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Smoothed Analysis of Condition Numbers

Overview

Motivation

I Most common theoretical approach to understanding behaviour of
algorithms: worst-case analysis.

I Sometimes algorithms perform well in practice and still have bad
worst-case behaviour. Famous example: Dantzig’s simplex
algorithm.

I Average-case analysis tries to rectify this discrepancy: bound
expected performance of an algorithm on random inputs.
Average-case analyses for simplex algorithm: Borgwardt (1982) and
Smale (1983).

I Disadvantage: strong dependence on unknown distribution of inputs.
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Overview

Smoothed analysis
New form of analysis of algorithms, proposed by Spielman and Teng.
Smoothed analysis of simplex algorithm (Gödel Prize 2008, Fulkerson
Prize 2009).

Let T : Rp → R+ ∪ {∞} be a function (running time, condition number).
Instead of showing

“It is unlikely that T (a) will be large.”

one shows that

“For all a and all slight random perturbations a + ∆a, it is
unlikely that T (a + ∆a) will be large.”

Worst case analysis Average case analysis Smoothed analysis

sup
a∈Rp

T (a) Ea∈DT (a) sup
a∈Rp

Ea∈N(a,σ2)T (a)

D distribution on Rp, N(a, σ2) Gaussian distribution centered at a.
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Overview

Condition based analysis

I Smoothed analysis can be applied to a wide variety of numerical
algorithms.

I Understanding condition numbers is important intermediate step.

I Condition numbers quantify errors when input is modified by small
perturbation. Relevant for finite precision.

I Running time T (x) of iterative numerical algorithms on input
x ∈ Nn (measured by number of arithmetic operations), can often
be effectively bounded by a polynomial in the size n of x and some
measure µ(x) of conditioning of x .
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Overview

Stochastic analysis of condition numbers

I Two-part scheme for dealing with complexity upper bounds in
numerical analysis (Smale):

I Condition based analysis: T (x) ≤
(
size(x) + µ(x) +

)c

II Stochastic analysis of condition number µ(x) for random inputs x .

I Approach elaborated for average-case complexity since eighties by
many researchers, the pioneers being: Demmel, Edelman, Renegar,

Shub, Smale, Todd, Vavasis, Ye, and others.

I Part two of Smale’s scheme can be naturally refined by performing a
smoothed analysis of the condition number µ(x) involved.

I Smoothed analysis for condition numbers since 2004: Amelunxen,

Bürgisser, Cucker, Dunagan, Hauser, Lotz, Sankar, Spielman, Tao, Teng,

Vu, Wschebor and others.
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Part I: Linear Equalities

Turing’s condition number of a
matrix

A. Turing, 1948

J. von Neumann and H. Goldstine, 1947
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Part I: Linear Equalities

General definition of condition number

I Numerical computation problem

f : Rp → Rq, x 7→ y = f (x).

Fix norms ‖ ‖ on Rp,Rq.

I Relative error ‖∆y‖/‖y‖ of output, relative error ‖∆x‖/‖x‖ of
input.

I Condition number κ(f , x) of x :

‖∆y‖/‖y‖ . κ(f , x) ‖∆x‖/‖x‖.

I If f is differentiable:

κ(f , x) := ‖Df (x)‖ ‖x‖
‖f (x)‖

where ‖Df (x)‖ denotes the operator norm of the Jacobian of f at x .
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Part I: Linear Equalities

Turing’s condition number

I Consider matrix inversion

f : GL(m,R)→ Rm×m,A 7→ A−1.

We measure errors with the spectral norm.

I Condition number of A with respect to f equals the classical
condition number of A:

κ(A) := κ(f ,A) = ‖A‖ ‖A−1‖.

I Note that κ(λA) = κ(A) for λ ∈ R.

I κ(A) was introduced by A. Turing in 1948.
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Part I: Linear Equalities

Distance to ill-posedness

I We call the set of singular matrices Σ ⊆ Rm×m the set of ill-posed
instances for matrix inversion. Clearly, A ∈ Σ⇔ det A = 0.

I The Eckart-Young Theorem from 1936 states that

κ(A) = ‖A‖ ‖A−1‖ =
‖A‖

dist(A,Σ)
.

where dist either refers to operator norm or to Frobenius norm
(Euclidean norm on Rn×n).
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Part I: Linear Equalities

Smoothed analysis of κ(A)

I We model a slight perturbation of A due to noise, round-off, etc.
with isotropic Gaussian distributions A ∼ N(A, σ2I ).

I Consider the density

ρ(A) =
1

(σ
√

2π)n2
exp

(
− ‖A− A‖2F

2σ2

)
.

with mean A ∈ Rn×n and covariance matrix σ2I .

