Smoothed Analysis of Condition Numbers

Peter Bürgisser
Universität Paderborn

Jo60: A Modern Computer Algebraist
Celebrating the Research and Influence of Joachim von zur Gathen

Bonn, June 2010

Motivation

- Most common theoretical approach to understanding behaviour of algorithms: worst-case analysis.
- Sometimes algorithms perform well in practice and still have bad worst-case behaviour. Famous example: Dantzig's simplex algorithm.
- Average-case analysis tries to rectify this discrepancy: bound expected performance of an algorithm on random inputs. Average-case analyses for simplex algorithm: Borgwardt (1982) and Smale (1983).
- Disadvantage: strong dependence on unknown distribution of inputs.

Smoothed analysis

New form of analysis of algorithms, proposed by Spielman and Teng. Smoothed analysis of simplex algorithm (Gödel Prize 2008, Fulkerson Prize 2009).
Let $T: \mathbb{R}^{p} \rightarrow \mathbb{R}_{+} \cup\{\infty\}$ be a function (running time, condition number). Instead of showing
"It is unlikely that $T(a)$ will be large."
one shows that
"For all \bar{a} and all slight random perturbations $\bar{a}+\Delta a$, it is unlikely that $T(\bar{a}+\Delta a)$ will be large."

Worst case analysis	Average case analysis	Smoothed analysis
$\sup _{a \in \mathbb{R}^{p}} T(a)$	$\mathbb{E}_{a \in \mathcal{D}} T(a)$	$\sup _{\bar{a} \in \mathbb{R}^{p}} \mathbb{E}_{a \in N\left(\bar{a}, \sigma^{2}\right)} T(a)$

\mathcal{D} distribution on $\mathbb{R}^{p}, N\left(\bar{a}, \sigma^{2}\right)$ Gaussian distribution centered at \bar{a}.

Condition based analysis

- Smoothed analysis can be applied to a wide variety of numerical algorithms.
- Understanding condition numbers is important intermediate step.
- Condition numbers quantify errors when input is modified by small perturbation. Relevant for finite precision.
- Running time $T(x)$ of iterative numerical algorithms on input $x \in \mathbb{N}^{n}$ (measured by number of arithmetic operations), can often be effectively bounded by a polynomial in the size n of x and some measure $\mu(x)$ of conditioning of x.

Stochastic analysis of condition numbers

- Two-part scheme for dealing with complexity upper bounds in numerical analysis (Smale):

I Condition based analysis: $T(x) \leq(\operatorname{size}(x)+\mu(x)+)^{c}$
II Stochastic analysis of condition number $\mu(x)$ for random inputs x.

- Approach elaborated for average-case complexity since eighties by many researchers, the pioneers being: Demmel, Edelman, Renegar, Shub, Smale, Todd, Vavasis, Ye, and others.
- Part two of Smale's scheme can be naturally refined by performing a smoothed analysis of the condition number $\mu(x)$ involved.
- Smoothed analysis for condition numbers since 2004: Amelunxen, Bürgisser, Cucker, Dunagan, Hauser, Lotz, Sankar, Spielman, Tao, Teng, Vu , Wschebor and others.

Part I: Linear Equalities

Turing's condition number of a matrix

A. Turing, 1948
J. von Neumann and H. Goldstine, 1947

General definition of condition number

- Numerical computation problem

$$
f: \mathbb{R}^{p} \rightarrow \mathbb{R}^{q}, x \mapsto y=f(x) .
$$

Fix norms $\left\|\|\right.$ on $\mathbb{R}^{p}, \mathbb{R}^{q}$.

- Relative error $\|\Delta y\| /\|y\|$ of output, relative error $\|\Delta x\| /\|x\|$ of input.
- Condition number $\kappa(f, x)$ of x :

$$
\|\Delta y\| /\|y\| \lesssim \kappa(f, x)\|\Delta x\| /\|x\| .
$$

- If f is differentiable:

$$
\kappa(f, x):=\|D f(x)\| \frac{\|x\|}{\|f(x)\|}
$$

where $\|D f(x)\|$ denotes the operator norm of the Jacobian of f at x.

Turing's condition number

- Consider matrix inversion

$$
f: \mathrm{GL}(m, \mathbb{R}) \rightarrow \mathbb{R}^{m \times m}, A \mapsto A^{-1}
$$

We measure errors with the spectral norm.

