Secure Remote Authentication Using Biometric Data

Vanessa End

December 7, 2009
Structure

1. Introduction

2. Motivation and Basics
 - Problems
 - Secure Sketch and Fuzzy Extractor

3. Generic Scheme
 - Well-Formed Sketch and Robust Sketch
 - Robust Fuzzy Extractors
 - Application to Secure Authentication

4. Improved Solution
 - Construction
 - Correctness

5. Conclusion
Introduction

- show how to achieve mutual authentication and/or authenticated key exchange over completely insecure channel with underlying protocol (e.g. for authenticated key exchange)
- two constructions:
 1. generic solution, protecting against modification of public value through secure sketches and fuzzy extractors
 2. specific to remote authentication and key exchange with improvements to generic solution
- both solutions tolerate stronger class of errors (data-dependant errors), i.e. we no longer have the prerequisite, that the public value stays unharmed
Problems of biometric data

- not uniformly distributed
 - no provable security guarantees
 - problem can be addressed using hash function
- not exactly reproducible
 - this especially means that we need some kind of 'fuzzy' solution, as e.g. hash functions are no option
- former solutions:
 - Boyen et al mostly concentrate on *Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data* by Dodis et al where **secure sketches** and **fuzzy extractors** are used
Secure Sketch

A secure sketch makes it possible to recall a shared secret ω through ω' “close enough” to ω.

Definition

Let \mathcal{M} be a metric space with some metric d. Let t be the error-correction bound. A **secure sketch** is a pair of two procedures, a sketch and a recovery procedure, with:

- **SS** : $\mathcal{M} \rightarrow \{0, 1\}^* ; \omega \mapsto s$, where s is some string
- **Rec** : $\mathcal{M} \times \{0, 1\}^* \rightarrow \mathcal{M} ; (\omega', s) \mapsto \omega$ if $d(\omega, \omega') \leq t$
Secure Sketch and Fuzzy Extractor

Fuzzy Extractor

A fuzzy extractor corrects the non-uniformity of our biometric data by always extracting the same nearly uniform randomness R from two inputs similar enough.

Definition

Let \mathcal{M} be a metric space with some metric d. Let t be the error correction bound. A fuzzy extractor is a pair of two procedures, a generating and a reproduction procedure, with:

- **Gen**: $\mathcal{M} \rightarrow \{0, 1\}^{\ell} \times \{0, 1\}^* ; \omega \mapsto (R, \text{pub})$
- **Rep**: $\mathcal{M} \times \{0, 1\}^* \rightarrow \{0, 1\}^{\ell} ; (\omega', \text{pub}) \mapsto R$

if $d(\omega, \omega') \leq t$ and if $(R, \text{pub}) \leftarrow \text{Ext}(\omega)$
Dodis et al then construct their fuzzy extractor from a given secure sketch and a strong (nonfuzzy i.e $t = 0$) extractor: For the generation of (R, pub) they first apply the secure sketch $\text{SS}(\omega) = s$ and then an extractor with randomness x s.t. $\text{Ext}(\omega) = R$. (s, x) is then stored as pub.

![Diagram of the Fuzzy Extractor - Gen](image-url)
Construction of the Fuzzy Extractor - Rep

To reproduce R from ω' and pub, they first use $\text{Rec}(\omega', s) = \omega$ and then $\text{Ext}(\omega, x) = R$:
Problems of above Notion

- There is no guarantee of output of Rep or Rec in case $d(\omega, \omega') > t$
 - Solution: so called *well-formed* sketches
- pub is sent over insecure network, thus an adversary might modify pub in transit, without anyone knowing.
 - Solution: so called *robust sketches*
Idea of Well-Formed Sketch

- The **well-formed sketch** provides, that if \(d(\omega,\omega') > t \), the output cannot be \(\omega \) in any case, but rather will be \(\bot \).
- \((SS, Rec)\) is transformed into \((SS, Rec')\), where \(Rec' \) runs \(Rec \) and then verifies, that output \(\omega \) complies with \(d(\omega,\omega') \leq t \). If not the output of \(Rec' \) is \(\bot \).
Well-Formed Sketch and Robust Sketch

