︸ ︷︷ ︸
=:ã6

.
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12 Michael Nüsken

Substituting also x according to the previous trick by x = u− 1
3 ã2 = u− 1

3

(
a2 − 1

4a
2
1

)
yields

the equation

v2 = (u− 1

3
ã2)

3 +

(
a2 −

1

4
a21

)
(u− 1

3
ã2)

2 +

(
a4 −

1

2
a3a1

)
(u− 1

3
ã2) +

(
a6 −

a23
4

)

= u3 + au+ b,

which is now in Weierstraß form. As we have seen whenever chark 6= 2, 3 by a linear
coordinate change we can bring every curve in general Weierstraß form to this Weierstraß
form. Clearly, this equation determines a cubic curve also over a field of characteristic 2
or 3, however there are curves that cannot be transformed into them. [Side remark: in
characteristic two, any elliptic curve can either be transformed into y2+y = x3+ax+ b, this
is the supersingular case, or into y2 + xy = x3 + ax + b. In characteristic three any elliptic
curve can be transformed into y2 = x3 + ax2 + b.]

This simplifies our life considerably, since we can now perform all operations in this
particularly simple presentation involving only two parameters rather than having to deal
with five parameters. . . So for the most of the rest of the course we assume that our curve
is in Weierstraß form

y2 = x3 + ax+ b.

Now let’s ask our questions:

◦ What happens at infinity?

◦ When is the curve smooth?

Well, to see the points at infinity we homogenize and get Y 2Z = X3 + aX2Z + bZ3. The
line at infinity are the points with Z = 0, so we are interested in solutions of 0 = X3. Well,
only X = 0 fulfills this. Thus Y must be nonzero and we obtain as the only solution the
projective point O := 0 : 1 : 0.

To check whether O is a regular point we restrict to Y = 1 and obtain the equation
0 = −z + x3ax3z + bz3 =: g(x, z). That O lies on the curve is reflected by g(0, 0) = 0. The
normal vector here is given by the gradient, since gx = 3x3 and gz = −1 + ax3 + 3z2, we
obtain (0,−1) as normal vector. It is never zero and thus O is a regular point. Moreover,
we can determine the tangent at O by 0 = 0(x− 0)− 1(z − 0) = −z. This describes the line
at infinity [with respect to the original affine coordinates]. And there is no further point of
the curve on this line exhibiting that O is a (rational) flex point. [Exercise: This is also true
for a curve in generalized Weierstraß form.]

To decide whether a curve is smooth thus depends only on the affine part and we have to
look for points (x, y) on the curve with vanishing normal vector. So let f = −y2+x3+ax+b,
and compute fx = 3x2 + a, fy = −2y. Any point with zero normal vector must have y = 0,
thus we look for simultaneous solutions of r(x) = x3+ax+b and its derivative r′(x) = 3x2+a.
A common zero of a polynomial r and its derivative however is equivalent to a double zero:
Write r(x) = (x − x0)(x − x1)(x − x2). Then r′(x0) = (x0 − x1)(x0 − x2) vanishes iff (=if
and only if) x0 = x1 or x0 = x2. We thus see that the curve is smooth iff the right hand side
of the Weierstraß equation has no double zero.

Before we formulate this as a theorem, we want to translate the condition on r into a
condition on a and b.

Let’s see, given the roots we find x0 + x1 + x2 = 0, x0x1 + x1x2 + x2x0 = a, x0x1x2 = b.
Hm. . .
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Let’s try to compute the greatest common divisor of r and r′. To avoid denominators
we multiply r by 3, so 3r = (x)r′ + r2 with remainder r2 = 2ax + 3b. Next, 4a2r′ =
(6ax − 9b)r2 + r3 with remainder r3 = 4a3 + 27b2. That’s interesting! The Euclidean
algorithm computes the greatest common divisor of r and r′. It is non-trivial, that is, of
degree at least one, iff r and r′ have a common root. Which is the case, as our computation
shows, iff 4a3 + 27b2 = 0. Now we can conclude

Theorem 2.4. A cubic curve over a field k of characteristic neither 2 nor 3 given by a
polynomial Weierstraß equation

y2 = x3 + ax+ b

has exactly one point at infinity, namely O = 0 : 1 : 0 the y-direction. The curve is smooth
at this point. Let r = x3 + ax+ b. Moreover, the following conditions are equivalent

(i) The curve is smooth, that is, all its points are regular.

(ii) The right hand side r has no multiple root.

(iii) The polynomials r and r′ have no common root.

(iv) The discriminant 4a3 + 27b2 is nonzero. �

Definition 2.5. An elliptic curve in Weierstraß form over a field k of characteristic neither
2 nor 3is given by an equation

y2 = x3 + ax+ b

with nonzero discriminant ∆ = 4a3 + 27b2.

The preceding theorem tells us that this defines a smooth projective cubic curve over any
extension of the field k. Thus it is also irreducible. And the point at infinity is always a
rational flex.

2.3. The operation. We now reconsider the observation that every line intersects a
smooth cubic curve three times. This paves the way for a binary operation, as there we
have to relate any two points with a third one. Well, let’s try to do it: Fix an elliptic curve
and take any two points P and Q.

The line through P and Q must have a third point R on it with coordinates over the
same field. The line through P and Q consists of all points of the form Lλ := P +λ(Q−P ).
Plugging that into the curve equation results in a polynomial h(λ) = f(Lλ) in λ of degree,
well, three. [Since the curve equation is of degree three, it is clear that this polynomial can be
of degree three at most. However, in projective coordinates the polynomial is homogeneous
of degree 3. Now having smaller degree than 3 means that this polynomial is identically zero.
This in turn means that the entire line is part of the curve. But that cannot be because we
require that the curve is irreducible.] Actually, there may be a few exceptions to this but
then a point at infinity will complete the picture.

Since P and Q are on the curve, λ = 0 and λ = 1 annihilate h, respectively. Thus division
of h by λ(λ − 1) yields h = h3λ(λ − 1)(λ − λ2) for some h3, λ2 ∈ k. Thus R := Lλ2 is the
third point on the line through P and Q. It is tempting to consider the operation given by

P �Q := R.
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However, this does not give a nice operation. Of course, it is proper (well-defined) and
commutative. But a neutral element is a problem: the line through P and N must have P
as third point, ie. this line would be a tangent at P . Thus N would have to be on every
tangent. Also associativity is a problem. [Exercise: pick a concrete curve over R with three
points P , Q, S and compare (P � Q) � S to P � (Q � S). Actually, associativity collides
with the ‘super-symmetry’ of our definition: Given R = P �Q we also have P = Q�R and
Q = R� P . This is a bit too much. . .

As a second try, we let ourself be guided by trying to construct an operation where
(P +Q)+R = 0. To turn that into a definition for P +Q we need a negation producing −R.
In Weierstraß form changing the sign of the y-coordinate maps curve points to curve points.
Assume R = (x3, y3) is on the curve, ie. y23 = x33 + ax3 + b. Then also −R := (x3,−y3) is on
the curve. Fortunately, now −(−R) = R, which is also necessary for a negation. Using that
negation operation define the point addition by

P +Q := −R.
Getting back to our original idea, we now find that

(P +Q) +R = O
for the three points P , Q, and R on a given line. That was easy but somehow hides the
geometry. So let’s reconsider the negation. Adding P and −P should also be possible and
should result in the neutral element. By definition the line through P and −P is the vertical
line x = xP . The points on this line are P and −P — and O! Thus P + (−P ) = −O. Only,
we never said what −O should be: take −O := O. We conclude that −P is simply the third
point on the line through P and O: −P = P �O. Notice that −(−P ) = P as it should be.
Combining we obtain the geometric description

P +Q = (P �Q)�O.
This is it.

However there are still a few gaps. Another look at our definition reveals that our
definition is not yet complete. We have not considered what line we take if P = Q. Also if
one of the points or both equal O has to be considered separately. Thus we still have to tell
what P + P , P +O, O + P , and O +O shall be.

◦ First, if P = Q then we take the tangent at P which also geometrically has P as a
double intersection point. Thus this line has a unique further point P � P . [If you do
not see it for a specific point P , maybe P is even a triple intersection point, ie. a flex,
thus P � P = P .]

◦ Second, if one of the points is the point O, we simply follow the geometrical description.
Assume P 6= O. Then the third point P �O is −P whose negation is again P . Thus
we should define P + O = P . Since our description is symmetric this also implies
O + P = P .

◦ Third, if both points are O we have again to consider the tangent at O which is the
line at infinity whose third point is again O. The negation of O is O itself and thus
O +O = O.

This completes the definition. Actually, the geometric definition can be used for an elliptic
curve in an arbitrary description provided you also specify a flex O as a neutral element.

However, we still can not compute the sum P +Q of two points. Our task is this:
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Task 2.6. Given an elliptic curve

E : y2 = x3 + ax+ b

and two points P = (x1, y1) 6= O and Q = (x2, y2) 6= O describe the coordinates of P +Q as
functions of the coordinates of P and Q.

Note that we do not need formulae in case that one of P or Q is O. Actually, also the case
Q = −P is easy: Then P + Q = P + (−P ) = O. We are left with three cases: P 6= ±Q,
P = Q 6= −P , and P = Q = −P . As the line through two different points is easier to
describe we start with that case.

Case P 6= ±Q: The line through P and Q consists of all points (x, y) with y = mx + c.
The slope m is y2−y1

x2−x1
. Since P 6= ±Q we have x1 6= x2 and this is well-defined. Thus we

obtain the equation y = m · (x − x1) + y1 for the line through P and Q. Plugging this
description into the curve equation we obtain

(m · (x− x1) + y1)
2 = x3 + ax+ b

for the points that are on the line and on the curve. We can rewrite this in the form

0 = f (x,m · (x− x1) + y1) = x3 −m2x2 + . . .

where we use f(x, y) = −y2+x3 + ax+ b. Solving this equation is surprisingly easy since we
already know the two solutions x = x1 and x = x2. Using x3 for the third solution we must
have f (x,m · (x− x1) + y1) = (x − x1)(x − x2)(x − x3) = x3 − (x1 + x2 + x3)x

2 + . . . . By
comparison of the x2-coefficient [Convince yourself that the dots do not interfere!] we obtain
m2 = x1 + x2 + x3 and thus we obtain for the third point R = (x3, y3) on the P -Q-line the
values x3 = m2−x1− x2, y3 = m(x3− x1)+ y1. Negating this solves the task in the present
case, the sum P +Q has the coordinates

xP+Q = m2 − x1 − x2,
yP+Q = −m(x3 − x1)− y1,

where m =
y2 − y1
x2 − x1

.

Case P = Q, P 6= −P : We now have to find a line through P that intersects the curve
twice. (Alternatively, find the tangent at P but let’s redo this piece of theory. . . ) Again the
line is given by y = m(x− x1) + y1 and plugging this into the curve equation yields again

0 = f (x,m · (x− x1) + y1) = x3 + ax+ b − (m · (x− x1) + y1)
2.

We have to determine m such that x1 is a double root. Thus also the derivative of the
univariate polynomial f (x,m · (x− x1) + y1) must vanish at x = x1, ie. 0 = fx(x1, y1) · 1 +
fy(x1, y1) ·m = 3x21 + a − 2 · y1 · m. So m =

3x2
1+a
2y1

provided y1 6= 0. Finalizing as before
yields

xP+P = m2 − 2x1,

yP+P = −m(x3 − x1)− y1,
where m =

3x21 + a

2y1
.

Case P = Q, P = −P : If y1 = 0 we seem to be in trouble because 3x21 + a 6= 0 since
the curve is smooth. This trouble is caused by the assumption that the wanted line is not
vertical, so try the line given by x = x1. And indeed it intersects the curve twice at P :
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16 Michael Nüsken

f(x1, y) = y2 vanishes twice at y = 0. The third point on that line is O, so we obtain
P + P = O for the points with y-coordinate yP = 0.

Notice that it was essential that O is a flex. A point P is a flex, ie. the tangent at P
intersect the curve three times at P , in other words: the tangent at P does not intersect the
curve anywhere else. The consequence is that P+P = −P , or (P+P )+P = O. We conclude:
A point P is a flex iff (P + P ) + P = O. It will turn out that every elliptic curve has 1, 3,
or 9 such points. As we have seen before we could move each flex and its tangent to infinity
and the line at infinity, resulting in possibly different generalized Weierstraß equations for
the same curve.

2.4. Group. We have not yet discussed the properties of the new operation though we
have styled it to be a group operation. Let’s check the properties.

(P) The operation is a well-defined map E × E → E. That’s the case.

(A) Actually, we do have (P +Q) +R = P + (Q+R). But we defer further treatment for
the moment.

(N) The point O is the neutral element. Just review the definitions.

(I) The negation provides an additive inverse −P for every point P of the curve E. Just
verify that we obtained P + (−P ) = O above.

(C) As the sum is determined by the line through P and Q which is also the line through
Q and P we obtain P +Q = Q+ P .

So the construction made above does all we want and so the curve with this addition is a
commutative algebraic group.

2.5. Associativity. Well, associativity is tricky.

◦ Solution 1: Prove it computationally.

Take the formulae that we have obtained for the addition. Compute the coordinates of
(P +Q) +R assuming that no special situation occurs. Do the same for P + (Q+R).
Compare.

It turns out that you can do that with the help of a computer algebra system. But
even here you need to be careful, otherwise the intermediate expressions will swell so
much that they do not fit into memory.

◦ Solution 2: Prove it geometrically.

This can be done, but note that P + Q = (P � Q) � O and so (P + Q) + R =
(((P �Q)�O)�R)�O. This involves quite a lot of points.

◦ Solution 3: Construct the group operation differently.

Algebraist define the so-called divisor class group for any algebraic variety. This is a
commutative group by construction. For elliptic curves one can define a map from its
point set to its divisor class group. This map can be proved to be an isomorphism
using the theorem of Riemann-Roch. [That theorem makes a statement about how
many functions with certain properties live on the curve. Even Silverman (1986) only
cites it.]
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2.6. Singular cubics. Now, we have spent so much effort on easy forms and smoothness
and the group operation, we have lost the singular cubics completely out of sight. Curves in
Weierstraß form y2 = x3 + ax+ b are singular iff the right hand side polynomial x3 + ax+ b
has a multiple root. If it’s a triple root move it to zero, so the curve is y2 = x3. [This shift is
defined over k.] If it’s a double root then we can shift x to obtain the form y2 = x2(x + a).
[This shift is defined over k: recall that a double root can be obtained from the gcd of the
polynomial and its derivative.]

As we have seen earlier the curve y2 = x3 is isomorphic to v = u3 if we map (u, v) 7→
(u/v, 1/v) = (x, y) and back (x, y) 7→ (u, v) = (x/y, 1/y). Plugging this in yields v−2 =
u3v−3, or v = u3 and back y−1 = x3y−3, or y2 = x3. Now, it is obvious that we can
parametrize all non-singular points just by u. Let Ens be the non-singular part, Ens ={
(x, y) ∈ k2 \ {(0, 0)} y2 = x3

}
∪̇ {O}. It turns out that Ens is isomorphic to k as an alge-

braic variety. And the world is even more stunning:

Theorem 2.7. The smooth part Ens of the elliptic curve E : y2 = x3 over the field k is
isomorphic to the field k. Moreover, the group operation on Ens defined as in the smooth
case corresponds exactly to the addition in k. More precisely, the map

τ :
Ens −→ k,

(x, y) 7−→ x/y,
O 7−→ 0

is an isomorphism of (algebraic) groups.

