
Reductions in Number Theory:
Problems and Prospects

Eric Bach

University of Wisconsin
Computer Sciences Dept.

Madison, WI 53706

Some References:

Woll, Reductions Among Number Theoretic
Problems, Inform. Comput. 1987

Bach & Shallit, Factoring With Cyclotomic
Polynomials, Math. Comp. 1989

Galbraith & McKee, Pairings on Elliptic
Curves over Finite Commmutative Rings,
Proc. Cryptography and Coding 2005

Coron & May, Deterministic Polynomial Time
Equivalence of Computing the RSA Secret
Key and Factoring, J. Crypt. 2007

Bach & Charles, The Hardness of Computing
an Eigenform, Contemp. Math. 2008

Zralek, A Deterministic Version of Pollard’s
p − 1 Algorithm, Math. Comp. 2010

1

We Were Students Once ... and Young

What Happened in the 1970s?

P vs NP question

Can clever computation substitute for
lucky guessing?

Still open (almost 40 years!)

Academic cryptography research

Public key systems

Use of multiplicative number theory

2

Lessons From P vs NP

The master combinatorial problem is Boolean
satisfiability:

Can x ∨ (ȳ ∧ z) ∨ (x̄ ∧ z̄) = 0?

Thousands of problems equivalent to it

Is there a dichotomy (everything either in P or
NP-complete)?

No. If P 6= NP, there are NP-intermediate
problems (Ladner)

Some early NP-intermediate candidates
(primality, linear programming) are now
known to be in P.

What’s left?

Integer factorization

Graph isomorphism

No known connection between them

3

Problem Reductions

The key technical “glue” for NP-completeness
and related theories

A is “no harder than” B if we can use a
method for solving B to solve A

4

In a Reduction, What Counts as a Method?

Classically, an algorithm is a step by step
deterministic procedure for accomplishing
some task of a symbolic nature

Examples: addition, subtraction,
multiplication of decimal numbers

Is long division an algorithm? Not as
usually taught! (Guessing is required.)

We’ll ignore details of run times, only care if
poly time or not

Allows methods to be composed

Insensitive to machine model details

Number theorists have also included

Randomization

Name-brand heuristic assumptions (ERH,
ABC, BSD, ...)

Ad hoc assumptions (the obvious attack
on my new crypto system is “hard”)

Appeals to physical effects (e.g. quantum
computation) are interesting but not consid-
ered here

5

Problem Reductions B.C. (Before Computers)

Usually used to show a problem was “easy”

Completing the square:

ax2 + bx + c = 0 →
√

b2 − 4ac

Trig function integration:

∫

f(sinx, cosx)dx →
∫

g(z)dz,

magic substitution is z = tan(x/2).

Many more examples!

Arguments for “hardness” were not as
common

Gauss studied construction of regular n-
gons with compass and straightedge. We
can do n = 3 (equilateral triangle) but not
n = 9. Therefore, angle trisection is not
possible.

1950s: Undecidable problems from non-
logical mathematics, such as testing
whether two 4-manifolds have the same
shape.

6

Lessons From Cryptography

Complexity is Useful!

We can design systems with “hard” problems
embedded

Cryptographic methods based on algebra

Pseudo-random generators for specific
purposes (e.g. conditional proof that
BPP=P).

What about error-correcting codes,
computer algebra?

Reductions Point to System Weaknesses

Example: strong primes for RSA

The ideal RSA prime has none of p ± 1,
p2 ± p + 1, . . . smooth

In practice, a random key may be close
enough to ideal

Reductions Focus Attention on a Few Standard
Attacks

We lessen the number of unsolved problems

We concentrate our force at one place

7

The Master Problem of Elementary Number
Theory

Any n ≥ 1 is uniquely a product of primes:

n =
r

∏

i=1

pei

i

Want to do this quickly, given n in binary.

Bit length of n is about log2 n, so poly time is
O(log n)k bops, for some k.

The best deterministic algorithms are still
exponential: n1/4+o(1) (Pollard/Strassen).