- Condition number of A with respect to f equals the classical condition number of A :

$$
\kappa(A):=\kappa(f, A)=\|A\|\left\|A^{-1}\right\| .
$$

- Note that $\kappa(\lambda A)=\kappa(A)$ for $\lambda \in \mathbb{R}$.
- $\kappa(A)$ was introduced by A. Turing in 1948.

Distance to ill-posedness

- We call the set of singular matrices $\Sigma \subseteq \mathbb{R}^{m \times m}$ the set of ill-posed instances for matrix inversion. Clearly, $A \in \Sigma \Leftrightarrow \operatorname{det} A=0$.
- The Eckart-Young Theorem from 1936 states that

$$
\kappa(A)=\|A\|\left\|A^{-1}\right\|=\frac{\|A\|}{\operatorname{dist}(A, \Sigma)} .
$$

where dist either refers to operator norm or to Frobenius norm (Euclidean norm on $\mathbb{R}^{n \times n}$).

Smoothed analysis of $\kappa(A)$

- We model a slight perturbation of A due to noise, round-off, etc. with isotropic Gaussian distributions $A \sim N\left(\bar{A}, \sigma^{2} I\right)$.
- Consider the density

$$
\rho(A)=\frac{1}{(\sigma \sqrt{2 \pi})^{n^{2}}} \exp \left(-\frac{\|A-\bar{A}\|_{F}^{2}}{2 \sigma^{2}}\right) .
$$

with mean $\bar{A} \in \mathbb{R}^{n \times n}$ and covariance matrix $\sigma^{2} l$.

- Improving results by Sankar, Spielman, and Teng, Wschebor showed:

Theorem (Wschebor, 2004)

$$
\sup _{\|\bar{A}\|=1}^{\operatorname{Prob}}\left\{\begin{array}{l}
A \sim\left(\bar{A}, \sigma^{2} l\right) \\
\end{array} \kappa(A) \geq t\right\}=\mathcal{O}\left(\frac{n}{\sigma t}\right) .
$$

Part II: Linear Inequalities

Condition numbers of linear programming

Jim Renegar, 1995

Linear Programming Feasibility Problem (1)

- We focus on the homogeneous feasibility problem.
- For $A \in \mathbb{R}^{m \times n}, n>m$, consider the system of linear inequalities

$$
\begin{equation*}
\exists x \in \mathbb{R}^{n} A x=0, x>0 \tag{P}
\end{equation*}
$$

and its dual problem

$$
\begin{equation*}
\exists y \in \mathbb{R}^{m} A^{T} y<0 \tag{D}
\end{equation*}
$$

- Let \mathcal{F}_{P}° and \mathcal{F}_{D}° denote the set of instances where P and D are solvable, respectively.
- We have a disjoint union

$$
\mathbb{R}^{n \times m}=\mathcal{F}_{P}^{\circ} \cup \mathcal{F}_{D}^{\circ} \cup \Sigma,
$$

where the set of ill-posed instances Σ is the common boundary of \mathcal{F}_{P}° and \mathcal{F}_{D}°.

Linear Programming Feasibility Problem (2)

$$
\mathbb{R}^{n \times m}=\mathcal{F}_{P}^{\circ} \cup \mathcal{F}_{D}^{\circ} \cup \Sigma
$$

The Homogeneous Linear Programming Feasibility problem (HLPF) is to decide for given A, whether $A \in \mathcal{F}_{P}^{\circ}$ or $A \in \mathcal{F}_{D}^{\circ}$.

Renegar's condition number

- For the HLPF problem, J. Renegar defined the condition number of the instance $A \in \mathbb{R}^{m \times n}$ as

$$
\mathcal{C}_{R}(A):=\frac{\|A\|}{\operatorname{dist}(A, \Sigma)}
$$

- Note that $\mathcal{C}_{R}(A)=\infty$ iff $A \in \Sigma$.

Renegar 1995

HLPF can be solved with an interior-point method with a number of iterations bounded by

$$
\mathcal{O}\left(\sqrt{n} \log \left(n \mathcal{C}_{R}(A)\right)\right)
$$

Condition-based complexity analysis

- L. Khachian: for an integer matrix A, HLPF can be solved in polynomial time (in the bit size of A).
- Notorious open problem: can HLPF be solved for real matrix A with a number of arithmetic operations polynomial in m, n ?
- Renegar's analysis bounds the number of arithmetic operations by a polynomial in both the
- dimension n of the problem
- logarithm of its condition number.
- $\log \mathcal{C}_{R}(A)$ is polynomially bounded in bitsize of A for integer matrices $A \notin \Sigma$.
- Consequence: HLPF can be solved in polynomial time for an integer matrix A, counting bit operations.