Proof. Check that

ψ :
k −→ Ens,
t 7−→ (t−2, t−3),
0 7−→ O,

is the inverse of the given map and thus the map is an isomorphism of algebraic curves.
[Actually, projectively τ(X : Y : Z) = X : Y and ψ(α : β) = αβ2 : β3 : α3.]

So it remains to check that if t1 + t2 = t3 then ψ(t1) + ψ(t2) = ψ(t3). Let Pi = ψ(ti) =
(xi, yi). The obtained formulae also work here, so —in the generic case—

xP1+P2 = m2 − x1 − x2,
yP1+P2 = −m(x3 − x1)− y1,

where m =
y2 − y1
x2 − x1

.(2.8)

Plugging in we get

m =
t−3
2 − t−3

1

t−2
2 − t−2

1

=
t31 − t32

(t21 − t22)t1t2
=
t21 + t1t2 + t22

t1t2t3

and

xP1+P2 =
(t21 + t1t2 + t22)

2

t21t
2
2t

2
3

− t−2
1 − t−2

2 = t−2
3 = x3.

For the other coordinate we obtain

yP1+P2 = −m(t−2
3 − t−2

1 )− t−3
1 = t−3

3 = y3.
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In principle, we would have to consider the non-generic case where P1 = P2 or P1 = −P2,
however these pairs (t1, t2) are defined by polynomial equations whereas ψ(t1) + ψ(t2) =
ψ(t1 + t2) already holds on an open set, and thus on its closure which is everything. �

In a similar fashion we obtain a characterization of the structure of the smooth part
Ens =

{
(x, y) ∈ k y2 = x2(x+ a), x 6= 0

}
∪̇ {O} of the curve y2 = x2(x+ a) with 0 6= a ∈ k.

Notice that (0, 0) is the only singular point and y = ±√ax are the tangents to the two ‘parts’
of the curve at (0, 0).

Theorem 2.9. Assume a ∈ k, a 6= 0, let α be a root of a in some extension field of k, and
K = k(α). The smooth part Ens of the elliptic curve E : y2 = x2(x + a) over the field k is
isomorphic to

◦ the multiplicative group P = k× if a is a square in k, or

◦ the multiplicate subgroup P =
{
u+ αv ∈ K u, v ∈ k, u2 − av2 = 1

}
of K if a is not a

square in k.

by the maps

τ :

Ens −→ P,
(x, y) 7−→ y+αx

y−αx ,

O 7−→ 1,

ψ :

P −→ Ens,

t 7−→
(

4α2t
(t−1)2 ,

4α3t(t+1)
(t−1)3

)
,

1 7−→ O.
�

2

2.7. Other equations. Once we have observed that we can bring most elliptic curves in
Weierstraß form we try to improve on it. . . 3 Assume that e0, e1, and e2 are the zeros of
x3 + ax + b. By a linear map we can easily map e0 7→ 0 and e1 7→ 1. Replacing v = x−e0

e1−e0

and v = (e1 − e0)− 3
2 y we obtain the Legendre form

v2 = u(u− 1)(u− λ)

with λ = e2−e0
e1−e0

. Of course, we can only do this over a large enough field. Thus every elliptic
curve, say over an algebraically closed field, is isomorphic to a curve in Legendre form.
Unfortunately, λ is not uniquely defined. Actually, we have picked e0 out of three roots and
e1 out of the remaining two; there are six ways of doing that. We obtain up to six Legendre

forms with a parameter within
{
λ, 1

λ ,
λ−1
λ , λ

λ−1 ,
1

1−λ , 1− λ
}

. This set only collapses for if

λ = −1, λ = 1
2 , λ = 2, or λ2 − λ+ 1 = 0.

The discriminant turns out to be ∆ = −λ2(λ − 1)2, which reflects again that λ can be

neither 0 nor 1. [For later reference: j = 28(λ2−λ+1)3

λ2(λ−1)2 .]

2.8. Isomorphisms and the j-invariant. After the preceding discussion we soon come
up with the following definition for isomorphisms: We only consider maps that are somehow
given by polynomials. In the projective world thus any map of the form

β :
P2k −→ P2k,

X0 : X1 : X2 7−→ F0(X) : F1(X) : F2(X)
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where F0, F1, and F2 are homogeneous polynomials of the same degree. Or in the affine
picture we consider maps of the form

α :
k2 −→ k2,

(x0, x1) 7−→ (f0(x), f1(x))

where f0 and f1 are quolynomials. Clearly, α is only defined where the denominators of
f0 and f1 do not vanish. Similarly, β is, at first, only defined outside V (F0, F1, F2) =
{X0 : X1 : X2 F0(X) = 0, F1(X) = 0, F2(X) = 0}. Then a morphism from a curve E to
another curve F is given by such a map restricted to E ⊂ P2k whose images are all in
F ⊂ P2k. Finally, an isomorphism is any such map which has an inverse. However, we know
a lot more than just ‘we deal with a curve’.

Consider an elliptic curve E : y2 = x3 + ax + b. Let u = µ2x and v = µ3y with µ ∈ k×.
Then we land on the curve

F : v2 = u3 + cu+ d

with c = µ4a, d = µ6b. Moreover, the map E → F, (x, y) 7→ (u, v) is an isomorphism. So
finding isomorphisms for curves in Weierstraß form is easy in this case. But what about the
general question? Given two curves, are they isomorphic? The tricky part is to make this
decision and eventually to prove that they are not isomorphic. It turns out that given two
curves in Weierstraß form, the previous ones are all the isomorphisms that we need to know:

Any isomorphism for two curves in Weierstraß form is of the form

E −→ F,
(x, y) 7−→ (µ2x, µ3y).

More general, Silverman (1986) Proposition 3.1(b) states that any isomorphism for two curves
in generalized Weierstraß form are of the form E → F, (x, y) 7→ (u2x + r, u3y + su2x + t)
for some parameters u, r, s, t ∈ k, u 6= 0. (This is again a consequence of the Riemann-Roch
Theorem.)

We define the j-invariant j(E) of an elliptic curve E : y2 = x3+ax+ b in Weierstraß form
by

j(E) := 1728
4a3

4a3 + 27b2
.

Its denominator is the discriminant, so never zero for an elliptic curve. The prior change of

variables leaves this value unchanged: 1728 4(µ4a)3

4(µ4a)3+27(µ6b)2 = 1728 4a3

4a3+27b2 . More important,

also the converse is true: if the j-invariants of two curves in Weierstraß form is equal then
the curves are isomorphic in this way.

Theorem 2.10. Let E : y2 = x3 + ax + b and F : v2 = u3 + cu + d be two elliptic curves
with same j-invariant. Then there exists a µ ∈ k such that

c = µ4a, d = µ6b.

The transformation u = µ2x, v = µ3y provides an isomorphism from E to F .

Proof. This is now surprisingly simple: we have

1728
4a3

4a3 + 27b2
= j = 1728

4c3

4c3 + 27d2
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Assume a 6= 0. Then also c 6= 0. Choose µ such that c = µ4a. Now the equality of j-

invariants implies that 27b2

4a3 = 27d2

4c3 and so d2 =
(
µ6b
)2

. Therefore d = ±µ6b. If d = µ6b we
are done. Otherwise replace µ with iµ where i2 = −1. We still have c = (iµ)4a but now also
d = (iµ)6b.

If a = 0 then j = 0 and c = 0. Since ∆(E) 6= 0 we have b 6= 0, and similarly d 6= 0. So
choose µ such that d = µ6b. �

Actually by the above citation a bit more holds: two curves in Weierstraß form over an
algebraically closed field are isomorphic iff their j-invariants are equal.

There are two special types of curves:

1. j = 0. This reflects that a = 0: y2 = x3 + b.

Starting with the Fermat curve x3 + y3 + 1 = 0 we can transform it into Weierstraß
form by moving the point at infinity to 0 : 1 : 0 and its tangent to the line at infinity.
Additional scaling and shifting in total moves the flex point (−1, 0) to (12, 36) and
(0,−1) to (12,−36) and makes all curve coefficients integers. We obtain:

y2 = x3 − 432.

Over Q this curve has only three rational points: (12, 36), (12,−36) and O. As the
transformation is defined over Q this implies that also x3 + y3 + 1 = 0 has only three
rational points, namely (−1, 0), (0,−1) and 1 : −1 : 0. This in turn proves that
a3 + b3 = c3 has no integer solution with abc 6= 0.

2. j = 1728. Here y2 = x3 + ax.

Examples are a = −4 or a = −25. By the above the two curves are of course isomorphic.
However, over Q they are definitely different: The elliptic curve y2 = x3 − 25x has
infinitely many Q-rational points, for example, all integer multiples of (−4, 6). But the
curve y2 = x3 − 4x has only the rational points (2, 0), (−2, 0), (0, 0) and O.

We say that two different elliptic curves over a field k are twists of each other iff they are
isomorphic over the algebraic closure k, ie. there j-invariants are equal.

Finally, note that provided j 6= 0, 1728 in k the j-invariant of

y2 = x3 +
3j

1728− j x+
2j

1728− j

is j. As j(y2 = x3+1) = 0 and j(y2 = x3+x) = 1728 we can realize any j-invariant. In other
words: Every value in k is the j-invariant of some elliptic curve, which is even defined over
k. The situation for fields of characteristic 2 or 3 is similar, however, the precise formulae
are different.

2.9. Endomorphism. An endomorphism is a morphism of some elliptic curve to itself.
Other than an isomorphism it does not need to have an inverse.

What endomorphism are obvious?

◦ The identity id : E → E, P 7→ P .

◦ The negation − : E → E, P 7→ −P .
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◦ The zero map [0] : E → E, P 7→ O.

◦ The point doubling map [2] : E → E, P 7→ 2P . This is the first example where we
should spent a though on whether this map is algebraic (ie. given by quolynomials).
However, given P = (x, y) with y 6= 0 we already know that 2P = (m2 − 2x,−m(m2−
3x)− y) with m = 3x2+a

2y . Thus

2P =

(
(3x2 + a)2

4y2
− 2x,−3x2 + a

2y

(
(3x2 + a)2

4y2
− 3x

)
− y
)
.

◦ Generalizing the previous we obtain the scalar multiplication map:

[n] :
E −→ E,
P 7−→ nP

.

Using the point addition formulae we find by induction that also nP is given by quoly-
nomials in the coordinates x and y of P .

◦ Knowing a bit about field isomorphisms leads to further automorphisms if the curve is
defined over a small field. Assume α : k → k is a field automorphism. If now P = (x, y)
is on the curve E : y2 = x3 + ax + b then we have α(y)2 = α(x)3 + α(a)α(x) + α(b).
Thus if α(a) = a and α(b) = b then also (α(x), α(y)) is a point on E. As the set of
points fixed by such a field automorphism is always a subfield this just means that a
and b do not span the field. Say E is defined over Fq. [This is the first time we really
depend on finite characteristic.] Then we can consider the Frobenius automorphism ϕ
of Fq: ϕq : Fq → Fq, x 7→ xq:

ϕq :
E −→ E,

(x, y) 7−→ (xq , yq)
.

This will be the identity on the Fq-rational points E(Fq) of E but for all others will
do something. Clearly, this map is given by quolynomials. Stunningly, though it is
bijective it is never an isomorphism. [The inverse map is not given by quolynomials!
Actually, for every fixed point (x, y) ∈ E(Fqm) we have ϕm(P ) = P (Remember La-
grange.) and thus can compute that inverse. However, to cover the entire algebraic
closure k we need m arbitrarily large. . . ]

We have seen that — after a bit extra massaging —

2P =

(
(3x2 + a)2 − 8xy2

4y2
,
−(3x2 + a)3 + (3x2 + a)3x4y2 − 8y4

8y3

)

for a point P = (x, y) on the curve E : y2 = x3 + ax+ b. Hm. . . if the point is on the curve
then we could replace y2 in this formula with x3+ax+ b. This would eliminate y completely
apart from a single y in the denominator in (2P )y. Or, if we prefer in its numerator: just
expand that fraction with y and replace y2 in the denominator again. We get

2P =

(
x4 − 2ax2 − 8bx+ a2

4 (x3 + ax+ b)
,
x6 + 5ax4 + 20bx3 − 5a2x2 − 4abx− a3 − 8b2

8 (x3 + ax+ b)
2 y

)
.
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So for the doubling endomorphism we obtain a quite nice shape: (x, y) 7→ (r1(x), r2(x)y) with
some quolynomials r1, r2 ∈ k(x). It turns out that we can always get such a form: Suppose
α is an endomorphism of E. Then α(x, y) = (R1(x, y), R2(x, y)) for some quolynomials
R1, R2 ∈ k(x, y). Clearly, we can replace every occurence of y2 with x3 + ax + b since

P = (x, y) is on the curve. Thus R1(x, y) = p1(x)+p2(x)y
p3(x)+p4(x)y

with polynomials pi ∈ k[x]. By

multiplying numerator and denominator with p3 − yp4 and again eliminating y2 we obtain
R1(x, y) = r1(x) + r3(x)y. Similarly, we rewrite R2 as R2(x, y) = r4(x) + r2(x)y. Finally,
observe that since our endomorphism α is a group morphism we have α(−P ) = −α(P ),
that is, R1(x,−y) = R1(x, y) and R2(x,−y) = −R2(x, y). This implies that r3(x) = 0 and
r4(x) = 0 and we thus obtain the normal form

α(x, y) = (r1(x), r2(x)y)

=

(
p(x)

q(x)
,
s(x)

t(x)
y

)

with r1, r2 ∈ k(x), p, q, s, t ∈ k[x], gcd(p, q) = 1, gcd(s, t) = 1.
In an arbitrary representation of an endomorphism it is not immediately clear what hap-

pens to points where the quolynomialsR1, R2 cannot be evaluated because some denominator
vanishes. After transforming α to the normal form however, we can do this: if q(x) = 0 then
α(x, y) = O. If q(x) 6= 0 then also r2(x) is well-defined.

To further understand endomorphism we define the degree of α:

Definition 2.11 (Degree of an endomorphism). The degree of a nontrivial endomorphism

α : E → E, (x, y) 7→
(
p(x)
q(x) ,

s(x)
t(x) y

)
given by polynomials p, q, s, t ∈ k[x] with gcd(p, q) = 1,

gcd(s, t) = 1 is defined by

degα := max {deg p, deg q} .
For α = 0 let degα = 0.