Idea of Robust Sketch

- Through the use of a robust sketch, there is a high possibility that the user is able to first detect a modification of pub and then abort in that case.
- In general, a robust sketch is a stronger version of a well-formed sketch complying with the following construction
Construction of Generic Robust Sketch

Let $H : \{0, 1\}^* \rightarrow \{0, 1\}^k$ be a hash function. A robust sketch (SS, Rec) is constructed from any well-formed sketch (SS^*, Rec^*) by

\[
\begin{align*}
SS(\omega) \\
\text{pub}^* \leftarrow SS^*(\omega) \\
h = H(\omega, \text{pub}^*) \\
\text{return pub} = (\text{pub}^*, h)
\end{align*}
\]

\[
\begin{align*}
Rec(\omega', \text{pub} = (\text{pub}^*, h)) \\
\omega' = Rec^*(\omega, \text{pub}^*) \\
\text{if } \omega' = \bot \text{ output } \bot \\
\text{if } H(\omega', \text{pub}^*) \neq h \text{ output } \bot \\
\text{otherwise, output } \omega'
\end{align*}
\]
Construction of Robust Fuzzy Extractor

Again the Robust Fuzzy Extractor is constructed, as above, through a robust sketch and a strong extractor. The only difference is, that it is needed to bind the hash function key to the sketch itself, making it a labeled robust sketch.
Initialization

For any secure protocol Π based on a uniformly distributed key, any robust fuzzy extractor (Ext, Rec) and any source W_0, the protocol Π' is constructed as follows:

Initialization User scans W_0 to retrieve ω_0 and computes $\text{Ext}(\omega_0) = (R, pub)$ and registers this at the server.
Execution

Protocol Execution User scans his fingerprint W_i to retrieve ω_i. The server sends pub to user, who computes $\hat{R} = \text{Ext}(\omega_i, \text{pub})$. If $\hat{R} = \perp$, the user aborts, else Π is executed by user (with \hat{R}) and server (with R).
Correctness

If the user obtains correct pub from server, then user and server will use same R in procedure Π, because then $d(\omega_0, \omega_i) \leq t$.
We assume an active adversary, controlling all messages sent between user and server. There are then two possible outcomes:

- The adversary tries to forward a message $\text{pub}' \neq \text{pub}$. These instances will then abort immediately except for a probability of at most ϵ.

- If the adversary forwards pub unchanged, the user and the server run Π. Even if the adversary succeeds in forwarding a changed pub', the protocol Π is assumed to be save and thus the adversary will not 'break in'
Improved Solution
Advantages of Improved Solution

- provably secure in the standard model
- improved bounds on the “effective entropy loss”, as there is no randomness extraction
Let Π be a password-only authenticated key exchange protocol and (SS, Rec) be a well-formed sketch. Construct Π' as follows:

User U scans ω_0 from W_0 and computes $SS(\omega_0) = \text{pub}$. U registers (ω_0, pub) at server S.
pub is sent to user. Then the server executes Π using the following:

- identity: $S \parallel \text{pub}$
- partner identity: $\text{pid}_S = U \parallel \text{pub}$.
- password: ω_0
Protocol Execution User

User retrieves ω_i and obtains $SS(\omega_i) = pub'$. With these he computes $Rec(\omega_i, pub') = \omega'$. If $\omega' = \bot$ he aborts, else he executes Π using the following:

- identity: $U \parallel pub'$
- partner identity: $pid_U = S \parallel pub'$
- password: ω'
Correctness

With no interference from adversary we have:

1. $\text{pid}_S = U \parallel \text{pub}$
2. $\text{pid}_U = S \parallel \text{pub}$
3. $\omega_0 = \omega'$
• the generic solution relies on random oracles, while the improved one doesn't

• but the generic solution is more efficient and simpler

• both have an underlying, presumably save protocol Π on which much of the security depends
The End