
29.5 years of Maple: how many
of the design principles of the

system paid dividends
Gaston H. Gonnet

Informatik, ETH, Zurich

Joachim von zur Gathn 60th
May 27, 2010

Bonn, Germany

Abstract

Abstract

Most of the original literature about Maple described it as
a "compact and efficient computer algebra system". It was

partly our goal to be able to run in small desktop
computers and even on a pocket computer (the term

"pocket symbolic" was also used). This talk will concentrate
on four aspects of the early design that went in this

direction and were the cornerstones of the design. These
are the use of the language C, the S^2T measure of

complexity, option remember and its implication which is
the unique representation of subexpression and the

systematic elimination of quadratic algorithms.

The S2T measure

The S2T measure comes from lower bounds of
computational problems: e.g. when S is the
auxiliary storage available and T is the time
used, every algorithm must use S2T = Ω(n2)

The S2T measure

The S2T measure comes from lower bounds of
computational problems: e.g. when S is the
auxiliary storage available and T is the time
used, every algorithm must use S2T = Ω(n2)

Usually there are severe restrictions on the
computational model, for example, the input is

available on a Turing machine tape.

The S2T measure (II)

Given that such a measure is an invariant
across algorithms, it makes sense as a measure

of optimization for different algorithms.

The S2T measure (II)

Given that such a measure is an invariant
across algorithms, it makes sense as a measure

of optimization for different algorithms.

That is, an algorithm which performs better
under this measure is usually a better

algorithm, not just a fluke due to operating on
a different complexity space

The S2T measure (III)

The S2T measure (III)

The S2T measure is also very meaningful for
computer algebra, as it weighs storage more
than time and computer algebra has suffered
more from lack of storage than from time.

The S2T measure (III)

The S2T measure is also very meaningful for
computer algebra, as it weighs storage more
than time and computer algebra has suffered
more from lack of storage than from time.

In any case, it is good to have a measure so
that algorithms can be benchmarked and the

best can be selected. It is the basis of
scientific software development.

The S2T measure (the paper)

A TIME-SPACE TRADEOFF FOR SORTING ON NON-OBLIVIOUS MACHINES*

Allan Borodinl
Michael J. Fischer2
David G. Kirkpatrick3

Nancy A. Lynch4
Martin Tompa2

ABSTRACT

A model of computation is introduced which permits
the analysis of both the time and space require-
ments of non-oblivious programs. Using this model,
it is demonstrated that any algorithm for sorting
n inputs which is based on comparisons of indivi-
dual inputs requires time-space product propor-
tional to n2 . Uniform and non-uniform sorting
algorithms are presented which show that this
lower bound is nearly tight.

1. Hotivation and Contraposition to Previous
Research

The traditional approach to studying the complexi-
ty of a problem has been to examine the amount of
some single resource (usually time or space) re-
quired to perform the computation. In an effort
to better understand the complexity of certain
problems, recent attention has been focused on
examining the trade off between the required time
and space. This paper adopts the latter strategy
in order to pursue the complexity of sorting.

The vast majority of time-space tradeoffs recently
demonstrated have been for "straight-line" (or
"oblivious") programs 1, 5, 7, 10, 11,13, 14, 15,
that is, programs in which the sequence of opera-
tions is independent of the actual values of the
inputs. In this model, "time" refers to the num-
ber of operations performed, and "space" to the
number of auxiliary (i.e., non-input and non-
output) registers used to store intermediate
results. (To distinguish this usage of space from
others which follow, this will be referred to as
"data space".) The problem of sorting has been
considered in this rontext by Tompa15 , who
demonstrated that any oblivious algorithm which
sorts n inputs requires time-space product

Although oblivious sorting algorithms have been
studied extensively (see Knuth 6 , where they are
called "sorting networks"), most sorting algo-
rithms are non-oblivious; that is, they continual-
ly test and branch based on comparisons of input

lDept. of Computer Science, Univ. of Toronto,
Toronto, Ontario, Canada M5S lA7
2Dept. of Computer Science, FR-35, Univ. of Wash-
ington, Seattle, Wa. 98195 U.S.A.
3Dept. of Computer Science, Univ. of British
Columbia, Vancouver, B.C., Canada V6T lW5
4School of Information and Computer Science,
Georgia Inst. of Technology, Atlanta, Ga.30332 USA

319

values. In order to truly understand the
of sorting, then, a model which admits non-oblivkus
algorithms should be adopted. Toward this end,
Munro and Paterson 9 considered non-oblivious
sorting algorithms which use auxiliary registers to
store selected inputs and can access other inputs
only through successive passes over all the inputs.
Although they count only data space (i.e., number
of auxiliary registers used), the authors make it
clear that "control space" (used, for instance, to
remember which inputs to fetch into registers on a
given pass) is also an issue in upper bounds. To
sort n inputs within their model, they demonstrate
that the product of the number of registers and the
number of passes is e(n). Since each pass requires
n moves of the input head, their result might be

interpreted as a lower bound of on the pro-
duct of time and data space. Adopting Cobham's
mode1 3 Tampa 16 in fact demonstrated a simi-
lar trade-off for sorting on any general string-
processing model, exploiting only the restriction
of "tape input" (i.e., the input head can move at
most one symbol left or right in one step).

