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Abstract

Most of the original literature about Maple described it as 
a "compact and efficient computer algebra system". It was 

partly our goal to be able to run in small desktop 
computers and even on a pocket computer (the term 

"pocket symbolic" was also used). This talk will concentrate 
on four aspects of the early design that went in this 

direction and were the cornerstones of the design. These 
are the use of the language C, the S^2T measure of 

complexity, option remember and its implication which is 
the unique representation of subexpression and the 

systematic elimination of quadratic algorithms.
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computational problems: e.g. when S is the 
auxiliary storage available and T is the time 
used, every algorithm must use S2T = Ω(n2)
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The S2T measure comes from lower bounds of 
computational problems: e.g. when S is the 
auxiliary storage available and T is the time 
used, every algorithm must use S2T = Ω(n2)

Usually there are severe restrictions on the 
computational model, for example, the input is 

available on a Turing machine tape.
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The S2T measure (II)

Given that such a measure is an invariant 
across algorithms, it makes sense as a measure 

of optimization for different algorithms.

That is, an algorithm which performs better 
under this measure is usually a better 

algorithm, not just a fluke due to operating on 
a different complexity space
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The S2T measure (III)

The S2T measure is also very meaningful for 
computer algebra, as it weighs storage more 
than time and computer algebra has suffered 
more from lack of storage than from time.

In any case, it is good to have a measure so 
that algorithms can be benchmarked and the 

best can be selected.  It is the basis of 
scientific software development.
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ABSTRACT

A model of computation is introduced which permits
the analysis of both the time and space require-
ments of non-oblivious programs. Using this model,
it is demonstrated that any algorithm for sorting
n inputs which is based on comparisons of indivi-
dual inputs requires time-space product propor-
tional to n2 . Uniform and non-uniform sorting
algorithms are presented which show that this
lower bound is nearly tight.

1. Hotivation and Contraposition to Previous
Research

The traditional approach to studying the complexi-
ty of a problem has been to examine the amount of
some single resource (usually time or space) re-
quired to perform the computation. In an effort
to better understand the complexity of certain
problems, recent attention has been focused on
examining the trade off between the required time
and space. This paper adopts the latter strategy
in order to pursue the complexity of sorting.

The vast majority of time-space tradeoffs recently
demonstrated have been for "straight-line" (or
"oblivious") programs 1, 5, 7, 10, 11,13, 14, 15,
that is, programs in which the sequence of opera-
tions is independent of the actual values of the
inputs. In this model, "time" refers to the num-
ber of operations performed, and "space" to the
number of auxiliary (i.e., non-input and non-
output) registers used to store intermediate
results. (To distinguish this usage of space from
others which follow, this will be referred to as
"data space".) The problem of sorting has been
considered in this rontext by Tompa15 , who
demonstrated that any oblivious algorithm which
sorts n inputs requires time-space product

Although oblivious sorting algorithms have been
studied extensively (see Knuth 6 , where they are
called "sorting networks"), most sorting algo-
rithms are non-oblivious; that is, they continual-
ly test and branch based on comparisons of input
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values. In order to truly understand the
of sorting, then, a model which admits non-oblivkus
algorithms should be adopted. Toward this end,
Munro and Paterson 9 considered non-oblivious
sorting algorithms which use auxiliary registers to
store selected inputs and can access other inputs
only through successive passes over all the inputs.
Although they count only data space (i.e., number
of auxiliary registers used), the authors make it
clear that "control space" (used, for instance, to
remember which inputs to fetch into registers on a
given pass) is also an issue in upper bounds. To
sort n inputs within their model, they demonstrate
that the product of the number of registers and the
number of passes is e(n). Since each pass requires
n moves of the input head, their result might be

interpreted as a lower bound of on the pro-
duct of time and data space. Adopting Cobham's
mode1 3 Tampa 16 in fact demonstrated a simi-
lar trade-off for sorting on any general string-
processing model, exploiting only the restriction
of "tape input" (i.e., the input head can move at
most one symbol left or right in one step).

Thus there are at least three time-space tradeoffs
for sorting already known 9 , 15, 16 Each of these
however imposes some artificial restriction on the
algorithms considered (either obliviousness or tape
input), and so they say more about the inadequacy
of these models for sorting-type problems than they
do about the inherent complexity of the problems
themselves. To see this, one must simply confer
the three references and observe that each of these
results applies as well to the problems of merging
two sorted lists of n elements, for which the stan-
dard (non-oblivious, random access input) algorithm
requires only O(n) time, no data space, and O(log
control space (for pointers).