Smoothed analysis of Renegar's condition number

Model for local perturbations: $\bar{A} \in \mathbb{R}^{m \times n}, A \sim N\left(\bar{A}, \sigma^{2} I\right)$.
Theorem (Dunagan, Spielman \& Teng)

$$
\sup _{\|\bar{A}\|=1} \mathbb{E}_{A \sim N\left(\bar{A}, \sigma^{2} l\right)}\left(\log \mathcal{C}_{R}(A)\right)=\mathcal{O}\left(\log \frac{n}{\sigma}\right)
$$

This implies the bound

$$
\mathcal{O}\left(\sqrt{n} \log \frac{n}{\sigma}\right)
$$

on the smoothed expected number of iterations of the IPM considered for HLPF.

Part III: Polynomial Equations

Complexity of Bezout's Theorem

(Shub and Smale 1993-1996)

Smale's 17th problem

The 17 th of S . Smale's problems for the 21st century asks:

Can a zero of n complex polynomial equations in n unknowns be found approximately, on the average, in polynomial time with a uniform algorithm?

Notations

- For a degree vector $d=\left(d_{1}, \ldots, d_{n}\right)$ we define $\mathcal{H}_{d}:=\left\{f=\left(f_{1}, \ldots, f_{n}\right) \mid f_{i} \in \mathbb{C}\left[X_{0}, \ldots, X_{n}\right]\right.$ homogeneous of degree $\left.d_{i}\right\}$.
- The input size is $N:=\operatorname{dim}_{\mathbb{C}} \mathcal{H}_{d}$.
- We look for zeros ζ of f in complex projective space $\mathbb{P}^{n}: f(\zeta)=0$.
- The Bombieri-Weyl hermitian inner product $\left\rangle\right.$ on \mathcal{H}_{d} is invariant under the natural action of the unitary group $U(n+1)$ on \mathcal{H}_{d} and allows to define $\|f\|:=\langle f, f\rangle^{1 / 2}$.
- We have a standard Gaussian distribution on \mathcal{H}_{d} with density

$$
\rho(f)=\frac{1}{\sqrt{2 \pi}^{2 N}} \exp \left(-\frac{1}{2}\|f\|^{2}\right) .
$$

Approximate zeros

- Have a projective Newton iteration

$$
x_{k+1}=N_{f}\left(x_{k}\right)
$$

with Newton operator $N_{f}: \mathbb{P}^{n} \rightarrow \mathbb{P}^{n}$ and starting point x_{0}.

- Definition (Smale). $x \in \mathbb{P}^{n}$ is called approximate zero of f with zero ζ iff

$$
\forall i \in \mathbb{N}: \quad d\left(x_{i}, \zeta\right) \leq \frac{1}{2^{2^{i}-1}} d\left(x_{0}, \zeta\right)
$$

- Here the distance d refers to the geodesic distance on the Riemannian manifold \mathbb{P}^{n} (Fubini-Study metric). One may think of d as an angle.

Condition number

- Let $f(\zeta)=0$. How much does ζ change when we perturb f a little?
- Consider the solution variety $V:=\{(f, \zeta) \mid f(\zeta)=0\} \subseteq \mathcal{H}_{d} \times \mathbb{P}^{n}$, which is a smooth Riemannian submanifold
- The solution map G is the local inverse of the projection map $V \rightarrow \mathbb{P}\left(\mathcal{H}_{d}\right),(f, \zeta) \mapsto f$.
- The condition number of f at (f, ζ),

$$
\mu(f, \zeta):=\|f\| \cdot\left\|M^{\dagger}\right\|,
$$

is essentially the operator norm of the derivative of G at ζ, where

$$
M:=\operatorname{diag}\left(\sqrt{d_{1}}, \ldots, \sqrt{d_{n}}\right)^{-1} D f(\zeta) \in \mathbb{C}^{n \times(n+1)}
$$

(ζ with $\|\zeta\|=1, M^{\dagger}$ stands for the pseudo-inverse).

Radius of quadratic convergence

Put $D:=\max _{i} d_{i}$.

Smale's Gamma Theorem

If

$$
d(x, \zeta) \leq \frac{0.3}{D^{3 / 2} \mu(f, \zeta)},
$$

then x is an approximate zero of f associated with ζ.