Thus there are at least three time-space tradeoffs
for sorting already known 9 , 15, 16 Each of these
however imposes some artificial restriction on the
algorithms considered (either obliviousness or tape
input), and so they say more about the inadequacy
of these models for sorting-type problems than they
do about the inherent complexity of the problems
themselves. To see this, one must simply confer
the three references and observe that each of these
results applies as well to the problems of merging
two sorted lists of n elements, for which the stan-
dard (non-oblivious, random access input) algorithm
requires only O(n) time, no data space, and O(log
control space (for pointers).

In order to be compelling, then, the model of com-
putation used to study sorting-type problems
should be not only non-oblivious, but should also
permit random access input. In fact, the sale
restriction which is placed on the sorting algo-
rithms considered in this paper is that they be
"conservative": inputs are viewed as indivisible
elements drawn from some total order, and the only
operations allowed are simple comparisons. Time

*This material is based upon work supported by the
Natural Sciences and Engineering Research Coun-
cil of Canada under Grants A763l and A3583, and by
the National Science Foundation under Grants
MCS 77-02474 and MCS77-15628.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on July 7, 2009 at 04:53 from IEEE Xplore. Restrictions apply.

The S2T measure (the paper)

A TIME-SPACE TRADEOFF FOR SORTING ON NON-OBLIVIOUS MACHINES*

Allan Borodinl
Michael J. Fischer2
David G. Kirkpatrick3

Nancy A. Lynch4
Martin Tompa2

ABSTRACT

A model of computation is introduced which permits
the analysis of both the time and space require-
ments of non-oblivious programs. Using this model,
it is demonstrated that any algorithm for sorting
n inputs which is based on comparisons of indivi-
dual inputs requires time-space product propor-
tional to n2 . Uniform and non-uniform sorting
algorithms are presented which show that this
lower bound is nearly tight.

1. Hotivation and Contraposition to Previous
Research

The traditional approach to studying the complexi-
ty of a problem has been to examine the amount of
some single resource (usually time or space) re-
quired to perform the computation. In an effort
to better understand the complexity of certain
problems, recent attention has been focused on
examining the trade off between the required time
and space. This paper adopts the latter strategy
in order to pursue the complexity of sorting.

The vast majority of time-space tradeoffs recently
demonstrated have been for "straight-line" (or
"oblivious") programs 1, 5, 7, 10, 11,13, 14, 15,
that is, programs in which the sequence of opera-
tions is independent of the actual values of the
inputs. In this model, "time" refers to the num-
ber of operations performed, and "space" to the
number of auxiliary (i.e., non-input and non-
output) registers used to store intermediate
results. (To distinguish this usage of space from
others which follow, this will be referred to as
"data space".) The problem of sorting has been
considered in this rontext by Tompa15 , who
demonstrated that any oblivious algorithm which
sorts n inputs requires time-space product

Although oblivious sorting algorithms have been
studied extensively (see Knuth 6 , where they are
called "sorting networks"), most sorting algo-
rithms are non-oblivious; that is, they continual-
ly test and branch based on comparisons of input

lDept. of Computer Science, Univ. of Toronto,
Toronto, Ontario, Canada M5S lA7
2Dept. of Computer Science, FR-35, Univ. of Wash-
ington, Seattle, Wa. 98195 U.S.A.
3Dept. of Computer Science, Univ. of British
Columbia, Vancouver, B.C., Canada V6T lW5
4School of Information and Computer Science,
Georgia Inst. of Technology, Atlanta, Ga.30332 USA

319

values. In order to truly understand the
of sorting, then, a model which admits non-oblivkus
algorithms should be adopted. Toward this end,
Munro and Paterson 9 considered non-oblivious
sorting algorithms which use auxiliary registers to
store selected inputs and can access other inputs
only through successive passes over all the inputs.
Although they count only data space (i.e., number
of auxiliary registers used), the authors make it
clear that "control space" (used, for instance, to
remember which inputs to fetch into registers on a
given pass) is also an issue in upper bounds. To
sort n inputs within their model, they demonstrate
that the product of the number of registers and the
number of passes is e(n). Since each pass requires
n moves of the input head, their result might be

interpreted as a lower bound of on the pro-
duct of time and data space. Adopting Cobham's
mode1 3 Tampa 16 in fact demonstrated a simi-
lar trade-off for sorting on any general string-
processing model, exploiting only the restriction
of "tape input" (i.e., the input head can move at
most one symbol left or right in one step).