As the definition of morphism of curves greatly simplified for curves in Weierstraß form,
also this definition actually is a special case of a much more general definition of degree
of algebraic maps. Feel guided by the degree of a polynomial in the form that the inverse
image of almost any value under the polynomial map is equal to its degree. Again: degree =
number of “intersections”. Actually, it turns out that not all endomorphisms do follow that
feeling:

Definition 2.12 (Separable). An endomorphism α : E → E, (x, y) 7→ (r1(x), r2(x)y) is
separable iff r′1 6= 0 (as a quolynomial).

Equivalently, α is separable iff p′ 6= 0 or q′ 6= 0.

Example 2.13. Consider α = [2] as an example on a curve in Weierstraß form over a field
of characteristic different from 2 (and 3). By the above p(x) = x4 − 2ax2 − 8bx + a2 and
q(x) = 4(x3 + ax + b). Obviously, deg[2] = 4 here. And unless chark = 2 we find that
p′(x) = 4x3 − 4ax − 8b is nonzero and also that q′(x) = 12x2 + 4a is nonzero. Thus [2] is
separable over any field of characteristic different from 2. ♦
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Example 2.14. Over a finite field k the Frobenius ϕq is also an endomorphism. We have
p(x) = xq, q(x) = 1. So degϕq = q. Thus p′(x) = qxq−1 = 0 and q′(x) = 0, and so ϕ is not
separable. ♦

The above feeling is now made precise:

Theorem 2.15. Let α 6= 0 be a separable endomorphism of an elliptic curve E. Then

# kerα = degα

where kerα =
{
P ∈ E

(
k
)
α(P ) = O

}
is the kernel of the endomorphism α : E

(
k
)
→ E

(
k
)
.

If α 6= 0 is not separable then

# kerα < degα.

Thus as with polynomials the number of zeros is always at most the degree, and usually
equal. A similar theorem actually holds for polynomials if you recall that a polynomial is
called separable iff it does not have multiple roots (in the algebraic closure) or, equivalently
iff it is coprime to its derivative.

Consequently, we expect the theorem to fail when replacing the algebraic closure with a
too small field.

Before entering the proof note that the statement of the theorem carries much further
since α is a morphism. Namely, any nonempty fiber α−1(Q0) has the same size: If Q0 = α(P0)
is a point in the image then

#α−1(Q0) = # kerα.

Namely, α(P ) = Q0 = α(P0) iff P − P0 ∈ kerα.

Proof. Write α(x) = (r1(x), r2(x)y) with r1(x) =
p(x)
q(x) with coprime p(x), q(x) as above.

By assumption r′1 6= 0 thus p′q − pq′ is not the zero polynomial.
Instead of considering the kernel we consider an arbitrary fiber. This makes our life easier

as we can stay in the affine picture. Actually, we choose (u, v) = α(P ) generically. We make
that precise: Let S be the set of x ∈ k such that (p′q− pq′)(x)q(x) = 0. Note that S is finite
and thus not all of k. Now choose a point (u, v) ∈ E

(
k
)

such that

◦ u 6= 0, v 6= 0, (u, v) 6= O.

◦ deg(p− aq) !
= max {deg p, deg q} = degα.

◦ u /∈ r1(S).

◦ (u, v) = α(P ) for some P ∈ E
(
k
)
.

Since we allow k the image of α is infinite, whereas the other requirements only forbid finitely
many values. Thus there are enough values to choose from.

We claim that there are exactly degα points (x1, y1) ∈ E
(
k
)

such that α(x1, y1) = (u, v).
For any such point we have

p(x1)

q(x1)
= u, y1r2(x) = v.
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Since (u, v) 6= = we have q(x1 6= 0) and r2(x1) is defined. Next, noting v 6= 0 the second
equation leaves exactly one choice for y1: y1 = v/r2(x). Thus we only need to count values
for x1.

By assumption deg(p − uq) = degα and so the first equation p(x1) − uq(x1) = 0 has
exactly degα roots counting multiplicities. In case there are no multiple roots we are done.
So consider

p(x1)− uq(x1) = 0, p′(x1)− uq′(x1) = 0.

Combining them we obtain up(x1)q
′(x1) = up′(x1)q(x1) Since u 6= 0 we would have x1 ∈ S

and thus u = r1(x1) ∈ r1(S) contrary to our choice. Therefore, all roots are single roots and
we are done.

If α is not separable then we can all of the above but p′ − uq′ is the zero polynomial and
thus all root of p− uq are multiple roots and so the fiber size is smaller than the degree. �

Theorem 2.16. If α : E
(
k
)
→ E

(
k
)

is a endomorphism then it is either zero or surjective.

Proof. Consider (u, v) ∈ E
(
k
)
. We are looking for x1 ∈ k such that p(x1)− uq(x1) = 0.

First, note that p or q is non-constant and p is nonzero. Otherwise the image of α could
have at most three points, namely O and (pq ,±v) for some v, and thus their fibers could not
all be finite contradicting the previous result. Thus there is at most one value u such that
p− uq is constant.

In case p−uq is non-constant, take a root x1 of p−uq. Necessarily, q(x1) 6= 0. Otherwise
also p(x1) = 0 and x1 would be a common root contradicting the assumption that gcd(p, q) =

1. Thus u = p(x1)
q(x1)

now. Let y1 be a solution of y2 = x31+ux1+b. Then α(x1, y1) = (u, v̂) and

v̂2 = u3+au+b = v2. Thus v̂ = ±v. If v̂ = v we are done, if v̂ = −v then α(x1,−y1) = (u, v).
In case p − uq is constant, choose any point (u1, v1) with u 6= u1 such that (u, v) +

(u1, v1) 6= (u,±v). By the previous there are points such that α(P1) = (u1, v1) and α(P2) =
(u, v) + (u1, v1). Then α(P2 − P1) = (u, v) and we are done. �

2.9.1. Separability. Our next aim is a criterion to decide separability of most endomor-
phism. It turns out that given an endomorphism α in the above form, the expression

cα :=
r′1
r2

is always constant. Moreover, it behaves nicely with respect to addition and composition of
endomorphisms.

First, note that translations behave particularly nice:

Lemma 2.17. Let E : y2 = x3 + ax + b be an elliptic curve and (u, v) ∈ E any (nonzero)
point. Write

(x, y) + (u, v) = (f(x, y), g(x, y))

with quolynomials f, g ∈ k[x, y]. Then

d
dxf(x, y)

g(x, y)
=

1

y
.
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Proof. We have f(x, y) = m(x, y)2 − x − u, g(x, y) = −m(x, y)(f(x, y) − u) − v with
m(x, y) = y−v

x−u for ‘most’ (x, y) ∈ E. Now compute

y
d

dx
f(x, y)− g(x, y) = y (fx(x, y) + fy(x, y)y

′)− g(x, y).

Using 2y′y = 3x2 + a, y2 = x3 + ax + b and v2 = u3 + au+ b this simplifies to zero and we
are done. �

The statement made by Lemma 2.17 is that the differential dx
y is translation invariant.

Additionally, one can prove that up to scalar it is the only translation invariant differential
on E.

Lemma 2.18. Let α1, α2, α1+2, and α1◦2 be endomorphisms of an elliptic curve E with
α1+2 = α1 + α2 and α1◦2 = α1 ◦ α2. Assume that cα1 and cα2 are both constant. Then

cα1+2 = cα1 + cα2 ,

cα1◦2 = cα1 · cα2 .

In particular, cα1+2 and cα1◦2 are also constant.

The previous unproven remark carries even further: the assumption of Lemma 2.18 is
actually true for every endomorphism. Since an endomorphism α is a group morphism also
dx
y ◦ α is a translation invariant differential and thus by the uniqueness must be a constant

multiple of dx
y . This constant is cα. [However, we do not prove that uniqueness.]

Proof. Write αj(x, y) = (r1j(x), yr2j(x)). Let (xj(x, y), yj(x, y)) = αj(x, y), so α1+2(x, y) =

(x1, y1) + (x2, y2). We want to compute cα1+2 =
x′

1+2(x)

y1+2(x)/y
. Well, considering x1+2 as a func-

tion composed from first applying (α1, α2) and then addition we obtain

x′1+2 =
∂x1+2

∂x1

∂x1
∂x

+
∂x1+2

∂x2

∂x2
∂x

.

Now, by Lemma 2.17 we know that ∂x1+2

∂x1
= y1+2

y1
by pretending that (x2, y2) does not vary.

Similarly, ∂x1+2

∂x2
= y1+2

y2
. By assumption ∂x1

∂x = cα1

y1
y and ∂x2

∂x = cα2

y2
y . Putting everything

together we obtain

x′1+2 = (cα1 + cα2)
y3
y

and so the first claim.
For x1◦2 we have x1◦2 = x1 ◦ x2 and the chain rule gives

x′1◦2 =
∂x1◦2
∂x2

∂x2
∂x

We find ∂x1◦2

∂x2
= ∂x1

∂x

∣∣
x=x2,y=y2

= cα1(x2, y2)
y1(x2,y2)

y = cα1

y1◦2)
y since cα1 is assumed to be

constant. As we also have ∂x2

∂x = cα2

y2
y we obtain

x′1◦2 = cα1(x2, y2) · cα2

y1◦2
y2

y2
y
.

Consequently, c1◦2 = c1 · c2. �
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This enables us to compute the constant cα for all endomorphisms

rϕq + s :
E −→ E,
P 7−→ rϕq(P ) + sP

.

We only need to compute cid and cϕq
and apply Lemma 2.18. Obviously, c[1] =

x′

1 = 1. By
induction this implies c[n] = n. [Use nP = (n− 1)P + 1P .] Next, ϕq(x, y) = (xq, yq) and so

cϕq
= qxq−1

y = 0. Thus we obtain

Lemma 2.19. Let E be an elliptic curve over a field of characteristic p and r, s ∈ Z. Then

◦ rϕq + s is an endomorphism of E, and it’s nonzero iff (r, s) 6= (0, 0).

◦ crϕq+s = s.

◦ rϕq + s is separable iff p - s.

Proof. The first two statements are done. For the last statement simply observe that
r′1 = crϕ+sr2 = sr2 and this is nonzero iff s · 1 6= 0 in the field. �

We will later see that ϕ2
q = ϕq ◦ϕq can be expressed as one of the above endomorphisms.

As it is obvious that ϕq ◦ [n] = [n] ◦ ϕq Lemma 2.19 already considers all endomorphisms
obtainable from the identity and the Frobenius ϕq by adding, negating and composing. It
turns out that for many elliptic curves over finite fields there are no other endomorphisms.

After introducing the Weil pairing we will also be able to give a formula for computing
the degree of rϕq + s. That however depends on the structure of the torsion (and how
endomorphisms act there).

2.10. Torsion. To learn more about the group structure we now study the scalar multipli-
cation maps in more detail. Namely, we now consider the kernels of the scalar multiplication
maps: Let E be an elliptic curve (defined) over a field k as usual, and let n be a positive
integers. Then we define the n-torsion E[n] of E by

E[n] :=
{
P ∈ E(k) nP = O

}
.

Clearly, this is a subgroup of E. To calculate it we need to know more about the scalar
multiplication map [n]. Let’s consider a few small n to get an impression.

2.10.1. 1-torsion. For n = 1 we have the identity and thus E[1] = {O}.
2.10.2. 2-torsion. That was easy, so let’s try n = 2. We have already calculated [2] and
seen that its degree is 4 and it is also separable if the characteristic is not 2. The x-coordinates
denominator is q(x) = 4(x3+ax+b), so [2]P = O if either P = O or P = (x, 0) with q(x) = 0.
Thus if char k 6= 2 we obtain that E[2] is a four element group whose elements all have order
1 or 2, that is,

E[2] =
{
(x, 0) ∈ k2 x3 + ax+ b = 0

}
∪̇ {O} ∼= Z2 ⊕ Z2.

The situation in characteristic 3 is similar as here we can bring every elliptic curve in the
form y2 = x3 + a2x

2 + a4x + a6, so that again negation is simply changing the y-sign



P
le
a
se

,
d
o

n
o
t
d
is
tr

ib
u
te

!

Elliptic Curve Cryptography 27

and so the elements of E[2] the points (x, 0) and O. For characteristic 2 the situation is
different. First of all, there are no elliptic curves in Weierstraß form; all those cubic curves
are non-smooth. However, any curve can be transformed into y2 + xy = x3 + a2x

2 + a
6

or y2 + a3y = x3 + a4x + a6. [Start with a curve in general Weierstraß form, and replace
x = a21u + a3a

−1
1 , y = a31v + a−3

1 (a21a4 + a23) if a1 6= 0 or x = u + a2, y = v otherwise.] In

the first form one finds [2](x, y) =
(
x4+a6
x2 , x

4+a6
x2 + y+x2

x

(
x4+a6
x2 − x

)
+ y
)
. Thus if 2P = O

then either P = O or P = (0,
√
a6). So here we obtain two points and E[2] ∼= Z2. And in the

second form [2](x, y) =
(
x4+a24
a23

, a3 +
x2+a4
a3

(
x4+a24
a23
− x
)
+ y
)
, and 2P = O only for P = O.

So we obtain only a single points and E[2] = {O}.

Proposition 2.20. Let E be an elliptic curve over a field k. Then

(i) if chark = 2 we have E[2] ∼= 0 or E[2] ∼= Z2.

(ii) if chark 6= 2 we have E[2] ∼= Z2 ⊕ Z2. �

2.10.3. 3-torsion. Let’s try to do one more step and consider n = 3. As 3P = O iff
2P = −P we do not need to derive formulae for point tripling [3]. Moreover, 2P = P
implies P = O, so we actually only need to consider the x-coordinates: m2 − 2x = x, where

m = 3x2+a
2y is the tangent’s slope as usual. The y-coordinate of 2P can then only be −y.

Rewriting this we obtain −(3x2 + a)2 +12x(x3 + ax+ b) = 0 or 3x4 +6ax2 + 12bx− a2 = 0.
Unless chark = 3 this is a degree 4 equation and all its solutions are indeed different: its
discriminant is −6912∆2 and thus nonzero. [You can also run the Euclidean algorithm on
the polynomial and its derivative to see that.] Thus we find four values of x. Each of these
four values of x produces two points (x, y) since x3 + ax + b has no multiple roots and so
cannot vanish at these x-values. So including O we find 9 points in E[3], each of order 1
or 3. In characteristic 3 we may assume E in the form y2 = x3 + a2x

2 + a4x + a6. When
solving 2P = −P we now get m2 − a2 − 2x = x with m = 2a2x+a4

2y . This simplifies to

a2x
3+a2a6−a24 = 0. As x3+a2x

2+a4x+a6 has no multiple roots we have a2 6= 0 or a4 6= 0
because x3 + a3 = (x + a)3 in characteristic 3. In case a2 6= 0 the equation is of the form
a2(x

3 + a) = 0 and thus has a single triple zero. Corresponding to that x we find two values
of y, again using that the right hand side polynomial has no multiple root. So we obtain
three points in E[3]. Finally, if a2 = 0 we are left with the equation −a24 = 0 which is never
true, and so E[2] = {O}.

Proposition 2.21. Let E be an elliptic curve over a field k. Then

(i) if chark = 3 we have E[3] ∼= 0 or E[3] ∼= Z3.