In order to be compelling, then, the model of com-
putation used to study sorting-type problems
should be not only non-oblivious, but should also
permit random access input. In fact, the sale
restriction which is placed on the sorting algo-
rithms considered in this paper is that they be
"conservative": inputs are viewed as indivisible
elements drawn from some total order, and the only
operations allowed are simple comparisons. Time

*This material is based upon work supported by the
Natural Sciences and Engineering Research Coun-
cil of Canada under Grants A763l and A3583, and by
the National Science Foundation under Grants
MCS 77-02474 and MCS77-15628.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on July 7, 2009 at 04:53 from IEEE Xplore.  Restrictions apply.
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This is the paper that I had in mind:
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The big surprise is that this paper proves, that 
for sorting, ST = Ω(n2)
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The O(n2) hidden bugs

I call a O(n2) hidden bug to any part of the 
system (kernel or library) which uses a 

quadratic time/space algorithm when a linear 
one is possible.

E.g. adding one term at a time to a list (or to 
a set) is a typical example of this problem

These bugs go often unnoticed until a 
production-type problem is submitted.
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The O(n2) hidden bugs (II)

res := NULL;
for i to n do res := res, f(i) od;

Internal kernel support was introduced very 
early (append), but unfortunately not 

extended to the users

res = New(EXPSEQ);
for( i=0; i<n; i++ )
    res = append(res,f(i));
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The O(n2) hidden bugs (III)

Before the release of version 4.0 Mike 
Monagan combed patiently the entire kernel 
and removed most (all?) of the O(n2) bugs.

For those in the internal mailing groups, it is 
still common to see reports of O(n2) new bugs
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The O(n2) hidden bugs (IV)

The only answer that I have to this problem 
is to create a “Quadratic Police”

“Cubic or higher Army” and “Exponential 
nuclear deterrent”
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Option remember and unique representation

“Option remember” is the term that we use to 
describe the ability of a function of 

remembering previous arguments/results and 
avoid/save computation.

F := proc( n::integer )
option remember;
if n < 2 then n else F(n-1)+F(n-2) fi
end:
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diff( tan(x), x$100 );
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Remember and unique representation (II)

It may change an algorithm from exponential to 
linear in time (and/or space) required.

diff( tan(x), x$100 );

(At one point I wrote a program to create the 
largest expression ever (a Guiness-type record).  

This expression was so large that any linear 
function would never return, only remembering 

functions had a chance).
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Remember and unique representation (III)

The kernel maintains unique representation with 
the same principle. The lowest-level expression 

simplifier uses option remember.

All expressions are simplified and unified 
recursively.  Duplicates are discarded.

The rationale for remembering is that computer 
algebra (manipulated mathematical expressions) 

contain highly repetitive parts



Remember and unique representation (IV)

This is not the panacea, it has excellent 
consequences but also produces strange 

behaviours.  It is a tough design decision.
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But, there is no question in my mind that it 
makes for the largest space/time economy in 

the early Maple.

This is not the panacea, it has excellent 
consequences but also produces strange 

behaviours.  It is a tough design decision.
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Remembering required hash signatures, and 
signatures were soon quite ubiquitous in Maple.  
That is the mapping of expressions to integers 

or integers mod n.



Remember and unique representation (V)

It is not a surprise, in this context, that the 
heuristic GCD algorithm became a leading 
example of several similar algorithms and a 

cornerstone of Maple’s efficiency. 

Remembering required hash signatures, and 
signatures were soon quite ubiquitous in Maple.  
That is the mapping of expressions to integers 

or integers mod n.
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Memory and Ghz are cheap

How many times did I hear: “why do you bother 
about memory, memory is cheaper every day” ?

Answer: as many as #(fools) × #(encounters)

A system which uses memory wisely will always 
be ahead of one who doesn’t. (paging, garbage 
collection, compaction, etc. will also cost time)  
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A predecessor of Maple (Wama) and Maple 
were initially coded in B (B is a successor of 

BCPL and a predecessor of C).  Later Maple was 
converted to allow compilation both in B and C 

(through a pre-processor called Margay).  

The architecture of Maple was strongly 
influenced by the language (B and later very 

simple C).  The language itself was influenced by 
Algol68. 
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Use of the C language (II)

The CA community did not believe in this 
approach, personally I received several critiques 

for not using Lisp (or one of its dialects)

We do not need to defend this decision, just 
observe the language in which the current top 

CA systems are written.

Once I asked one of the top system builders of 
the time: what do I get from Lisp?  After an 

extremely long pause the answer was: “garbage 
collection for free”
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Dennis Ritchie tried Maple once in the very 
early stages of its history (Maple’s kernel used 

to be one of the benchmark programs to 
compile inside ATT).  He liked the look-and-
feel of Maple, and in particular he was very 

positive about its rapid response.

We did not think very highly of this remark at 
the time.  Maybe this was a very good 

compliment that we did not appreciate enough.
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Fast to start (II)

We now know that it does make a difference to 
start in 0.1 secs as opposed to starting in 30 
secs.  It hurts the “calculator” use of Maple

The speed of starting is a combination of 
various aspects: small kernel, load-on-demand 

library, efficient language, among others



Conclusion

Natural selection, if applicable to software, 
shows that some subset of these features is 

very good, as Maple survived 29.5 years 





the END