Thus there are at least three time-space tradeoffs
for sorting already known 9 , 15, 16 Each of these
however imposes some artificial restriction on the
algorithms considered (either obliviousness or tape
input), and so they say more about the inadequacy
of these models for sorting-type problems than they
do about the inherent complexity of the problems
themselves. To see this, one must simply confer
the three references and observe that each of these
results applies as well to the problems of merging
two sorted lists of n elements, for which the stan-
dard (non-oblivious, random access input) algorithm
requires only O(n) time, no data space, and O(log
control space (for pointers).

In order to be compelling, then, the model of com-
putation used to study sorting-type problems
should be not only non-oblivious, but should also
permit random access input. In fact, the sale
restriction which is placed on the sorting algo-
rithms considered in this paper is that they be
"conservative": inputs are viewed as indivisible
elements drawn from some total order, and the only
operations allowed are simple comparisons. Time

*This material is based upon work supported by the
Natural Sciences and Engineering Research Coun-
cil of Canada under Grants A763l and A3583, and by
the National Science Foundation under Grants
MCS 77-02474 and MCS77-15628.

Authorized licensed use limited to: ETH BIBLIOTHEK ZURICH. Downloaded on July 7, 2009 at 04:53 from IEEE Xplore. Restrictions apply.

This is the paper that I had in mind:

The ST surprise

The ST surprise

The big surprise is that this paper proves, that
for sorting, ST = Ω(n2)

The O(n2) hidden bugs

I call a O(n2) hidden bug to any part of the
system (kernel or library) which uses a

quadratic time/space algorithm when a linear
one is possible.

The O(n2) hidden bugs

I call a O(n2) hidden bug to any part of the
system (kernel or library) which uses a

quadratic time/space algorithm when a linear
one is possible.

E.g. adding one term at a time to a list (or to
a set) is a typical example of this problem

The O(n2) hidden bugs

I call a O(n2) hidden bug to any part of the
system (kernel or library) which uses a

quadratic time/space algorithm when a linear
one is possible.

E.g. adding one term at a time to a list (or to
a set) is a typical example of this problem

These bugs go often unnoticed until a
production-type problem is submitted.

The O(n2) hidden bugs (II)

The O(n2) hidden bugs (II)

res := NULL;
for i to n do res := res, f(i) od;

The O(n2) hidden bugs (II)

res := NULL;
for i to n do res := res, f(i) od;

Internal kernel support was introduced very
early (append), but unfortunately not

extended to the users

The O(n2) hidden bugs (II)

res := NULL;
for i to n do res := res, f(i) od;

Internal kernel support was introduced very
early (append), but unfortunately not

extended to the users

res = New(EXPSEQ);
for(i=0; i<n; i++)
 res = append(res,f(i));

The O(n2) hidden bugs (III)

The O(n2) hidden bugs (III)

Before the release of version 4.0 Mike
Monagan combed patiently the entire kernel
and removed most (all?) of the O(n2) bugs.

The O(n2) hidden bugs (III)

Before the release of version 4.0 Mike
Monagan combed patiently the entire kernel
and removed most (all?) of the O(n2) bugs.

For those in the internal mailing groups, it is
still common to see reports of O(n2) new bugs

The O(n2) hidden bugs (IV)

The O(n2) hidden bugs (IV)

The only answer that I have to this problem
is to create a “Quadratic Police”

The O(n2) hidden bugs (IV)

The only answer that I have to this problem
is to create a “Quadratic Police”

“Cubic or higher Army” and “Exponential
nuclear deterrent”

Option remember and unique representation

“Option remember” is the term that we use to
describe the ability of a function of

remembering previous arguments/results and
avoid/save computation.

Option remember and unique representation

“Option remember” is the term that we use to
describe the ability of a function of

remembering previous arguments/results and
avoid/save computation.

F := proc(n::integer)
option remember;
if n < 2 then n else F(n-1)+F(n-2) fi
end:

Remember and unique representation (II)

diff(tan(x), x$100);

Remember and unique representation (II)

It may change an algorithm from exponential to
linear in time (and/or space) required.

diff(tan(x), x$100);

Remember and unique representation (II)

It may change an algorithm from exponential to
linear in time (and/or space) required.

diff(tan(x), x$100);

(At one point I wrote a program to create the
largest expression ever (a Guiness-type record).