(ii) if chark 6= 3 we have E[3] ∼= Z3 ⊕ Z3. �

2.10.4. 4-torsion. The situation for n = 4 can still be studied along the lines of the case
n = 3. There is a faster way to get there by considering E[4] as preimage of E[2] under point
doubling [2].

2.10.5. General case. For n a prime, you may have guessed the general situation already.
To nicely state the result we need a further disctinction.
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Definition 2.22. We call an elliptic curve

◦ ordinary iff E[p] ∼= Zp, and

◦ supersingular iff E[p] = 0.

The names ordinary and supersingular go back to the study of the endomorphism rings and
the j-invariants. In characteristic zero, the endomorphism ring of an elliptic curve usually
is Z, correspondingly we speak of ordinary j-invariants. The singular j-invariants are those
corresponding to curves with larger endomorphism rings than usual, namely an order in a
quadratic extension of Q. (An order in K|Q is a subring of K and also a Z-module of rank
K : Q.) In finite characteristic, the endomorphism ring can be even larger, namely, non-
commutative and rank 4 rather than commutative and rank 1 or 2, and so the corresponding
j-invariants were called supersingular.

The following theorem claims that every elliptic curve is either supersingular or regular
and gives a complete description of the n-torsion of an elliptic curve (over the algebraic
closure).

Theorem 2.23. Consider an elliptic curve E over a field k of characteristic p and a positive
integer n.

(i) If p - n then we obtain the n-torsion

E[n] ∼= Zn ⊕ Zn.

(ii) If n is a p-power then

E[n] ∼=
{
0 if E is ordinary,

Zn if E is supersingular.

Combining, write n = prn′ with p - n′. For ordinary curves we have E[n] ∼= Zn⊕Zn′ whereas
for supersingular curves we have E[n] ∼= Zn′ ⊕ Zn′ .

The proof will occupy us for some time.

2.10.6. Induced torsion endomorphisms. An important consequence of this charac-
terization is that we can study the behaviour of endomorphism (and also arbitrary group
endomorphisms) restricted to the n-torsion. Fix n coprime to the characteristic. Then the
previous theorem implies that E[n] ∼= Zn ⊕ Zn. To make this explicit choose β1, β2 ∈ E[n]
such that every n-torsion point can be expressed uniquely as m1β1+m2β2 with m1,m2 ∈ Zn.
If now α : E(k)→ E(k) is a group morphism (or even an endomorphism) then α is Zn-linear
on E[n]: α(m1β1 + m2β2) = m1α(β1) + m2α(β2). By expressing α(β1) = aβ1 + cβ2 and
α(β2) = bβ1 + dβ2 we can describe the effect of α on the n-torsion by a matrix:

αn :=

[
a b
c d

]
.

Now, α(m1β1 +m2β2) = n1β1 + n2β2 with

[
n2

n1

]
= αn ·

[
m1

m2

]
. Many important properties

do not depend on the choice of the basis β1, β2 and these give meaningful information about
the endomorphism α.
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We will use that construction to study certain endomorphisms of elliptic curves (see
Section 2.12). But one can also use it to construct representations of Galois groups: If α is a
field automorphism of k fixing k then we obtain a matrix αn on the n-torsion. This defines
a representation, namely a map Gal(k|k)→ GL2(Zn). See Washington (2003), Example 3.1
for an illustration.

2.11. Division polynomials. Our next purpose is to prove Theorem 2.23. To that end
we will determine enough information on the scalar multiplication endomorphism [n]. To
that end we introduce division polynomials. There are three sequences: Writing nP =(
p1(x)
q1(x)

, y·p2(x)q2(x)

)
the first family will describe q1 and q2, and the other two will give p1 and

yp2.

Definition 2.24 (Division polynomials). We define polynomials in Z[x, y, a, b] as follows:

ψn :=





0 if n = 0,

1 if n = 1,

2y if n = 2,

3x4 + 6ax2 + 12bx− a2 if n = 3,

4y(x6 + 5ax4 + 20bx3 − 5a2x2 − 4abx− 8b2 − a3) if n = 4,

ψm+2ψ
3
m − ψm−1ψ

3
m+1 if n = 2m+ 1 ≥ 5, m ≥ 2,

1
2y (ψm)(ψm+2ψ

2
m−1 − ψm−2ψ

2
m+1) if n = 2m ≥ 6, m ≥ 3.

φn := xψ2
n − ψn+1ψn−1.

ωn :=
1

4y
(ψn+2ψ

2
n−1 − ψn−2ψ

2
n+1).

Note that ψn depends only on other polynomials ψ` with ` < n and so it is well defined.
Despite the few divisions all are polynomials, as we will check in the next lemma. You should
recognize ψ3 [from Section 2.10.3] and maybe also ψ4. Moreover, they describe exactly the

scalar multiplications [n] of elliptic curves in Weierstraß form: [n](x, y) =
(
φn

ψ2
n
, ωn

ψ3
n

)
, which

explains — after some rearrangements — their definition. We will now derive some essential
properties.

Lemma 2.25. Abbreviate R = Z[x, y2, a, b]. For any n we have:

(i) ψn ∈
{
2yR if n ≡2 0,

R if n ≡2 1.

(ii) The weighted degree of ψn is n2 − 1 where the weight of x is 2 and the weight of y is
3 and the corresponding leading coefficient is n. Moreover, the corresponding leading
coefficient after possible replacements of y2 by x3 + ax+ b is given by

ltψn =

{
nyx

n2
−4
2 if n ≡2 0,

nx
n2

−1
2 if n ≡2 1.
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(iii) ψn ∈





0+4yR if n ≡4 0,

(x2 + a)
n2

−1
4 + 2R if n ≡4 1,

2y(x2 + a)
n2

−4
4 +4yR if n ≡4 2,

(x2 + a)
n2

−1
4 + 2R if n ≡4 3,

(iv) φn ∈ R.

(v) ωn ∈
{
R if n ≡2 0,

yR if n ≡2 1.

For all n we have φn, ψ
2
n ∈ R. Replacing y2 with x3+ax+ b we can interpret any polynomial

in R as a polynomial in Z[x, a, b].

(vi) For any field K and a, b ∈ K and for any n the polynomials φn|y2=x3+ax+b and
ψ2
n|y2=x3+ax+b are coprime.

Note that (iii) is a stronger version of (i).

Proof. (i): For n ≤ 4 there is nothing to do. So assume n > 4. Let m =
⌊
n
2

⌋
, so that

n = 2m or n = 2m + 1. Denote R = Z[x, y2, a, b]. We distinguish four cases according to
n rem 4:

n rem 4 m rem 2 ψm (ψm+2 ψ2
m−1 − ψm−2 ψ2

m+1) = 2yψn
0 0 2yR ( 2yR R2 − 2yR R2 ) ⊆ 4y2R
2 1 R ( R 4y2R − R 4y2R) ⊆ 4y2R

n rem 4 m rem 2 ψm+2 ψ3
m − ψm−1 ψ3

m+1 = ψn
1 0 2yR (2yR)3 − R R3 ⊆ R
3 1 R R3 − (2yR) (2yR)3 ⊆ R

The table shows that if n is even then ψn ∈ 2yR and if n is odd in R.
(ii): We actually claim that the weighted leading term of ψn after possible replacements

of y2 with x3 is given by

ltψn =

{
nyx

n2
−4
2 if n ≡2 0,

nx
n2

−1
2 if n ≡2 1.

The claim being true for n ≤ 4 we consider n ≥ 5. Just writing down the leading terms and
eventually replacing y2 with lt(x3 + ax+ b) we obtain:

n
r
e
m
4

ψm

(
ψm+2 ψ2

m−1 − ψm−2 ψ2
m+1

)
= 2yψn

0 myx
m2

−4
2

(
(m+ 2)yx

m2+4m
2 (m− 1)2x

2m2
−4m
2 − (m− 2)yx

m2
−4m
2 (m+ 1)2x

2m2+4m
2

)
⊆ 2y · 2myx (2m)2−4

2

2 mx
m2

−1
2

(
(m+ 2)x

m2+4m+3
2 (m− 1)2y2x

2m2
−4m−6
2 − (m− 2)x

m2
−4m+3

2 (m+ 1)2y2x
2m2+4m−6

2

)
⊆ 2y · 2myx (2m)2−4

2

n
re

m
4

ψm+2 ψ3
m − ψm−1 ψ3

m+1 = ψn

1 (m+ 2)yx
m2+4m

2 m3y3x
3m2

−12
2 − (m− 1)x

m2
−2m
2 (m+ 1)3x

3m2+6m
2 ⊆ (2m+ 1)x

(2m+1)2−1
2

3 (m+ 2)x
m2+4m+3

2 m3x
3m2

−3
2 − (m− 1)yx

m2
−2m−3

2 (m+ 1)3y3x
3m2+6m−9

2 ⊆ (2m+ 1)x
(2m+1)2−1

2
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(iii): Letm =
⌊
n
2

⌋
, so that n = 2m or n = 2m+1. We need to check the claim through the

recursion. As the result varies with n mod 4 and the ingredients with m mod 4, we consider
eight cases according to n mod 8.

n
m
o
d
8

m
m
o
d
4

ψm

(
ψm+2 ψ2

m−1 − ψm−2 ψ2
m+1

)
= 2yψn

0 0 4yR
(

2yR R − 2yR R
)
⊆ 8y2R

2 1 t
m2

−1
4 + 2R

(
R (4y)2R − t

(m−2)2−1
4 + 2R (2y)2t

(m+1)2−4
2 + 4yR

)
⊆ 4y2t

n2
−4
4 + 8y2R

4 2 2yR
(

4yR R − 4yR R
)
⊆ 8y2R

6 3 t
m2

−1
4 + 2R

(
t
(m+2)2−1

4 + 2R (2y)2t
(m−1)2−4

2 + 4yR − R (4y)2R
)
⊆ 4y2t

n2
−4
4 + 8y2R

n
m
o
d
4

m
m
o
d
4

ψm+2 ψ3
m − ψm−1 ψ3

m+1 = ψn

1 0 2yR (4y)3R − t
(m−1)2−1

4 + 2R t3
(m+1)2−1

4 + 2R ⊆ t
n2

−1
4 + 2R

3 1 t
(m+2)2−1

4 + 2R t3
m2

−1
4 + 2R − 4yR (2y)3R ⊆ t

n2
−1
4 + 2R

5 2 4yR (2y)3R − t
(m−1)2−4

4 + 2R t3
(m+1)2−4

4 + 2R ⊆ t
n2

−1
4 + 2R

7 3 t
(m+2)2−1

4 + 2R t
m2

−1
4 + 2R − 2yR (4y)3R ⊆ t

n2
−1
4 + 2R

(iv): We either have φn ∈ xR2−(2yR)·(2yR) ⊆ R if n is odd or φn ∈ x(2yR)2−R ·R ⊆ R
if n is even. [Notice that y /∈ R but y2 ∈ R.]

(v): Using (i) we find: If n is odd then 4yωn ∈ R · (2yR)2 − R · (2yR)2 ⊆ 4y2R and so
ωn ∈ yR. If n is even then 4yωn ∈ 2yR ·R2 − 2yR ·R2 ⊆ 2yR and so 2ωn ∈ R.

To get rid of the remaining 2 we need to use (iii):

n
re

m
4

ψn+2 ψ2
n−1 − ψn−2 ψ2

n+1 = 14yωn

0 2yt
(n+2)2−4

4 + 4yR t
(n−1)2−1

2 + 2R − 2yt
(n−2)2−4

4 + 4yR t
(n+1)2−1

2 + 2R ⊆ 4yR
2 4yR R − 4yR R ⊆ 4yR

(vi): [—to do—] �

Theorem 2.26. Consider a base field k of characteristic different from 2, a, b ∈ k and n ∈ N.
Then

n · P =

(
φn(x)

ψ2
n(x)

,
ωn(x, y)

ψ3
n(x, y)

)
.

Proof. [—to do—] �
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2.11.1. The Weil pairing. Given that for n coprime to the characteristic, we now know
that

E[n] ∼= Zn × Zn

we could define kind of a scalar product on E[n] as follows. Fix a Zn-basis (T1, T2) of E[n]
and choose values for e(Ti, Tj) in some appropriate group. Since we want e bilinear we then
have e(s1T1 + s2T2, t1T1 + t2T2) =

∑
i,j sie(Ti, Tj)tj . Actually, we want more: the pairing

must also be non-degerenate, that is, if for all T ∈ E[n] we have e(S, T ) = 0 then we have
S = O, and also if for all S ∈ E[n] we have e(S, T ) = 0 then we have T = O. We can grant
this by requiring that the matrix [e(Ti, Tj)]i,j is invertible. All these things are now pairings
on the n-torsion. However, we do not know anything about how to compute the pairing nor
whether this is compatible with possible algebraic structures. In that light, it is only a minor
complication to take a multiplicatively written group for the values: Let

µn =
{
x ∈ k xn = 1

}

be the group of nth roots of unity. Since n is coprime to the characteristic #µn = n and so
µn is a cyclic group of order n.

Theorem 2.27 (Weil pairing). Let E be an elliptic curve defined over a field k and let n be
a positive integer coprime to the characteristic of k. Then a Weil pairing

en : E[n]× E[n] −→ µn

satisfying the following properties exists.

(i) en is bilinear, that is, for all S, S1, S2, T, T1, T2 ∈ E[n]

en(S1 + S2, T ) = en(S1, T ) · en(S2, T ),

en(S, T1 + T2) = en(S, T1) · en(S, T2).

(ii) en is non-degenerate, that is, for all T ∈ E[n]

∀S ∈ E[n] : en(S, T ) = 1 =⇒ T = O,
∀S ∈ E[n] : en(T, S) = 1 =⇒ T = O.

(iii) en is antisymmetric, that is, for all T

en(T, T ) = 1.

In particular, en(T, S) = en(S, T )
−1.

(iv) en is compatible with the Galois actions, that is, for every automorphism σ of k fixing
k (in particular, for a curve in Weierstraß form this means that σ(a) = a and σ(b) = b)
we have

en(σS, σT ) = σ(en(S, T )).

(v) For every endomorphism α of E we have

en(α(S), α(T )) = en(S, T )
degα.
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We do not give a proof here. Just a word on it. The Weil pairing can be defined after
studying the behaviour of functions on an elliptic curve. One constructs an algebraic function
gT on E that has a single zero at each T ′ with nT ′ = T and a single pole at each n-torsion
point. Then we define en(S, T ) = gT (P + S)/gT (P ) for some point P so that this is nicely
defined. The tricky points are the existence of gT and that the various choices do not influence
the result.

[—to do—]
There is a different construction yielding the Tate pairing 〈·, ·〉n which is slightly easier

to compute and is not antisymmetric. The two are connected by a congruence of the form

en(S, T ) ≡
〈T, S〉n
〈S, T 〉n

.

We now derive a few consequence of the existence of the Weil pairing.

Corollary 2.28. Let {T1, T2} be a Zn-basis of E[n]. Then en(T1, T2) is a primitive nth
root of unity.