I Improving results by Sankar, Spielman, and Teng, Wschebor showed:

Theorem (Wschebor, 2004)

sup
‖A‖=1

Prob
A∼N(A,σ2I )

{κ(A) ≥ t} = O
( n

σt

)
.
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Part II: Linear Inequalities

Condition numbers of linear
programming

Jim Renegar, 1995
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Part II: Linear Inequalities

Linear Programming Feasibility Problem (1)

I We focus on the homogeneous feasibility problem.

I For A ∈ Rm×n, n > m, consider the system of linear inequalities

∃x ∈ Rn Ax = 0, x > 0. (P)

and its dual problem

∃y ∈ Rm AT y < 0 (D)

I Let F◦P and F◦D denote the set of instances where P and D are
solvable, respectively.

I We have a disjoint union

Rn×m = F◦P ∪ F◦D ∪ Σ,

where the set of ill-posed instances Σ is the common boundary of
F◦P and F◦D .
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Part II: Linear Inequalities

Linear Programming Feasibility Problem (2)

Rn×m = F◦P ∪ F◦D ∪ Σ,

The Homogeneous Linear Programming Feasibility problem (HLPF) is to
decide for given A, whether A ∈ F◦P or A ∈ F◦D .
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Part II: Linear Inequalities

Renegar’s condition number

I For the HLPF problem, J. Renegar defined the condition number of
the instance A ∈ Rm×n as

CR(A) :=
‖A‖

dist(A,Σ)
.

I Note that CR(A) =∞ iff A ∈ Σ.

Renegar 1995

HLPF can be solved with an interior-point method with a number of
iterations bounded by

O
(√

n log(n CR(A))

)
.
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Part II: Linear Inequalities

Condition-based complexity analysis

I L. Khachian: for an integer matrix A, HLPF can be solved in
polynomial time (in the bit size of A).

I Notorious open problem: can HLPF be solved for real matrix A with
a number of arithmetic operations polynomial in m, n?

I Renegar’s analysis bounds the number of arithmetic operations by a
polynomial in both the

I dimension n of the problem
I logarithm of its condition number.

I log CR(A) is polynomially bounded in bitsize of A for integer
matrices A 6∈ Σ.

I Consequence: HLPF can be solved in polynomial time for an integer
matrix A, counting bit operations.
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Part II: Linear Inequalities

Smoothed analysis of Renegar’s condition number

Model for local perturbations: A ∈ Rm×n, A ∼ N(A, σ2I ).

Theorem (Dunagan, Spielman & Teng)

sup
‖A‖=1

EA∼N(A,σ2I )

(
log CR(A)

)
= O

(
log

n

σ

)
.

This implies the bound

O(
√

n log
n

σ
)

on the smoothed expected number of iterations of the IPM considered for
HLPF.
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Part III: Polynomial Equations

Complexity of Bezout’s Theorem

(Shub and Smale 1993–1996)
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Smale’s 17th Problem

Smale’s 17th problem

The 17th of S. Smale’s problems for the 21st century asks:

Can a zero of n complex polynomial equations in n unknowns
be found approximately, on the average, in polynomial time
with a uniform algorithm?
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Part III: Polynomial Equations

Approximate zeros, condition, and homotopy continuation

Notations

I For a degree vector d = (d1, . . . , dn) we define

Hd := {f = (f1, . . . , fn) | fi ∈ C[X0, . . . ,Xn] homogeneous of degree di}.

I The input size is N := dimCHd .

I We look for zeros ζ of f in complex projective space Pn: f (ζ) = 0.

I The Bombieri-Weyl hermitian inner product 〈 〉 on Hd is invariant
under the natural action of the unitary group U(n + 1) on Hd and
allows to define ‖f ‖ := 〈f , f 〉1/2.

I We have a standard Gaussian distribution on Hd with density

ρ(f ) =
1

√
2π

2N
exp

(
− 1

2
‖f ‖2

)
.
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Part III: Polynomial Equations

Approximate zeros, condition, and homotopy continuation

Approximate zeros

I Have a projective Newton iteration

xk+1 = Nf (xk)

with Newton operator Nf : Pn → Pn and starting point x0.

I Definition (Smale). x ∈ Pn is called approximate zero of f with
zero ζ iff

∀i ∈ N : d(xi , ζ) ≤ 1

22i−1
d(x0, ζ).

I Here the distance d refers to the geodesic distance on the
Riemannian manifold Pn (Fubini-Study metric). One may think of d
as an angle.
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Part III: Polynomial Equations

Approximate zeros, condition, and homotopy continuation

Condition number

I Let f (ζ) = 0. How much does ζ change when we perturb f a little?