This expression was so large that any linear
function would never return, only remembering

functions had a chance).

Remember and unique representation (III)

The rationale for remembering is that computer
algebra (manipulated mathematical expressions)

contain highly repetitive parts

Remember and unique representation (III)

The kernel maintains unique representation with
the same principle. The lowest-level expression

simplifier uses option remember.

The rationale for remembering is that computer
algebra (manipulated mathematical expressions)

contain highly repetitive parts

Remember and unique representation (III)

The kernel maintains unique representation with
the same principle. The lowest-level expression

simplifier uses option remember.

All expressions are simplified and unified
recursively. Duplicates are discarded.

The rationale for remembering is that computer
algebra (manipulated mathematical expressions)

contain highly repetitive parts

Remember and unique representation (IV)

This is not the panacea, it has excellent
consequences but also produces strange

behaviours. It is a tough design decision.

Remember and unique representation (IV)

But, there is no question in my mind that it
makes for the largest space/time economy in

the early Maple.

This is not the panacea, it has excellent
consequences but also produces strange

behaviours. It is a tough design decision.

Remember and unique representation (V)

Remembering required hash signatures, and
signatures were soon quite ubiquitous in Maple.
That is the mapping of expressions to integers

or integers mod n.

Remember and unique representation (V)

It is not a surprise, in this context, that the
heuristic GCD algorithm became a leading
example of several similar algorithms and a

cornerstone of Maple’s efficiency.

Remembering required hash signatures, and
signatures were soon quite ubiquitous in Maple.
That is the mapping of expressions to integers

or integers mod n.

Memory and Ghz are cheap

How many times did I hear: “why do you bother
about memory, memory is cheaper every day” ?

Memory and Ghz are cheap

How many times did I hear: “why do you bother
about memory, memory is cheaper every day” ?

Answer: as many as #(fools) × #(encounters)

Memory and Ghz are cheap

How many times did I hear: “why do you bother
about memory, memory is cheaper every day” ?

Answer: as many as #(fools) × #(encounters)

A system which uses memory wisely will always
be ahead of one who doesn’t. (paging, garbage
collection, compaction, etc. will also cost time)

Use of the C language

A predecessor of Maple (Wama) and Maple
were initially coded in B (B is a successor of

BCPL and a predecessor of C). Later Maple was
converted to allow compilation both in B and C

(through a pre-processor called Margay).

Use of the C language

A predecessor of Maple (Wama) and Maple
were initially coded in B (B is a successor of

BCPL and a predecessor of C). Later Maple was
converted to allow compilation both in B and C

(through a pre-processor called Margay).

The architecture of Maple was strongly
influenced by the language (B and later very

simple C). The language itself was influenced by
Algol68.

Use of the C language (II)

The CA community did not believe in this
approach, personally I received several critiques

for not using Lisp (or one of its dialects)

Use of the C language (II)

The CA community did not believe in this
approach, personally I received several critiques

for not using Lisp (or one of its dialects)

Once I asked one of the top system builders of
the time: what do I get from Lisp? After an

extremely long pause the answer was: “garbage
collection for free”

Use of the C language (II)

The CA community did not believe in this
approach, personally I received several critiques

for not using Lisp (or one of its dialects)

We do not need to defend this decision, just
observe the language in which the current top

CA systems are written.

Once I asked one of the top system builders of
the time: what do I get from Lisp? After an

extremely long pause the answer was: “garbage
collection for free”

Fast to start

Dennis Ritchie tried Maple once in the very
early stages of its history (Maple’s kernel used

to be one of the benchmark programs to
compile inside ATT). He liked the look-and-
feel of Maple, and in particular he was very

positive about its rapid response.

Fast to start

Dennis Ritchie tried Maple once in the very
early stages of its history (Maple’s kernel used

to be one of the benchmark programs to
compile inside ATT). He liked the look-and-
feel of Maple, and in particular he was very

positive about its rapid response.

We did not think very highly of this remark at
the time. Maybe this was a very good

compliment that we did not appreciate enough.

Fast to start (II)

We now know that it does make a difference to
start in 0.1 secs as opposed to starting in 30
secs. It hurts the “calculator” use of Maple

Fast to start (II)

We now know that it does make a difference to
start in 0.1 secs as opposed to starting in 30
secs. It hurts the “calculator” use of Maple

The speed of starting is a combination of
various aspects: small kernel, load-on-demand

library, efficient language, among others

Conclusion

Natural selection, if applicable to software,
shows that some subset of these features is

very good, as Maple survived 29.5 years

the END