Proof. This is a consequence of the non-degeneracy. Clearly, ζ = en(T1, T2) is an nth
root of unity. Thus ζd = 1 for some d dividing n. We have to show that d = n. Consider
T = dT2. Then en(T1, T ) = e(T1, T2)

d = ζd = 1. And also en(T2, T ) = e(T2, T2)
d = 1d = 1.

But then en(s1T1 + s2T2, T ) = en(T1, T )
s1en(T2, T )

s2 = 1. Since {T1, T2} generates E[n] we
obtain dT2 = T = O by Theorem 2.27(ii). This implies d = n and thus ζ is a primitve nth
root of unity. �

Note that the Weil pairing is not uniquely defined by Theorem 2.27. If r is coprime to n
then ern also fulfills all the wanted properties. However, up to this transformation the Weil
pairing is unique. To see this just note that en is defined by the value en(T1, T2) for a basis
{T1, T2} of E[n]. And raising to a power coprime to n simply replaces one primitive nth root
of unity with another.

Corollary 2.29. If E[n] ⊆ E(k) then µn ⊆ k.

Notice that you can apply this fact also for extensions of k, as we only require that E is
defined over k, and then it is also defined over any extension of k.

Proof. As before fix a Zn-basis {T1, T2} of E[n], and consider ζ = en(T1, T2). This is a
primitive nth root of unity, that is, it generates µn. Thus it suffices to show that ζ ∈ k.
Notice that k(ζ)|k is a Galois extension since n is not a multiple of the characteristic. So
let σ be any automorphism of k fixing k (extending any σ ∈ Gal(k(ζ)|k)). By assumption
T1, T2 ∈ E(k) thus we obtain

ζ = en(T1, T2) = en(σT1, σT2) = σ(ζ).

By the fundamental theorem of Galois theory ζ must be in k. �

This immediately implies that over the rationals Q we rarely have all n-torsion rational,
since Q only contains µ1 and µ2 but no higher µn:
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Theorem 2.30. Let E be an elliptic curve over Q. Then for n ≥ 3 we have E[n] 6⊆ E(Q).�

When n = 2 we can have E[2] ⊆ E(Q). This happens whenever the roots of the right hand
side of the Weierstraß equation are all rationals. For example, E : y2 = x(x − 1)(x − 2) has
E[2] = {O, (0, 0), (1, 0), (2, 0)}. Actually, for n > 12 or n = 11 there is no elliptic curve over
Q with a rational point of order n.

Our next issue is to consider what the Weil pairing can tell about endomorphisms, in
particular, their degree. This clearly has to involve Theorem 2.27(v). As already pointed
out in Section 2.10.6 we can describe the restriction of an endomorphism α on the n-torsion
by a Zn-matrix after choosing a Zn-basis {T1, T2} of E[n]. Based on this, Theorem 2.27(v)
allows us to characterize the degree.

Proposition 2.31. Let α be an endomorphism of an elliptic curve E defined over a field k,
and n an integer coprime to the characteristic of k. Then

deg(α) ≡n det(αn).

Proof. By Corollary 2.28 the value ζ = en(T1, T2) is a primitive nth root of unity on a

Zn-basis {T1, T2} of E[n]. Let αn =

[
a b
c d

]
be the matrix representing α with respect to

that basis. Let’s compute the pairing on the image of the basis:

en(α(T1), α(T2)) = en(aT1 + cT2, bT1 + dT2)

= en(T1, T1)
aben(T1, T2)

aden(T2, T1)
bcen(T2, T2)

cd

= en(T1, T2)
ad−bc = ζad−bc.

On the other hand side, by Theorem 2.27(v), we obtain en(α(T1), α(T2)) = en(T1, T2)
degα =

ζdegα. Since ζ is a primitive nth root of unity we obtain deg(α) ≡n ad− bc = det(αn). �

It seems that we have just reduced one difficult problem to another one. However, this
connection now allows us to deduce a really simple tool to compute the degree of many
endomorphisms without even trying to represent them by quolynomials:

Proposition 2.32. Let α, β be endomorphisms of an elliptic curve E defined over k, and
a, b ∈ Z. Then

deg(aα+ bβ) = a2 degα+ b2 degβ + ab (deg(α+ β)− degα− deg β) .

In particular, we can now immediately tell the degree of an endomorphism rϕq + s. This
will be very fruitful.

Proof. Fix a number n coprime to the characteristic. Clearly, the induced matrix (aα+
bβ)n of aα+ bβ on the n-torsion is aαn+ bβn. By Proposition 2.31 we have deg(aα+ bβ) ≡n
det(aαn + bβn). Now, for 2× 2-matrices we can check that

det(aαn + bβn) = a2 detαn + b2 detβn + ab (det(αn + βn)− detαn − detβn) .

Using Proposition 2.31 also for the determinants on the right we infer that

deg(aα+ bβ) ≡n a2 degα+ b2 deg β + ab (deg(α+ β)− degα− degβ) .

But this holds for all n coprime to the characteristic and thus must be an equality in Z. �
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2.12. All about Frobenius. We have already defined the Frobenius endomorphism for
an elliptic curve E defined over Fq earlier:

ϕq :
E −→ E,

(x, y) 7−→ (xq , yq)
.

We have seen that it is not separable and has degree q. Moreover, it helps to characterize
the Fq-rational points:

E(Fq) = ker(ϕq − 1).

By definition ker(ϕq−1) are all points P = (x, y) ∈ E such that O = (ϕq−1)(P ) = ϕq(P )−P
or ϕq(P ) = P . Thus we obtain xq = x and yq = y. This implies that x, y ∈ Fq and
so P ∈ E(Fq). Vice versa, every point P with coordinates in Fq is fixed by ϕq and thus
(ϕq − 1)(P ) = O. Together with the results from the previous section we can now express
the number of Fq-rational points:

#E(Fq) = deg(ϕq − 1)

by simply observing that ϕq − 1 is separable using Lemma 2.19.
When you elementary try to compute the size of an elliptic curve you find 0 ≤ #E(Fq) ≤

2q + 1. You may also write down the formula

#E(Fq) = q + 1 +
∑

x∈Fq

(
x3 + ax+ b

Fq

)

where
(
a
Fq

)
is 0 if a = 0, +1 if a 6= 0 is a square and −1 if a 6= 0 is not a square. However,

we can do much better using the presented theory:

Theorem 2.33 (Hasse). If E is an elliptic curve defined over Fq then

#E(Fq) = q + 1− t with |t| ≤ 2
√
q.

Proof. Write deg(ϕq − 1) = #E(Fq) = q+1− t. Recall degϕq = q and deg(−1) = 1. By
Proposition 2.32 we obtain

deg(rϕq − s) = r2 degϕq + s2 deg(−1) + rs (deg(ϕq − 1)− degϕq − deg(−1))︸ ︷︷ ︸
=q+1−t−q−1=−t

= r2q + s2 − rst

= r2
(
s2

r2
− ts

r
+ q

)
.

Of course, deg(rϕq − s) ≥ 0 for all r, s ∈ Z. Thus the polynomial

X2 − tX + q

must be nonnegative for all rational numbers s
r . Since the rational numbers (even if we

restrict to p - s) are dense in R the polynomial must be completely nonnegative. Thus it
cannot have two real zeros and its discriminant t2−4q must be negative or zero. And t2 ≤ 4q
is the claim. �
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To ease the life Washington only proves Theorem 2.27(v) only for separable endomorphisms
and the Frobenius endomorphism. Then we can use Proposition 2.32 only for endomorphisms
where α, β and aα+ bβ are separable or a Frobenius. In the previous proof this means, that
we need rϕq − s, ϕq and −1 each be either separable or Frobenius. This is the case if p - s.
But even then we can continue: the fractions s

r with p - s, r ∈ Z \ {0} are still dense in R.
Thus the quadratic polynomial X2 − tX + q must still be nonnegative on the reals.

The ingredients for Theorem 2.33 are on the one hand side the fact that ϕq−1 is separable
and describes the Fq-rational points and on the other hand side the existence and properties
of the Weil pairing.

And we can now also learn an important fact about the Frobenius endomorphism itself.

Theorem 2.34 (Characteristic polynomial of the Frobenius). Let E be an elliptic curve over
Fq. Define t = q + 1−#E(Fq) as before. Then

ϕ2
q − tϕq + q = 0

in the endomorphism ring of E. Moreover, if ϕ2
q − kϕq + q = 0 then k = t.

Furthermore, t ≡n trace(ϕq)n for all n coprime to the characteristic. This also uniquely
determines t. Also, q ≡n det(ϕq)n for all n coprime to the characteristic.

Because of the last statement we call t the trace of the Frobenius. We also call X2 − tX + q
the characteristic polynomial of the Frobenius.

Proof. Our aim is to prove that ϕ2
q − tϕq + q is the zero endomorphism. We have proved

that any other endomorphism has a finite kernel. So we have to show that ϕ2
q − tϕq + q has

an infinite kernel.
Again fix n coprime to the characteristic, choose a basis for the n-torsion E[n] and express

ϕq on it by a matrix

(ϕq)n =

[
a b
c d

]
∈ Z2×2

n .

We want to find its characteristic polynomial χ. By definition χ(X) = (−1)2 det(ϕq−X) and
it is a monic degree-2 polynomial. As we know by Proposition 2.31 that det(αn) ≡n degα
we consider enough values of χ. First, χ(0) = detϕq ≡n degϕq = q. Second, χ(1) =
det(ϕq − 1) ≡ deg(ϕq − 1) = # ker(ϕ1 − 1) = #E(Fq) = q+1− t. Writing χ = X2− kX + q
we see that χ(1) = q + 1− k and k = t. Thus X2 − tX + q is the characteristic polynomial
of the 2× 2-matrix (ϕq)n and by Caley-Hamilton we obtain

(ϕq)
2
n − t (ϕq)n + q = 0 in Z2×2

n .

That is, E[n] is in the kernel of ϕ2
q − tϕq + q for any n coprime to the characteristic. But

this can only be true if this kernel is infinite and the map the zero endomorphism. In other
words, we have

ϕ2
q − tϕq + q = 0 in EndE.

Next, assume that ϕ2
q − kϕq + q = 0. Then kϕq = tϕq and thus (k − t)ϕq = 0. However,

ϕq is bijective and thus [k − t] = 0. But again since only the zero endomorphism has an
infinite kernel, we obtain k = t.

The statements about trace and determinant of (ϕq)n have been proved during this proof.
�
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This theorem tells us a lot about the structure of the endomorphism ring. Clearly,
the scalar multiplications and the Frobenius are available. But already the square of the
Frobenius can be expressed in terms of them. So instead of having integer polynomial
expressions in the Frobenius we only need the linear ones. Moreover, in many cases (namely
for ordinary curves), all endomorphisms are of the form rϕq + s. Then

EndE ∼= Z[X ]/
〈
X2 − tX + q

〉
.

is an order in Q[X ]/
〈
X2 − tX + q

〉
(basically, an order of an extension K over Q is a

subring of the extension field K and a K : Q-dimensional Z-module). In particular, the
endomorphism ring can be embedded in a quadratic extension of the rationals, actually even
in the ring of integers of such a quadratic extension.

In the light of Theorem 2.33 we see that usually ϕq cannot be equal to a scalar multipli-
cation. Only in the (rare) case that t2 = 4q, in particular, q must be a square, we observe
that (ϕq − 2

√
q)2 = 0 and thus ϕq = [2

√
q] using Theorem 2.16.

2.13. Structure. We have already seen the structure of the torsion subgroups of an elliptic
curve. Actually, the structure of the Fq-rational part is rather similar and we can see this
similarly:

Theorem 2.35. Given an elliptic curve E over a finite field Fq. Then

◦ E(Fq) is isomorphic to Zm for some positive integer m, or

◦ E(Fq) is isomorphic to Zm1 ⊕ Zm2 for some positive integers m1, m2 with m2 | m1.

Proof. Clearly, E(Fq) is a finite abelian group and thus isomorphic to some group

Zm1 ⊕ Zm2 ⊕ · · · ⊕ Zmr

with mi+1 | mi for i ∈ {1, . . . , r − 1}. Well, Zmi
has mr mr-torsion elements. Thus the

entire group has mr
r mr-torsion elements. But the mr-torsion of E has at most m2

r elements.
Thus r ≤ 2 and we are done. �

One can show additionally that m2 divides q−1 unless t = ±2√q, which can only happen
if q is an even power. More precisely:

Theorem 2.36. Assume N = m1m2 with m2 | m1, m1 = pem′
1, p - m′

1. Then there exists
an elliptic curve E over Fq with E(Fq) ' Zm1 ⊕ Zm2 iff

◦ t = ±√q (the extreme possibilities) and m1 = m′
2, or

◦ m2 | q − 1. �

2.14. Determining size. Concerning the size of an elliptic curve we have already the
best bounds. Recall that trivially 0 ≤ #E(Fq) ≤ 2q + 1, and the theorem of Hasse even
says |#E(Fq)− (q + 1)| ≤ 2

√
q. One can show that the latter is optimal. However, given a

specific curve finding its size and structure is still a problem.
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Counting the points of an elliptic curve can be done by brute force (which is no solution)
taking time O

(
q2
)
, or a little better by trying each x and determining whether x3 + ax+ b

is a square. The latter corresponds to the formula

#E(Fq) = q + 1 +
∑

x∈Fq

(
x3 + ax+ b

Fq

)

mentioned earlier. Evaluating this takes time O∼ (q).

2.14.1. Orders of points. Recall the theorem of Lagrange: given a finite group G and
any subgroup H . Then the size of H divides the size of G. Clearly, the group H = 〈P 〉
generated by an element P ∈ G is a subgroup of G, it’s size ordP is called the order of P .
One can easily shows that

ordP := # {iP ∈ G i ∈ Z} = min {i ∈ N>0 iP = O} .

This order must divide the size of G by the cited theorem.
Combining this with the Hasse bound yields a way to determine the curve size as follows:

Suppose we can find a point of order larger than 4
√
q in E(Fq). Then #E(Fq) ≡ordP 0 and

|#E(Fq)− (q + 1)| ≤ 2
√
q allows only a single value for #E(Fq). Even if the point order is

smaller than 4
√
q we often obtain only a short list of possiblities. We can also use several

points.

Example 2.37. The curve E : y2 = x3 +2x+ 1 has the point P = (0, 1). Over F101 we find
that 23P = O. Thus #E(F101) is divisible by 23. The Hasse bound gives |#E(F101)− 102| ≤
2
√
101 ≈ 20.1, thus 82 ≤ #E(Fq) ≤ 122. Thus #E(F101) is either 92 = 4 · 23 or 115 = 5 · 23.

In diesem Fall genügt es nun zu prüfen, ob es einen Punkt der Ordnung 2 gibt. Diese sind
ja durch y = 0 charakterisiert, es zeigt sich, dass Q = (−13, 0) auf der Kurve liegt und also
muss #E(F101) = 92 gelten.

