An Authentication Protocol with encrypted Biometric Data
based on Bringer et. Al. [1]
Content

- Motivation
- Biometric Authentication Protocol in general
- Components of encrypted Protocol
- Protocol with encrypted Biometric Data
- Security Analysis
- Summary
Motivation

- Enforce privacy of biometric data
- Obtain communication complexity; prevents eavesdropping
- Separation of biometric data and temporary data generated for authentication
Capturing of Biometric Data

[Image of eye]

[Image of hand]

[Image of digital interface]

[2]
Advantages & Disadvantages of Biometrics

Advantages [3]:
- Reduce password administration costs
- Replace hard-to-remember passwords which may be shared or observed
- Eliminate problems caused by lost IDs or forgotten passwords by using physiological attributes

Disadvantages [4]:
- Biometrics is an expensive security solution
- For people affected with diabetes, the eyes get affected resulting in differences
Normal biometric-based recognition scheme

enrollment phase
- User U register a biometric template
- Therefore he has to measure any biometric data of his choice
- Template is stored in a database

verification phase
- A new biometric template is measured from U
- Compared to stored data via matching function
- Decision is made, if accepted or not
Security Model

- **Soundness.** An authentication scheme is sound if:
 - The Service Provider accept a request if the client sends \((ID_i, b_i')\) in an authentication request, where \(b_i\) matches \(b_i'\) and \(b_i\) is the reference template of \(ID_i\).
 - Else reject.

- **Identity Privacy:**
 - For any random username, the adversary don‘t get to know anything about the corresponding biometric template
 - The adversary cannot find a link between registrations
Security Model

- **Transaction Anonymity:**
 - The database cannot distinguish an authentication request of user U_{i_0} with one from user U_{i_1}.
Goldwasser-Micali Scheme

- **Step 1 (Key generation):**
 - Security parameter 1^1 as input
 - Generate two large prime numbers p and q, $n = p \times q$
 - Also a non-residue x
 - Public key pk is (x,n)
 - Secret key sk is (p,q)

- **Step 2 (Encryption):**
 - Take a message $m \in \{0,1\}$ and pk as input
 - Output ciphertext c, where $c = y^2 x^m \mod n$ and y is random from \mathbb{Z}_n^*
Goldwasser-Micali Scheme

- **Step 3 (Decryption):**
 - Takes ciphertext c and private key as input
 - Output: message m
 - Where $m = 0$ if c is a quadratic residue
 - Otherwise $m = 1$

- **Definition quadratic residue [5]:**

 Let p be an odd prime. A number $a \subseteq \mathbb{Z}_p^*$ is a **quadratic residue** if the equation $x^2 = a \pmod{p}$ has a solution for the unknown x.
Encrypted Sketches

- **Problem**: biometric data of enrollment phase is stored in databases
- **Result**: anybody can check membership of biometric data in the DB
- **Idea**: encrypt the biometric data before it is stored in the database
Encrypted Sketches

- The Service Provider (SP) generates a Goldwasser-Micali key pair and publishes public key pk
- $[\ . \]$ denotes a related Encryption $Enc(. , pk)$

During enrollment:
- User U_i registers with his biometric template b_i at SP
- Then $P = SS_c(b_i) = c \oplus b_i$ is computed and $[P]$ is stored in the DB for a random codeword c
- $H(c)$ is stored by SP, H a cryptographic hash function
During authentication:

- A new biometric template b' is captured and sent to DB
- DB computes $[P] \times [b'] = [c \oplus b_i \oplus b'] = Z$
- Send Z to the SP
- SP decrypts Z with private key sk
- Decodes output $c \oplus b_i \oplus b'$ to obtain c'
- Finally it checks $H(c') = H(c)$
Lipmaa’s Protocol

- **Idea:** Decrease dimension of database S to construct a smaller database recursively till the last dimension.

Don’t send the whole index vector \((q_1, \ldots, q_\lambda)\).

Construct an index vector of dimension \(\lambda-1\) as encryption of the index vector of dimension \(\lambda\); repeat this \(\lambda\) times.

The \(\lambda\) times encryption of index vector \((q_1, \ldots, q_\lambda)\) is the answer to the request of the user.

Details in [1].
Lipmaa’s Protocol

- How the user recovers the requested element:
 - The user has to decrypt λ times the element that he has got from the database.
 - Finally he will get the original vector (q_1, \ldots, q_λ)
 - The requested biometric template

- Request Privacy is achieved through semantic security of Damgård-Jurik cryptosystem.
Achieving an Authentication Protocol with Encrypted Biometric Data

- Goldwasser-Micali Scheme
- Damgård-Jurik encryption
- Lipmaa’s Protocol
- Encrypted Sketches
- Authentication Protocol
Private Biometric Authentication Protocol with Secure Sketches

- **Parameters:**
 - M number of users in the database
 - Service Provider has two keys (pk_{GM}, sk_{GM}) and (pk_P, sk_P)
 - Encryption denoted as [.] for GM and [[.]] for P.
 - Public keys published and secret keys stored inside HSM
 - Database stores M encrypted sketches and the corresponding biometric templates for every User U_i
 - Database also possesses the hash values $H(c_i)$
 - Dimension for Lipmaa is $\lambda = 1$ (for simplification)
Verification Phase

Encrypted via GM

Client C

Send a request with the Paillier's ciphertexts

Service Provider (SP)

database

computes

\[[a_{i,u} \times [\pi_u (b')]] , \text{ for } u = 0, \ldots, l-1 \]

\[[a_{i,l}] , \ a_{i,l} = H(c_i) \text{ (cryptographic hash function)} \]
HSM decrypts:
1. Paillier algorithm
2. Goldwasser-Micali algorithm to recover $SS_c(b_i) \oplus b'$ and $H(c_i)$.

Further it decodes $SS_c(b_i) \oplus b'$ to obtain a codeword c' and checks if $H(c') = H(c_i)$ to accept or reject the authentication.
Lemma 1 (Soundness) [1]:

- The protocol is sound under Definition 1 if the involved Secure Sketch \((SS_C, Rec_C)\) is sound and if the PIR protocol is sound.

Rely on efficiency of secure sketches

- In this protocol, biometric data and sketches are always encrypted with a secure encryption scheme

An adversary cannot recover any template
Lemma 2 (Identity Privacy) [1]:

Our scheme achieves identity privacy against a malicious service provider or a malicious database under the semantic security of the Goldwasser-Micali scheme, i.e. under the QR assumption.

It ensures identity privacy against non-colluding malicious service provider or database and any external adversary.
Transaction Anonymity (TA)
- There is no TA against the service provider because it can learn $H(c_i)$ for a request of User U_i
- So you can track a specific user request in the future

Countermeasure:
- Renew regularly enrolled data
 - Encrypted sketch
 - Corresponding hash value
Summary

- This protocol achieves biometric authentication while keeping the privacy of users.

- During all computations, you deal with encrypted biometric data.

- It is possible to integrate it into one of the best Private Information Retrieval scheme (Lipmaa).

- Lipmaa reduces also the communication complexity to $O(\log^2 M)$.

- One disadvantage:
 - Encryption of Goldwasser-Micali is done bit by bit.
Thank you.
Sources

• [2]: http://www.die-friedenskrieger.de/pics/biometrie.jpg

• [4]: http://www.allpctips.com/technology/biometrics.htm

• [5]: http://highered.mcgraw-hill.com/sites/0070131511/student_view0/glossary_p-s.html