Adaptive linear homotopy continuation

- Given a start system $(g, \zeta) \in V$ and an input $f \in \mathcal{H}_{d}$.
- Connecting g and f by line segment $[g, f]$ consisting of

$$
q_{t}:=(1-t) g+t f \quad \text { for } t \in[0,1] .
$$

- If $[g, f]$ does not meet the discriminant variety (none of the q_{t} has a multiple zero), then there exists a unique lifting to a path

$$
\gamma:[0,1] \rightarrow V, t \mapsto\left(f_{t}, \zeta_{t}\right)
$$

such that $\left(f_{0}, \zeta_{0}\right)=(g, \zeta)$.

- Follow γ numerically: Let $t_{0}=0, \ldots, t_{k}=1$ and write $q_{i}:=q_{t_{i}}$. Successively compute approximations z_{i} of $\zeta_{t_{i}}$ by Newton's method

$$
z_{i+1}:=N_{q_{i+1}}\left(z_{i}\right)
$$

starting with $z_{0}:=\zeta$.

Complexity of adaptive linear homotopy continuation

- Compute t_{i+1} adaptively from t_{i} such that

$$
d\left(q_{i+1}, q_{i}\right)=\frac{c}{D^{3 / 2} \mu^{2}\left(q_{i}, x_{j}\right)} .
$$

This defines the Adaptive Linear Homotopy ALH algorithm.

- We denote by $K(f, g, \zeta)$ the number k of Newton continuation steps that are needed to follow the homotopy.

Shub \& Smale, and Shub (2007)

x_{i} is an approximate zero of ζ_{i} for all i. Moreover,

$$
K(f, g, \zeta) \leq 217 D^{3 / 2} \int_{0}^{1} \mu(\gamma(t))^{2}\|\dot{\gamma}(t)\| d t
$$

Randomized algorithm

- Shub and Smale had shown that almost all $(g, \zeta) \in V$ have a condition number polynomial bounded in N, D.
- However, it is unknown how to efficiently construct such (g, ζ).
- Since we don't know how to construct a good start system (g, ζ_{0}), we choose it at random:
- choose $g \in \mathcal{H}_{d}$ from standard Gaussian,
- choose one of the $\mathcal{D}:=d_{1} \cdots d_{n}$ many zeros ζ of g uniformly at random.
- Efficient sampling of (g, ζ) is possible (Beltrán \& Pardo 2008).
- Las Vegas Algorithm LV draw $(g, \zeta) \in V$ at random run ALH on input (f, g, ζ)
- LV has the expected "running time"

$$
K(f):=\mathbb{E}_{\mathbf{g}, \zeta} K(f, g, \zeta) .
$$

Average expected polynomial time

- LV runs in average expected polynomial time:

Beltrán and Pardo

$$
\mathbb{E}_{f} K(f)=\mathcal{O}\left(D^{3 / 2} N n\right),
$$

where the expectation is over a standard Gaussian $f \in \mathcal{H}_{d}$.

- When allowing randomized algorithms, this is a solution to Smale's 17th problem.
- Note that randomness enters here in two ways: as an algorithmic tool and as a way to measure the performance of algorithms.

Smoothed expected polynomial time

- Smoothed analysis: let $\bar{f} \in \mathcal{H}_{d}$ and suppose that f is isotropic Gaussian with mean \bar{f} and variance σ^{2}.
- Recently, I obtained with Felipe Cucker the following result

Smoothed analysis of ALH

$$
\sup _{\|f\|=1} \mathbb{E}_{f \sim N\left(\bar{f}, \sigma^{2} I\right)} K(f)=\mathcal{O}\left(\frac{D^{3 / 2} N n}{\sigma}\right)
$$

A near solution to Smale's 17th problem

There is a deterministic algorithm for Smale's 17 th problem taking on standard Gaussian input $f \in \mathcal{H}_{d}$ an expected number of arithmetic operations $T(f)$ bounded by

$$
\mathbb{E}_{f} T(f)=N^{\mathcal{O}(\log \log N)}
$$

- If $D \leq n$, the algorithm runs ALH with the start system (g, ζ), where

$$
\begin{gathered}
g_{i}=X_{i}^{d_{i}}-X_{0}^{d_{i}}, \quad \zeta=(1, \ldots, 1) \\
\mu(g, \zeta)^{2} \leq 2(n+1)^{D} .
\end{gathered}
$$

- If $D \leq n^{1-\varepsilon}$, for fixed $\varepsilon>0$, then n^{D} is polynomially bounded in N. In this case we even get deterministic polynomial time.
- In the case $D \geq n$, the algorithm is a more or less known symbolic procedure that takes roughly D^{n} steps.

Smoothed Analysis of Condition Numbers

LPart III: Polynomial Equations
-A near solution to Smale's 17th problem

Thank you for your attention!