Since we know that the 92-torsion is Z92 ⊕ Z92, the F101-rational part of the curve has
92 points, we can infer that E(F101) is either Z46 ⊕ Z2 or Z92. Checking the order 2 points
again, we find that there is only one order 2 point (the mentioned one), and thus we find
that E(F101) is cyclic of order 92. ♦

Example 2.38. The curve E : y2 = x3 − 33x− 22 over F101 has the point P1 = (36,−20) of
order 11 and the point P2 = (32,−28) of order 9. Consequently, #E(F101) is a multiple of
9 · 11. The Hasse bound again gives 82 ≤ #E(Fq) ≤ 122 and so #E(Fq) = 99.

The structure is obvious since 9 and 11 are coprime. Write 1 = s · 11 + t · 9, then
P = sP1 + tP2 has order 99, and so also this curve is cyclic. ♦

The question to be posed now is: how do we find the order of a point? Actually, we do
this more or less by brute force.

Solution 1 : Brute force. Just compute tP starting for t = 0, 1, 2, 3, . . . Runtime O (q).
Solution 2 : Well, we know that the group size is in the Hasse interval q+1−

⌊
2
√
q
⌋
..q+

1 +
⌊
2
√
q
⌋
. Can’t we use that? Well, yes: Just run t only through that interval. This does

not necessarily give the order but at least a multiple. Factoring the successful t and checking

its divisors gives the order. Runtime O
(
q

1
2

)
plus the time for factoring t.
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Solution 3 : There is one further improvement, inspired by the baby-step giant-step algo-
rithm for computing a discrete logarithm. Set B :=

⌈
4
√
q
⌉
. Write t = q + 1 + t12B + t0 and

try to find t0 ∈ 0..B − 1, t1 ∈ −(B − 1)..B − 1 such that (t − t0)P = ±t0P (by computing
and comparing only the x-coordinates). Since we can tabulate t0P , we can independentely
run through the options for t1. Finally, factor t and check its divisors (well, cleverly). So we

only need runtime O
(
q

1
4

)
plus the time for factoring t.

2.14.2. Subfield curves. Assume you want to determine the size of E(Fqm) for a curve
that is defined over Fq. Does knowledge on the size of E(Fq) help? Well, let’s recap what
we know:

◦ The characteristic polynomial of the Frobenis ϕq is χ = T 2 − tT + q, then χ(ϕq) = 0.
Moreover, the polynomial is uniquely determined as a monic degree-2 polynomial by
χ(0) = q and χ(ϕq) = 0.

◦ The size of E(Fq) is χ(1).

◦ Moreover, the Frobenius of Fqm is ϕqm = (ϕq)
m

.

Altogether this leads to

Theorem 2.39. Assume E is an elliptic curve defined over Fq with 1 − t + q Fq-rational
points. Let χ(T ) = T 2 − tT + q be the characteristic polynomial of the Frobenius ϕq, and
write χ = (T − α)(T − β) with α, β ∈ C. Then for n ≥ 1

#E(Fqm) = 1− (αm + βm) + qm.

First, note that sn = αn+βn is always an integer. [Either use Galois theory or note that
s0 = 2, s1 = α+β, sn = tsn−1−qsn−2 for n ≥ 2 (ie. χ(∆)(s) = 0 when ∆(s) = (s1, s2, . . . )).]

Proof. We determine the characteristic polynomial of ϕqm . Let f = (Tm − αm)(Tm −
βm) = T 2m − (αm + βm)T + qm. As noted f is an integer polynomial. Further, it is monic
of degree 2, and f(0) = qn. Further, χ divides f since T − α divides Tm − αm and T − β
divides Tm − βm. Thus f(ϕq) = 0 and ϕ2m

q − (αm + βm)ϕmq + qm = 0. As ϕqm = ϕmq the
polynomial T 2− (αm+βm)T + qm must be the characteristic polynomial of ϕqm . Evaluating
at 1 gives the claim. �

Unfortunately, subfield curves are rare and it could be that these are insecure for cryp-
tographic applications.

2.14.3. Schoof’s algorithm. Counting the size of Fq-rational parts arbitrary curves with

all the solutions so far can best be solved in time O
(
q

1
4

)
. Only Schoof (1985) found a

polynomial time algorithm. The idea actually is simple: We exploit the description of the
`-torsion and the characteristic polynomial of the Frobenius.

Assume you have a point (x, y) of order `. Then we know that

ϕ2
q(x, y) + q · (x, y) = t · ϕq(x, y).

Actually, we can compute all ingredients of this equation but t. And the equation determines t
modulo the order ` of (x, y). Well, this is it: take a point of order ` compute ϕ2

q(x, y)+q ·(x, y)
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and ϕq(x, y) and determine t mod ` by any discrete log algorithm. Do this for various `
whose product exceeds 4

√
q, the information gathered then determines t and so we have

#E(Fq) = q + 1− t.
This could be the entire story. However, there are a few details to be resolved. First: it

may happen that we do not have a point of order `, in particular, such a point most of the
time does not exist in E(Fq). So we would have to work in an extension. But even then, a
point of order ` still had to be found. Instead, we work in the ring extension

R = Fq[x, y]/
〈
ψ`(x),−y2 + x3 + ax+ b

〉
.

Any order ` point has coordinates in this ring. However, we have to be careful not to overuse
this. One problem is that this is only a ring, another that the degree of ψ` is roughly
1
2`

2. This is polynomial in ` but large: a single multiplication in R will cost around O
(
`4
)
.

Actually, we translate everything ‘down to earth’ and just work with univariate polynomials,
usually reduced modulo ψ`. So let’s do it.

First, choose a set S of primes such that
∏
`∈S ` > 4

√
q. Make sure that maxS is small:

we need maxS ∈ O (log q). We could simply take the smallest primes, that would guarantee
this. Even, if you leave out about half of the primes this still is fine. Actually, we do want to
skip at least the characteristic. Now, it suffices to determine t mod ` for ` ∈ S and use the
Chinese Remainder theorem to determine t mod

∏
`∈S `. This determines t ∈ [−2√q, 2√q].

Case ` = 2. In order to determine t mod 2 we only need to determine whether there is a
point of order 2. This is the same as checking whether x3 + ax + b has a zero in Fq. To
do that we determine h := gcd(xq − x, x3 + ax + b). This could be done by the Euclidean
algorithm. However, the runtime will be O∼ (q) which is intolerable. To remedy this we first
compute xq := xq mod x3 + ax+ b. By square-and-multiply this needs only O (log q) steps,
each of which can be performed in time O

(
log2 q

)
(or better). Then running the Euclidean

algorithm to compute h := gcd(xq − x, x3 + ax+ b) is fast. If h = 1 then there is no point of
order 2 and #E(Fq) is odd, if h has degree 1 then there is exactly one point of order 2 and
#E(Fq) is divisible by 2 (and the Fq-rational 2-torsion is isomorphic to Z2), if h has degree
3 then there are three points of order 2 and #E(Fq) is a multiple of 4 (and the Fq-rational
2-torsion is isomorphic to Z2 ⊕ Z2).

Case ` odd, ` 6= p Recall that for odd ` the division polynomial ψ` is a polynomial in x
after inserting a and b and reducing modulo −y2 + x3 + ax + b. Further, they characterize
the (finite) `-torsion points:

(x, y) ∈ E[`] ⇐⇒ ψ`(x) = 0.

Now, we consider the characteristic polynomial of the Frobenius applied to a (symbolic)
`-torsion point (x, y):

ϕ2
q(x, y) + q · (x, y) = t · ϕq(x, y).

We first compute the left hand side and ϕq(x, y). For the left hand side, note that since (x, y)

is an `-torsion point we can reduce q modulo `: q` := q rem `. So compute ϕ2
q(x, y) = (xq

2

, yq
2

)
reduced modulo ψ`. Next, use the division polynomials to compute q` ·(x, y) reduced modulo
ψ`. Then we have to add these two. This leads to three different cases:

1. The x-coordinates differ and we use the generic addition formula.
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2. We have ϕ2
q(x, y) = q · (x, y), and thus we have to use the doubling formula.

3. We have ϕ2
q(x, y) = −q · (x, y), and so the left hand side turns out to be O.

You may want to defer the computation of the y-coordinate until it is really needed.

Case 1: The left hand side is non-zero and we can already say that t 6≡` 0. Denote the
left hand side with (x′, y′) and let (xj , yj) := j ·(x, y) with xj , yj polynomials reduced modulo
ψ` and the curve equation, computed from the division polynomials. The x-coordinate of
the left hand side then is [—to do—]

2.15. Parametrizations do not exist. The following result will be needed later to prove
that the Picard group is isomorphic to the curve. But also in his own right this is an
interesting result. Whenever we describe algebraic objects we have two options: first, we can
always write down some equations, well, not explicit in every case but at least in principle,
and, second, we can parametrize all or most points in question. For an elliptic curve, the
second option is none, at least when we restrict ourselves to quolynomial functions.

Lemma 2.40. Consider an elliptic curve E : y2 = x3 + ax+ b over a field k (of characteristic
different from 2). Assume X,Y ∈ k(t) are quolynomial functions in t such that Y 2 =
X3 + aX + b. Then X and Y are both constant.

Proof. Write x3 + ax + b = (x − e0)(x − e1)(x − e2) with e0, e1, e2 ∈ k. Since the curve
is smooth, the ei are distinct. Write

X =
Xn

Xd
, Y =

Yn
Yd
,

with Xn, Xd, Yn, Yd ∈ k[t] are polynomials, Xn, Xd coprime and Yn, Yd coprime. The relation
for X , Y yields the following equation of polynomials in k[t]:

Y 2
nX

3
d = Y 2

d

(
X3
n + aXnX

2
d + bX3

d

)
.

We will conclude from this equation that the four polynomials Xd, Xn − e0Xd, Xn − e1Xd

and Xn − e2Xd are squares in k[t].
Since Yn and Yd are coprime X3

d must be a multiple of Y 2
d . Moreover, Xd and X3

n +
aXnX

2
d + bX3

d are also coprime, since Xd and Xn are corpime. Thus also Y 2
d must be a

multiple of X3
d . Rescaling Xn, Xd, Yn, Yd we may assume that

X3
d = Y 2

d ,

Y 2
n = X3

n + aXnXd + bX3
d

= (Xn − e0Xd) (Xn − e1Xd) (Xn − e2Xd) .

ThusXd must be a square. Moreover, the factorsXn−eiXd are pairwise coprime: Otherwise,
ifXn−eiXd andXn−ejXd have a common root, then also ej (Xn − eiXd)−ei (Xn − ejXd) =
(ej − ei)Xn and (Xn − eiXd)− (Xn − ejXd) = (ej − ei)Xd have this root contradicting the
assumption that Xn and Xd are coprime. Consequently, each factor Xn − eiXd must be a
square.

That is too much unless Xn and Xd are constant as Lemma 2.41 shows. Well, now X is
constant and by the original equation then also Y is constant and we are done. �
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Lemma 2.41. Assume P1 and P2 are coprime polynomials in k[t], and there are four pairs

(ai, bi) ∈ k
2

such that

◦ any two pairs (ai, bi) are linearly independent in k
2
,

◦ each polynomial aiP1 + biP2 is a square.

Then P and Q are constant polynomials.

Proof. Assume to the contrary that P1, P2 are a minimal counterexample with respect to
max (degP1, degP2). In particular, max (degP1, degP2) > 0 and there are no polynomials
of smaller maximal degree such that the four linear combinations are squares. Next, the
assumption that P1, P2 are coprime implies that they are k-linearly independent. Further,
by assumption we can write

aiP1 + biP2 = R2
i(2.42)

for some Ri ∈ k[t]. Then Ri cannot have a common root with Rj for i 6= j since otherwise
P1 and P2 would have a common root. Also, Ri cannot be a multiple of Rj since otherwise
P1 and P2 would be linearly dependent.

By assumption (a1, b1) and (a2, b2) are a basis of k
2

and so we can write (a3, b3) and
(a4, b4) as linear combinations of them. Combining with (2.42) we find constants c1, c2, d1, d2 ∈
k such that

R2
3 = c21R

2
1 − d21R2

2 = (c1R1 − d1R2) (c1R1 + d1R2) ,

R2
4 = c22R

2
1 − d22R2

2 = (c2R1 − d2R2) (c2R1 + d2R2) .

Now, it suffices to prove that

1. for i ∈ {1, 2} the factors ciR1± diR2 occuring on the right hand sides are coprime and

2. each two of the four vectors (ci,±di) are linearly independent.

Because then each of the four must be a square. Moreover, 2max(degR1, degR2) is at
most max(degP1, degP2). Either this contradicts our assumption that P1, P2 is a minimal

counterexample or R1, R2 are both constant. In the latter case, also P1 and P2 are constant
since (a1, b1) and (a2, b2) are linearly independent. But this contradicts our assumption that
max(degP1, degP2) > 0. Thus this assumption must be wrong and there are no nonconstant
polynomials fulfulling the conditions of the lemma.

So it remains to prove the two claims. Ad 1: If ciR1±diR2 had a common root then also
R1 and R2, both expressable as linear combinations of the factors, would have a common
root, but that is not the case as we already observed. Ad 2: If (c21, d

2
1) is a constant multiple

of (c22, d
2
2) then R3 would be a constant multiple of R4. This is not the case and so we infer

that (c1,±d1) and (c2,±d2) are linearly independent (which, in this low-dimensional case,
means that neither is a multiple of the other). Also, both c1 and d1 must be non-zero since
otherwise R3 would be a multiple of R1 or R2. This shows that (c1, d1) and (c1,−d1) are
linearly independent.

This proves all claims. �
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2.16. Orders, divisors and pairings. So far we have only briefly considered functions
on an elliptic curve. As with morphism the first question is: which functions do we want
to consider? It is evident that we want to stick to functions described by polynomials or
quolynomials. However, as before we have to be a bit careful. A function f on an elliptic
curve E shall be an algebraic morphism on an open subset. Concretely: any quolynomial on
P2(k) that is defined on an open subset of E induces a function f on E.

If you consider a quolynomial f on the line C then we can ask for its zeroes and poles.

For example, f = x(x−3)3

(x−2)2 has a single zero at 0, a triple zero at 3 and a double pole at 2. So

far, there is nothing miraculous. Now turn the question upside down: say, I need a function
g with a five-tuple zero at 5 and a double pole at 2. Does there exist one? Is it unique? The

answers are easy: yes, there is one: g = 17(x−5)5

(x−2)2 . Of course, instead of 17 you could put any

other non-zero number. In other words: it is not unique. However, up to that scalar it is
unique, any other solution ĝ is merely a non-zero multiple of g.