I Consider the solution variety V :=
{

(f , ζ) | f (ζ) = 0
}
⊆ Hd × Pn,

which is a smooth Riemannian submanifold

I The solution map G is the local inverse of the projection map
V → P(Hd), (f , ζ) 7→ f .

I The condition number of f at (f , ζ),

µ(f , ζ) := ‖f ‖ · ‖M†‖,

is essentially the operator norm of the derivative of G at ζ, where

M := diag(
√

d1, . . . ,
√

dn)−1Df (ζ) ∈ Cn×(n+1)

(ζ with ‖ζ‖ = 1, M† stands for the pseudo-inverse).
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Approximate zeros, condition, and homotopy continuation

Radius of quadratic convergence

Put D := maxi di .

Smale’s Gamma Theorem
If

d(x , ζ) ≤ 0.3

D3/2 µ(f , ζ)
,

then x is an approximate zero of f associated with ζ.
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Approximate zeros, condition, and homotopy continuation

Adaptive linear homotopy continuation

I Given a start system (g , ζ) ∈ V and an input f ∈ Hd .

I Connecting g and f by line segment [g , f ] consisting of

qt := (1− t)g + tf for t ∈ [0, 1].

I If [g , f ] does not meet the discriminant variety (none of the qt has a
multiple zero), then there exists a unique lifting to a path

γ : [0, 1]→ V , t 7→ (ft , ζt)

such that (f0, ζ0) = (g , ζ).

I Follow γ numerically: Let t0 = 0, . . . , tk = 1 and write qi := qti .
Successively compute approximations zi of ζti by Newton’s method

zi+1 := Nqi+1(zi )

starting with z0 := ζ.
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Part III: Polynomial Equations

Approximate zeros, condition, and homotopy continuation

Complexity of adaptive linear homotopy continuation

I Compute ti+1 adaptively from ti such that

d(qi+1, qi ) =
c

D3/2µ2(qi , x))
.

This defines the Adaptive Linear Homotopy ALH algorithm.

I We denote by K (f , g , ζ) the number k of Newton continuation steps
that are needed to follow the homotopy.

Shub & Smale, and Shub (2007)

xi is an approximate zero of ζi for all i . Moreover,

K (f , g , ζ) ≤ 217 D3/2

∫ 1

0

µ(γ(t))2 ‖γ̇(t)‖ dt.
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Approximate zeros, condition, and homotopy continuation

Randomized algorithm

I Shub and Smale had shown that almost all (g , ζ) ∈ V have a
condition number polynomial bounded in N,D.

I However, it is unknown how to efficiently construct such (g , ζ).

I Since we don’t know how to construct a good start system (g , ζ0),
we choose it at random:

I choose g ∈ Hd from standard Gaussian,
I choose one of the D := d1 · · · dn many zeros ζ of g uniformly at

random.

I Efficient sampling of (g , ζ) is possible (Beltrán & Pardo 2008).

I Las Vegas Algorithm LV
draw (g , ζ) ∈ V at random
run ALH on input (f , g , ζ)

I LV has the expected “running time”

K (f ) := Eg ,ζK (f , g , ζ).
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Probabilistic analyses

Average expected polynomial time

I LV runs in average expected polynomial time:

Beltrán and Pardo

Ef K (f ) = O
(
D3/2Nn

)
,

where the expectation is over a standard Gaussian f ∈ Hd .

I When allowing randomized algorithms, this is a solution to Smale’s
17th problem.

I Note that randomness enters here in two ways: as an algorithmic
tool and as a way to measure the performance of algorithms.
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Probabilistic analyses

Smoothed expected polynomial time

I Smoothed analysis: let f ∈ Hd and suppose that f is isotropic
Gaussian with mean f and variance σ2.

I Recently, I obtained with Felipe Cucker the following result

Smoothed analysis of ALH

sup
‖f ‖=1

Ef∼N(f ,σ2I )K (f ) = O
(D3/2Nn

σ

)
.
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A near solution to Smale’s 17th problem

There is a deterministic algorithm for Smale’s 17th problem taking on
standard Gaussian input f ∈ Hd an expected number of arithmetic
operations T (f ) bounded by

Ef T (f ) = NO(log log N).

I If D ≤ n, the algorithm runs ALH with the start system (g , ζ), where

gi = X di

i − X di
0 , ζ = (1, . . . , 1)

µ(g , ζ)2 ≤ 2(n + 1)D .

I If D ≤ n1−ε, for fixed ε > 0, then nD is polynomially bounded in N.
In this case we even get deterministic polynomial time.

I In the case D ≥ n, the algorithm is a more or less known symbolic
procedure that takes roughly Dn steps.
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Part III: Polynomial Equations

A near solution to Smale’s 17th problem

Thank you for your attention!
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