Evidence that Factoring is NP-Intermediate

With randomization, one can achieve

exp
(

(log n)1/2+o(1)
)

Practical algorithms (number field sieve)
apparently have exponent 1/3.

The natural decision problem for factoring lies
in

NP ∩ co-NP.

8

Historically, Most Problems were “Solved” via
Factoring

Multiplicative orders of elements mod n

Finitely generated Abelian group structure

Number of divisors d(n)

Sum of divisors σ(n) and other moments

Many others!

Is factoring the “obstruction” to number theory,
as Boolean satisfiability is for combinatorial
problems?

Research Program: Develop a mini-version of NP-
completeness, centered on factoring and related
problems.

Early successes with classical problems and
reductions using randomization and/or ERH

Efforts toward derandomization and de-
hypothesization have progressed slowly

Recent work suggests a tie to modularity

9

Remainder of the Talk

Bringing Problems into the “Big Tent” of Factor-
ing

I. Embedded Factors

II. Equations in Rings

III. Modularity

IV. Deterministic Reductions

Any Other Tents to Visit?

Yes, but this is only a 40 minute talk

Other problems touched on as appropriate

10

I. Embedded Factors

Smarandache’s function (Parberry)

S(n) = min{m : n divides m!}.
Erdős: S(n) is the largest prime factor of n,
for almost all n.

This suggests it has same complexity as
factoring.

11

Reducing S to factoring

This is “maxiplicative”:

S(n) = max
pe||n

S(pe)

The local contribution is the smallest m with

νp(m!) ≥ e

Use

νp(m!) = ⌊m

p
⌋ + ⌊m

p2
⌋ + ⌊m

p3
⌋ + . . .

plus binary search.

Reducing factoring to S

For n > 4, we have 1 < S(n) < n, except for
prime n.

When m = S(n), the product m! has a prime
power that wasn’t in (m − 1)! .

So gcd(n, S(n)) > 1.

Example: S(25) = 10, and gcd(10, 25) = 5.

12

Features of Our Example Reduction

We actually split n, must repeat to get the whole
factorization

Different values of S are used, so this is a
Turing reduction

How many calls are needed?

Last step is a gcd computation (typical)

Euclid’s algorithm uses O(log n) division steps
(Lamé)

So this runs in poly time

No randomness or extra hypotheses needed

13

II. Equations in Rings

Let n = pq for simplicity. Then (CRT)

R := Z/nZ ∼= Fp ⊕ Fq

Finding “non-obvious” solutions to equations in R
is often equivalent to factoring.

Example 1: x2 − x = 0

Solutions are the idempotents of R

If x 6= 0, 1, then 1 < gcd(x, n) < n.

Example 2: x2 = 1

Solutions are order ≤ 2 elements of R∗.

If x 6= ±1, then gcd(x − 1, n) splits n.

This led to the idea of “pushing into subgroups”
(Pollard)

Suppose p − 1|E. If x ∈R Z/nZ∗,

y = xE = (xE
p , xE

q) = (1, z).

We hope that gcd(y − 1, n) splits n.

Possibility of z = 1 can be handled by
using E/2, E/4,

Application: hardness of Euler totient
ϕ(n) (RSA)

14

1980s: Replacing Fp by extension fields gave
proofs that many classical functions are as hard
as factoring:

Divisor sums σk(n) =
∑

d|n dk

Multiples of Φk(p) (cyclotomic polynomial)

Principal technical difficulty: Doing Frobenius
x 7→ xp without knowing p

But not all of them!

Number of divisors d(n)

Möbius function µ(n)

Not enough “information” to get a reduction
from factoring?

Best result so far (Shallit-Shamir): d(n) is
equally hard as finding the “shape” (list of
prime factorization exponents).

15

The Analog of #P: Counting Problems

Units

ϕ(n) = |Z/nZ∗| =
∏

pe||n

(p − 1)pe−1

Quadratic Residues

For odd n,

QR(n) := |(Z/nZ∗)2| =
∏

pe||n

p − 1

2
pe−1,

Presence of
Φ1(p) = p − 1

makes both problems as hard as factoring.