So it seems we understood this. But what about other curves? The simplest next object
is the projective line P1C. Again, any quolynomial defines a function, and for example the
above f has a single zero at 1, a triple zero at 3 and a double pole at 2, as before, and
additionally a double pole at ∞. Wait— what’s there at infinity? The problem is that we
do not really see how the function looks there. Only if we change the view point, we can

see that: replacing x = 1/y we find f = 1(1−3y)3

(1−2y)2y2 . This new expression tells the same story

at all points given by x 6= 0. Well, y = 1/x is just another name for the same location.
With the x-description we can see what happens at 0 and any location in C \ {0}, with
the y-description we can see what happens at ∞ and any location in C \ {0}. Now, y = 0
corresponds to the point at infinity. And there f has a double pole. Next issue: can we find
a function g on P1C with a five-tuple zero at 5 and a double pole at 2. Well, already over

C we had only one choice up to scalar: g = 17(x−5)5

(x−2)2 . So how does that behave at infinity?

With the same substitution as before we get g = 17(1−4y)4

(1−2y)2y2 . This has a double pole at infinity,

regardless of the scalar. But we did not want another pole, so there is no solution. Actually,
it is easy to see that whenever we consider a quolynomial h given as a quotient h = f/g of
polynomials f , g, then h has zeroes where f vanishes and poles where g vanishes. And there
is a (deg g − deg f)-fold zero or a (deg f − deg g)-fold pole at infinity: substituting gives

h =
ydeg ff |x=1/y

ydeg gg|x=1/y
ydeg g−deg f

where we spend enough factors to make numerator and denominator polynomials again. Well,
as you certainly know f has deg f many zeros provided you count them with multiplicities.
Thus h has deg f zeros and deg g poles different from ∞ and ∞ is a zero with multiplicity
deg g − deg f . It seems that we should consider a pole as a zero with negative multiplicity.
If we do so then the multiplicities now add up to zero: deg f − deg g + (deg g − deg f) = 0.

Actually, we want to do all that stuff over an elliptic curve. The easy part is which
functions we should start with: we simply take all those functions that are given by some
quolynomial in two variables x, y which can be evaluated at least one curve point and only
evaluate this at the points of the curve. In particular, 1

−y2+x3+ax+b does not define a function.

There a further non-immediate problem. Consider the curve E : y2 = x3 − x over any field
k, and the function given as f = x

y . We can immediately see that it can be evaluated at

all finite curve points (x, y) with y 6= 0. We do not see how it behaves at infinity but that
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happened already over P1C. But (0, 0) is a point of the curve. And here numerator and
denominator of f vanish. So what? Well, rewriting the curve equation gives

f =
x

y
=

y

x2 − 1
.

Recall that we are only interested in values on the curve. Now, it is obvious that f has
a zero at (0, 0) since the numerator of the new description vanishes and the denominator
does not. This problem, namely that a quolynomials numerator and denominator vanish
simultaneously, can always be repaired in such a way. Let (x, y) be a curve point and f a
quolynomial. Then one can prove that numerator or denominator do not vanish at (x, y), or
we can rewrite f using the curve equation such that this is the case. We can thus regard a
function as having values in k∪{∞}. To evaluate f simply plug in the point coordinates into
numerator and denominator. If the denominator does not vanish, just divide. Otherwise,
if the numerator does not vanish call the value ∞. In the remaining case, namely both
denominator and numerator vanish, rewrite the function. . .

Let’s ease our life by introducing some concepts.

Definition 2.43. Let E be an elliptic curve. The divisor group Div(E) is the free abelian
group generated by symbols [P ] for the points P of E, and its elements are called divisors.
In other words, a divisor is a finite linear combination

D =
∑

j

aj [Pj ]

with aj ∈ Z. Further we define the degree of a divisor D by degD =
∑

j aj ∈ Z, and the sum

of a divisor D is sumD =
∑
j ajPj ∈ E. The degree-0 divisors form a subgroup Div0(E) of

the divisor group.

Noting that sum([P ] − [O]) = P we obtain that sum : Div0(E) → E is a surjective homo-
morphism. The kernel of this map is also interesting as you will see soon.

Consider a function f on E. The function f has a zero at a point P of the curve if
f(P ) = 0, and a pole if f(P ) = ∞. To get more detailed information we have to describe
f like we do with polynomials: a polynomial g has a k-fold zero at a if g = (x − a)kh for
some polynomial h which does not vanish. This concept can be carried over to functions
on a curve. However, it is not clear how to replace x − a as that is a specific polynomial
depending on a somehow. Actually, we could also have taken 3(x− a) instead. . . It is thus
not so clear how to specify the role of x− a in a form that we can generalize to curves. Well,
the following fact solves that point:

Fact 2.44. Let E be an elliptic curve, and P ∈ E some point. Then there exists a uni-
formizer uP at P such that for every function f on E there exists an integer r ∈ Z and a
function g such that

f = (uP )
rg, and g(P ) 6= 0,∞.

Moreover, the integer r is uniquely defined by this requirement (regardless of the used uni-
formizer). We define ordP f := r.
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Notice that this fits to the following wanted property: if f = f1f2 and both f1 and f2 vanish
at P , then we should find an at least double zero for f at P . Following that thought a
uniformizer at P is a function that has a zero at P but cannot be written as a product of
two functions having a zero at P , so it is indecomposable in this sense. In other words, the
order r is just the maximal number of factors vanishing at P that can occur in a factorization
of f that has only factors defined at P . [If f has a pole at P then r will be negative.] Also
we observe that the order is multiplicative:

Lemma 2.45. Given functions f1, f2 on a curve E and a point P ∈ E, we have ordP (f1f2) =
ordP f1 · ordP f2. �

Let’s consider an example: on the curve E : y2 = x3 − x we take the function f = x and
the point P = (0, 0). Clearly, f has a zero at P . However, the line x = 0 is a tangent at the
curve which we may take as a hint for a double zero. And indeed the curve equation implies

f = x = y2
1

x2 − 1
.

As y also vanishes at P , f has a at least double zero. Since actually y is a unifomizer at
P the function f actually has exactly a double zero at P . Consequently, ordP x = 2 and
ordP

x
y = 1.

Claim 2.46. At any finite point P of an elliptic curve, the uniformizer uP can be taken from
the equation of a line that passes through P but is not tangent to E.

Consequently, we can take the vertical line uP = x − x0 for any finite point P = (x0, y0)
with y0 6= 0, and the horizontal line uP = y if y0 = 0. For the point at infinity, we may
take uO = x

y : In projective coordinates y2z = x3 + ax2z + bz3 and uO = x
y . Specializing to

the chart given by y = 1 we find z = x3 + ax2z + bz3. The tangent at O is now given by
z = 0. However, the given uniformizer uP = x is the function from the line x = 0 which is
not tangent at O.

Definition 2.47. For a non-zero function f on an elliptic curve E we define the divisor of
f by

div(f) :=
∑

P∈E

ordP (f) · [P ] ∈ Div(E).

Any divisor of this form is called a principal divisor.

Note that the given sum is always a finite sum:

Proposition 2.48. Let E be an elliptic curve and f a non-zero function on E. Then

(i) f has only finitely many zeros and poles.

(ii) We have deg(div(f)) = 0.

(iii) If f has no zeros or poles, ie. div(f) = 0, then f is a constant.
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Actually, this proposition holds for any smooth, irreducible, projective curve. In particular, it
holds for the curve P1C that we discussed above. However, the affine line C is not projective
and (ii) does not hold. And on a non-irreducible curve (iii) may be wrong: on (y−x)(y+x) = 0
the function f = x

y has divisor 0. [Clearly, x has a single zero at the only critical point

P = (0, 0) and also y has a single zero there. By Lemma 2.45 the degree of f at P must be
zero and so its divisor vanishes.]

Consider the simplest possible function: a line f = ax + by + c. [By abuse of language
we also call the function ‘line’, though strictly speaking the line is given by the solutions of
f = 0.] Say, it passes through the points P1, P2, P3 ∈ E. If b 6= 0 then the line does not pass
through O and f has a triple pole there. We obtain

div(ax+ by + c) = [P1] + [P2] + [P3]− 3[O].

If b = 0 then the line passes through, say, P3 = (x3, y3), −P3 = (x3,−y3) and O and we find

div(x − x3) = [P3] + [−P3]− 2[O].

Consequently, rewriting P3 = P1 + P2,

div

(
ax+ by + c

x− x3

)
= [P1] + [P2]− [P1 + P2]− [O],(2.49)

or

[P1] + [P2] = [P1 + P2] + [O] + div

(
ax+ by + c

x− x3

)
.

This is related to the question which divisors are principal, ie. are divisors of a function.
Since we can choose the line through any two given points P1, P2 ∈ E we can replace a
divisor [P1] + [P2] with [P1 + P2] + [O] plus the divisor of some function g.

Theorem 2.50. Consider an elliptic curve E and a divisor D. Then

∃f : D = div(f)

iff
sum(D) = O and deg(D) = 0.

Before we enter the proof let us interpret what we obtain. Namely, we now get another
proof of the associativity. Note that the sum operator maps divisors to points of the curve E,
and sum(D1 +D2) = sumD1 + sumD2. The theorem tells us important information about
its kernel and even more. Let Div0(E) be the group of divisors of degree zero and Princ(E)
be the group of divisors given by functions.

Corollary 2.51. The map

sum : Div0(E)/Princ(E) −→ E(k)

is an isomorphism of groups.

Proof. The map sum : Div0(E → E(k) is surjective since sum([P ]− [O]) = P . Its kernel
are precisely the principal divisors as Theorem 2.50 tells us. �
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The surprise here actually is that this proof is valid even if we do not know that the
operation of E(k) is associative. In other words, [—to do—].

Proof (Theorem 2.50). We start with a few preliminary observations. First note that the
above for any two given points P1, P2 ∈ E yields a function g with

div(g) = [P1] + [P2]− [P1 + P2]− [O].

This allows us to replace [P1]+[P2] in a divisor by [P1+P2]+[O]+div(g). Used iteratively we
can shrink to almost nothing. Before executing this note that the sum of g’s divisor actually
is O: sum(div(g)) = P1 + P2 − (P1 + P2) − O = O. Now let’s do the announce induction.
Assume D is a divisor, say D =

∑
aj [Pj ]. Replace iteratively the sum of all points with

positive sign with
[∑

aj>0 ajPj

]
−z1[O]+div(h1) and the sum of all points with negative sign

with −
[∑

aj<0−ajPj
]
+z2[O]−div(h2). Therein h1 and h2 are products of functions g, and

so clearly fulfill sum(hi) = O. Combining this we find D = [P ]− [Q] + z[O] + div(h) where
z = −z1 + z2, h = h1

h2
. Since we know by Proposition 2.48(ii) that deg devh = 0 we find that

degD = 1− 1+ z+0 = z. Further, by construction sum divh = sum divh1− sumdivh2 = O
and thus sumD = P −Q. We arrive at the following: given any divisor D on E there exists
a function h (with sum divh = O) and points P,Q ∈ E such that

◦ D = [P ]− [Q] + z[O] + div(h),

◦ sumD = P −Q, degD = z.

Now, assume that sum(D) = O and deg(D) = 0. Then we find that P = Q and z = 0,
and consequently D = div(h) for some function h.

Conversely, assume D = div(f). Then again by Proposition 2.48(ii) that degD = 0. And
by the previous we find that D = [P ] − [Q] + div(h) with sum divh = O and consequently
[P ]− [Q] = div(fh−1). The following Lemma 2.53 proves that then P = Q and so sumD =
P −Q = O. �

This proof actually gives a way for finding a function with a given divisor.

Exercise 2.52. Consider the elliptic curve E : y2 = x3 + 4x over F11. Find a function with
divisor

D = [(0, 0)] + [(2, 4)] + [(4, 5)] + [(6, 3)]− 4[O].

Lemma 2.53. Let P,Q ∈ E(k) and there is a function h on E with [P ]− [Q] = div(h). Then

P = Q.

The proof of this lemma either requires the Theorem of Riemann-Roch or a trick plus
the parametrization impossibility from Lemma 2.40.

Proof. Suppose P 6= Q and [P ]− [Q] = div(h). This means that h has a pole at Q and so
also h− c also has a pole at Q for any constant c ∈ k. By Proposition 2.48(ii) the function
h− c must have exactly one single zero and no other poles or zeros. We now show that every
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function on E is a rational function of h. This will turn out to be impossible and so proof
that our assumptions cannot hold, ie. the lemma is proved.

So take any function f on E. First, assume that f has neither a zero nor a pole at Q.
Consider

g :=
∏

R∈E(k)

(h− h(R))ordR(f).

By the above remark div(h−h(R)) = [R]−[Q] and so div(g) =
∑

R∈E(k) ordR(f) ([R]− [Q]) =

div(f) − deg(f) · [Q] = div(f). Thus the divisor of g/f is zero and by Proposition 2.48(iii)
f = c · g. Observe that g is a rational expression of h, f is a rational function of h.

In the general case f̂ := hordQ f · f has order 0 at Q and so the previous case applies and
f̂ is a rational function of h. Since f = h− ordQ f f̂ , this proves that f is a rational function
of h.

In particular, x and y are rational functions of h. In other words: there is a way to
parametrize a part of the elliptic curve with rational functions. But that is impossible as
Lemma 2.40 shows. �

2.17. Pairings.

2.17.1. The Weil pairing. Our next goal is the construction of the Weil pairing including
a complete proof for its properties as listed in Theorem 2.27. We consider an elliptic curve
E over a field k and an integer n coprime to the characteristic of k. We want to construct a
pairing

en : E[n]× E[n] −→ µn.

Actually, there are two equivalent constructions, both of which will be of importance to us.

2.17.2. Classical construction. We want to construct en(S, T ) for two n-torsion points
S, T ∈ E[n]. First, we find a function gT on E with

div(gT ) = D̃ :=
∑

nT ′′=T

[T ′′]−
∑

nR=O

[R].(2.54)

As we can verify that deg(D̃) = 0 and sum(D̃) = O such a function does exists by The-
orem 2.50. To that end note that SD̃ := {T ′′ ∈ E nT ′′ = T } = {T ′ +R R ∈ E[n]} if T ′

is a point with nT ′ = T . [If nT ′′ = T then n(T ′′ − T ′) = O and T ′′ = T ′ + R with
R = T ′′ − T ′ ∈ E[n]. Conversely, n(T ′ + R) = nT ′ +O = T .] Using #E[n] = n2 we obtain

sum(D̃) =
∑

R∈E[n] (T
′ +R−R) = n2T ′ = nT = O.

Similarly, we can find a function fT on E such that

div(fT ) = nD, D = [T ]− [O].(2.55)

Noting that deg(nD) = 0 and sum(nD) = nT = O Theorem 2.50 implies the existence of fT .
The reason for considering fT is that this yields a second description of gT . The function
fT ◦ [n] has an n-fold zero at every point T ′′ that maps to T under the scalar multiplication
[n] and an n-fold pole at every point R that maps to O under [n]. So we find that

div (fT ◦ [n]) =
∑

nT ′′=T

n[T ′′]−
∑

nR=O

n[R]

= div (gnT ) .
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By Proposition 2.48(iii) this implies that fT ◦ [n] and gnT are scalar multiples of each other.
Rescaling fT we may assume that

fT ◦ [n] = gnT .

Now take any point P ∈ E(k) where gT does not vanish. Then

gT (S + P )n = fT (n(S + P )) = fT (nP ) = gT (P )
n.

This implies that
gT (S + P )

gT (P )
∈ µn.

Thus the (apart at its poles) continuous function P 7→ gT (S+P )
gT (P ) landing in a finite set must

be constant since E is connected. This proves that the definition

en(S, T ) =
gT (S + P )

gT (P )
(2.56)

is independent of P . (We only need that nP 6= T and nP 6= O to ensure that gT (P ) is
neither zero nor a pole.) Further, since gT is determined up to a scalar that cancels, this
definition is also independent of the choice of gT . Now we can prove Theorem 2.27:

Theorem 2.57 (Weil pairing). Let E be an elliptic curve defined over a field k and let n be
a positive integer coprime to the characteristic of k. Then the Weil pairing

en : E[n]× E[n] −→ µn

satisfies the following properties.

(i) en is bilinear, that is, for all S, S1, S2, T, T1, T2 ∈ E[n]

en(S1 + S2, T ) = en(S1, T ) · en(S2, T ),

en(S, T1 + T2) = en(S, T1) · en(S, T2).

(ii) en is non-degenerate, that is, for all T ∈ E[n]

∀S ∈ E[n] : en(S, T ) = 1 =⇒ T = O,
∀S ∈ E[n] : en(T, S) = 1 =⇒ T = O.

(iii) en is antisymmetric, that is, for all T

en(T, T ) = 1.

In particular, en(T, S) = en(S, T )
−1.

(iv) en is compatible with the Galois actions, that is, for every automorphism σ of k fixing
k (in particular, for a curve in Weierstraß form this means that σ(a) = a and σ(b) = b)
we have

en(σS, σT ) = σ(en(S, T )).
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(v) For every endomorphism α of E we have

en(α(S), α(T )) = en(S, T )
degα.

As we observed earlier it is enough for our purposes when we only prove (v) in case α is
separable.

Proof. (i): Linearity with respect to S is easy:

en(S1, T )en(S2, T ) =
gT (S1 + P )

gT (P )
· gT (S2 + S1 + P )

gT (S1 + P )

=
gT (S1 + S2 + P )

gT (P )
= en(S1 + S2, T )

provided P is chosen such that no zero or pole of gT is hit. Linearity with respect to T is a
bit more involved. Abbreviate T3 = T1 + T2 and recall the functions fTi

, gTi
defined above.

We constructed a function h such that div(h) = [T1] + [T2]− [T3]− [O]. By the choice of fTi

we obtain

div

(
fT1fT2

fT3

)
= div(fT1) + div(fT2)− div(fT3)

= n[T1] + n[T2]− n[T3]− n[O]
= n div(h) = div(hn).

By Proposition 2.48(iii) there is a constant c ∈ k× with

fT1fT2 = chnfT3 .

Since gnTi
= fTi

◦ [n] we obtain

gT1gT2 = d(h ◦ [n])gT3

for some d ∈ k× with dn = c. Observe that h(n(S + P )) = h(nP ) since nS = O. Now,

en(S, T1)en(S, T2) =
gT1(S + P )

gT2(P )
· gT2(S + P )

gT2(P )

=
gT3(S + P )

gT3(P )
· h(n(S + P ))

h(nP )

= en(S, T3).

This completes the linearity.
(ii): The complex picture suggests the here-needed following

Claim. Assume g is a function on E with g(P + S) = g(P ) for any P ∈ E and S ∈ E[n], in
other words, g is E[n]-periodic. Then there is a function h such that g = h ◦ [n].

To prove non-degeneracy in T assume en(S, T ) = 0 for all S. By construction we have
gT (P+S) = gT (P ) for all P ∈ E and S ∈ E[n]. Thus by the previous we find a function h such
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that gT = h◦ [n]. From the construction, we also have fT ◦ [n] = gnT . Now fT ◦ [n] = (h◦ [n])n
and since [n] is surjective this implies fT = hn. Now consider the corresponding divisor:

n div(h) = divhn = div f = n([T ]− [O]).

Thus the divisor of h must be [T ]− [O]. But that implies T = O by Lemma 2.53.
Non-degeneracy in S follows with (iii). [Watch that proof carefully concerning usage of

this part.]
Proof of the claim: [—to do—]
(iii): [—to do—]
(iv): [—to do—]
(v): [—to do—] �

2.17.3. Tate pairing. [—to do—]

2.17.4. Symmetrical construction. There is a much more symmetrical way to construct
the Weil pairing. This also leads to a much better handable algorithmic description.

Theorem 2.58. Let S, T ∈ E[n] and DS , DT ∈ Div0(E) with disjoint support such that

sum(DS) = S, sum(DT ) = T.

Further let fS and fT be functions on E such that

div(fS) = nDS , div(fT ) = nDT .

Then the Weil pairing is given by

en(S, T ) =
fT (DS)

fS(DT )
,

where evaluation of a function f at a divisor
∑
aP [P ] is defined by f(

∑
aP [P ]) =

∏
f(P )aP .

If we choose DS = [S]− [O] and DT = [T +R]− [R] for some arbitrary point R such that
the divisors have disjoint support, then Theorem 2.58 tells us that

en(S, T ) =
fS(R)fT (S)

fS(T +R)fT (O)
.

Now, to compute that value we only need to compute fT (S)
fT (O) and fS(R)

fS(T+R) where div fS =

n[S]− n[O] and div fT = n[T +R]− n[R].
Actually, this is motivated by the Tate-Lichtenbaum pairing which is given by

〈S, T 〉n = fS(DT ) ·
(
F×
q

)n ∈ F×
q /
(
F×
q

)n
,

or the reduced Tate-Lichtenbaum pairing

τn(S, T ) = 〈S, T 〉
qk−1

n
n ∈ µn

for S ∈ E(Fq)[n] and T ∈ E(Fq)/nE(Fq). Igoring a few details we have

en(S, T ) =
〈T, S〉n
〈S, T 〉n
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2.17.5. Miller’s algorithm. Thus computing both types of pairing reduces to the follow-
ing

Task 2.59. Let P,Q ∈ E (possibly subject to additional conditions) and assume div fP =
n[P +R]−n[R] with R ∈ E such that the divisor of fP and the divisor [Q1]− [Q2]. Compute

fP (Q1)

fP (Q2)
.

We break this down by successively solving the following, slightly more complicated

Task(j) 2.60. Let P,Q ∈ E (possibly subject to additional conditions) and assume

div fj = Dj := j[P +R]− j[R]− [jP ] + [O]

with R ∈ E such that the divisor of fP and the divisor DQ = [Q1] − [Q2] with sum Q.
Compute

fj(Q1)

fj(Q2)
.

Assuming that Task(j) and Task(k) have been solved we want to derive a solution for
task j + k. Let ` = ax + by + c be the line through jP and kP , and let v = x + d be the
vertical line trough (j + k)P . Then by (2.49) we have

div

(
ax+ by + c

x+ d

)
= [jP ] + [kP ]− [(j + k)P ]− [O].

By assumption

div(fj) = j[P +R]− j[R]− [jP ] + [O],
div(fk) = k[P +R]− k[R]− [kP ] + [O].

Multiplying the functions we obtain

div

(
fjfk

ax+ by + c

x+ d

)
= (j + k)[P +R]− (j + k)[R]− [(j + k)P ] + [O].

This is Dj+k = div(fj+k) so that fj+k = γfjfk
ax+by+c
x+d for some constant γ, and

fj+k(Q1)

fj+k(Q2)
=
fj(Q1)

fj(Q2)
· fk(Q1)

fk(Q2)
·
ax+by+c
x+d

∣∣∣
(x,y)=Q1

ax+by+c
x+d

∣∣∣
(x,y)=Q2

(2.61)

now describes the value of fj+k at DQ. All we need are the values of fj and fk at DQ,
the points jP and kP . Performing the addition jP + kP gives the point (j + k)P and the
function ax+by+c

x+d , evaluating at DQ and then multiplying with the values of fj and fk at DQ

yields the desired value of fj+k at DQ along with the point (j + k)P .
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If now P ∈ E[n] then nP = O. Thus solving Task(n) yields with div(fn) = n[P + R]−
n[R]− [O] + [O] = div(fP ) the desired value

fP (Q1)

fP (Q2)
=
fn(Q1)

fn(Q2)
.

Notice that Task(0) is trivial: D0 = 0, so f0 = 1. Also Task(1) is easy: D0 = [P + R]−
[R] − [P ] + [O], so f1 = x+d

ax+by+c where ` = ax + by + c is the line through P and R and
v = x+ d is the vertical line through P +R. Thus

f1(Q1)

f1(Q2)
=

ax+by+c
x+d

∣∣∣
(x,y)=Q1

ax+by+c
x+d

∣∣∣
(x,y)=Q2

Miller’s algorithm now simply follows an addition chain for nP and performs point addi-
tion and point doublings along with multiplying the corresponding values of fj . If we simply
use add and double we obtain

Algorithm 2.62. Miller’s algorithm.

Input: Points P,R,Q1, Q2 ∈ E, the desired index n.

Output: The value fP (Q1)
fP (Q2)

where div fP = n[P +R]− n[R]− [nP ] + [O].

1. Compute P + R, the line ` = ax+ by + c through P and R, the vertical line v = x+ d

through P +R and let g ←
ax+by+c

x+d |(x,y)=Q1
ax+by+c

x+d |(x,y)=Q2

.

2. Let f ← g, J ← P , j ← 1.
3. Write n = (nr−1, . . . , n1, n0) in base 2.
4. For i = r − 2 down to 0 do 5–15
5. Let ` = ax+ by + c be the tangent at J .
6. S ← 2J .
7. Let v = x+ d be the vertical line through S.
8. Let f ← f2 · `v

∣∣
Q1
· v`
∣∣
Q2

.

9. J ← S, j ← 2j.
10. If ni = 1 then

11. Let ` = ax+ by + c be the line through J and P .
12. S ← J + P .
13. Let v = x+ d be the vertical line trough S.
14. Let f ← f · g · `v

∣∣
Q1
· v`
∣∣
Q2

.

15. J ← S, j ← j + 1.
16. Return f .

As a consequence computing a pairing is only a constant factor slower than a scalar multi-
plication by n.

2.17.6. Properties and proofs. [—to do—]

2.18. All so simple using Riemann-Roch. In this section we consider a smooth, irre-
ducible, projective curve C defined over a field k. The curve may be given as the roots of a
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polynomial in P2k, or as the set of common zeroes of several polynomials in Prk (provided
this set is one-dimentsional). We assume that C cannot be written as the union of two
smaller curves.

We can introduce functions and divisors on C as we did for elliptic curves, and Proposi-
tion 2.48 holds again. For two divisors Di =

∑
ai,P [P ] we define

D1 ≥ D2 :⇐⇒ ∀Pa1,P ≥ a2,P .
and consider the space of functions

L(D) := {f div(f) +D ≥ 0} ∪ {0}
whose divisor is at least −D, and its dimension `(D) := dimL(D). The requirement div(f)+
D ≥ 0 allows f to have poles where the coefficient in D is positive and requires zeroes where
the coefficient in D is negative. For example, if D = [P ]− 3[O] then the function is allowed
to have a triple pole at infinity, it must have a single zero at P and at all other places it may
have zeroes but never poles.

Next, we collect a few basic information about these spaces and their dimension.

Proposition 2.63. Let C be a smooth, irreducible, projective curver over a field k, and let
D, D1, D2 be divisors on C.

(i) If degD < 0 then L(D) = 0.

(ii) If D1, D2 only differ by a principal divisor then L(D1) is isomorphic to L(D2).

(iii) L(0) = k.

(iv) `(D) <∞. Moreover, `(D) ≤ `(D + [P ]) ≤ `(D) + 1.

(v) If degD = 0 then `(D) = 0 or `(D) = 1.

Proof. (i): Assume L(D) 6= 0. Then there is a non-zero function f with div(f) +D ≥ 0,
and so degD = deg div f + degD ≥ 0 due to Proposition 2.48(ii).

(ii): Write D1 = D2+div(g). Then L(D1)→ L(D2), f 7→ fg is the claimed isomorphism.
(iii): If div(f) ≥ 0 then f has no poles. By Proposition 2.48(ii) the degree of div(f) is

zero, and so f also has no zeroes. Thus Proposition 2.48(iii) proves that f is constant.
(iv): It suffices to prove that `(D + [P ]) − `(D) ∈ {0, 1}. Then the claim follows by

induction on degD+ (where D = D+−D− with D+, D− ≥ 0). Clearly, L(D) ⊆ L(D+ [P ]),
since this allows functions to have an additional pole at P . If the two spaces are different
then there exist g, h ∈ L(D + [P ]) \ L(D). Then ordP (g) = ordP (h) = − ordP D − 1 =: r.
[Since g is in L(D + [P ]) we have orgP g + ordP D + 1 ≥ 0. However, g is not in L(D) and
thus orgP g + ordP D 6≥ 0.] Let u be a uniformizer at P , and write

g = urĝ, h = urĥ

with c := ĝ(P ) 6= 0,∞ and d := ĥ(P ) 6= 0,∞. Now,

dg − ch = ur(dĝ − cĥ)

where (dĝ − cĥ)(P ) = 0. Thus, dg − ch has order greater than r at P and dg − ch ∈ L(D).
Thus g and h are linearly independent modulo L(D), and `(D + [P ])− `(D) ∈ {0, 1}.

(v): This follows from (iii) and (i) with the previous. �
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Now we are ready to formulate the famous

Theorem of Riemann-Roch 2.64. Let C be a smooth, irrducible, projective curve.
Then there exists an integer g, the genus of C, and a divisor K, a canonical divisor, such
that for all divisors D we have

`(D)− `(K−D) = deg(D)− g + 1. �

The canonical divisor is the divisor of a differential on C, it is unique up to principal divisors.
Well, we do not prove this here. Instead we consider a couple of consequences.

Corollary 2.65. deg(K) = 2g − 2.

Proof. Apply Theorem of Riemann-Roch 2.64 with D = 0 and D = K. With the help of
Proposition 2.63(iii) we get

1− `(K) = −g + 1,

`(K)− 1 = deg(K)− g + 1.

Adding gives the claim. �

Corollary 2.66. If deg(D) > 2g − 2 then `(D) = deg(D)− g + 1.

Proof. Obvious with deg(K − D) < 0, Proposition 2.63(i) and Theorem of Riemann-
Roch 2.64. �

Corollary 2.67. Let P , Q be points on C. If g ≥ 1 and [P ] − [Q] = div(f) for some
function f on C then P = Q.

Proof. Assume P 6= Q. The function fn has a pole of order n at Q. Functions with
different pole orders are linearly independent. Thus the set

{
1, f, f2, . . . , f2g−1

}

spans a subspace of L ((2g − 1)[Q]) of dimension 2g, thus ` ((2g − 1)[Q]) ≥ 2g. Applying
Corollary 2.66 yields ` ((2g − 1)[Q]) = (2g− 1)− g+1 = g. Together we obtain 2g ≤ g, that
is g ≤ 0 contradicting the assumptions. �
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