16

Modular Squares

Let

SQ(n) := |(Z/nZ)2| = #{y : y = x2}

For odd p, 2SQ(pe) is a polynomial in p
(Delcourte):

e = 1 p + 1
e = 2 p2 − p + 2
e = 3 p3 − p2 + p + 1

...

So SQ(n) contains the factor p + 1, unless
n is powerful.

Most numbers aren’t powerful (Golomb):

[# of powerful n ≤ x] ∼ ζ(3/2)

ζ(3)

√
x

So SQ is as hard as factoring, on almost
all n.

Extend to all n? We’d need to exploit shifted
cyclotomic polynomials Φk(p) + a.

17

General Principle: The “mod n” version of a “mod
p” problem is often as hard as factoring.

Some examples from the 1980s:

Size of Z/nZ∗

Solving ax = b in Z/nZ∗

Solving x2 = a mod n

Elliptic curve versions of these problems were
proved hard in the 1990s:

Size of En (Kunihiro-Koyama)

Discrete logarithm xP = Q on En (same)

Square roots 2X = P (Meyer-Müller)

Tate pairings on En (Galbraith-McKee)

What about nontrivial point construction?

For elliptic curves over finite fields, a de-
terministic method was found only recently
(Shallue-van de Woestijne)

Corresponding problem for Z/nZ∗ (find a
unit) is easy: try > log2 n primes.

18

III. Modularity

Modular forms: Complex functions satisfying
periodicity and growth requirements

Their power series coefficients often encode
arithmetic information

Example 1: Eisenstein series (the “interesting”
part)

Gk(X) =
∑

n≥1

σ2k−1(n)Xn

Coefficients are divisor sums, so hard to
compute.

Example 2: Ramanujan’s function τ(n), defined by

∆(X) := X
∏

m≥1

(1 − Xm)24 =
∑

n≥1

τ(n)Xn

The function ∆ is a weight 12, level 1 mod
form

19

Why is Tau as Hard as Factoring?

Mordell: τ(n) is multiplicative, has recurrence
relation at prime powers

To factor n = pq (RSA modulus),
compute

τ(n)2 = n11x2y2,

τ(n2) = n11(x2 − 1)(y2 − 1).

Solve quadratic equation to get x2, y2.
Then

x2 =
τ(p)2

p11
∈ Q2,

so in lowest terms νp(denom) is odd.

This factors all RSA moduli n if Lehmer’s
conjecture that τ(p) 6= 0 is true. Uncondi-
tionally, factors almost all of them.

Reduction extends to a large class of Hecke
operator eigenvalues.

Open: extend to all n

20

IV. Derandomization and De-hypothesization

Many reductions from factoring used randomness
and/or ERH. Can these be eliminated?

AKS: Prime testing is (unconditionally) in P. Does
this help?

Apparently not. We usually employ random-
ness to

Enhance reliability

Search for “useful” elements

AKS is engineered to eliminate all doubt
about primality, but does nothing else.

21

What Progress Has Been Made?

For the two-prime (RSA) case, many reductions
can be made deterministic

Euler totient ϕ(n) (exact)

n = pq, ϕ(n) = n − (p + q) + 1

Extract sum pq and product p + q, solve a
quadratic.

Divisor sums σk(n)

Use same idea, e.g. σ(n) = n + (p + q) + 1

RSA key analysis (recover d from (n, e))

(Coron-May): use LLL to obtain exact
ϕ(n)

Keys should be “textbook RSA”, e.g.
de < n.

Open: Extend Beyond Two Primes

22

What Deterministic Reductions are Known for
General n?

Bachmann (about 100 years ago) computed
the “derivative”

θ(n) =
∏

pe||n

pe−1

by evaluating ϕ several times.

If we know θ we can extract the maximal
squarefree divisor.

We can replace ϕ by the maximum
exponent λ (Landau)

Zralek:

Unconditional deterministic version of
Pollard’s p − 1 algorithm

With O(log n) calls to an oracle for ϕ(n),
we can factor n in time less than NFS
takes.

Subexponential reductions were used
earlier by Maurer and Wolf (for discrete
logs).

23

