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Introduction I

Factoring polynomials over Fp

Let p be a (large) prime and f ∈ Fp[X] be a polynomial of
degree n = d · g with equal degree factorization.

f(X) =
g∏
i=1

fi(X), deg(fi) = d.

The Fp - algebra defined by f is:

A = Fp[X]/(f(X)) =
g∏
i=1

Fp[X]/(fi(X)) ∼=
∏
i

Fpd ,

A = { y = (y1, y2, . . . , yg) : y1 ∈ Fp[X]/(fi(X)) }

=

{
y =

g∑
i=1

eiyi

}
: Chinese Remainder Theorem.
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Introduction II

Berlekamp’s strategy

Let the diagonal Frobenius automorphism be
Φ : A→ A; y 7→ yp. The Berlekamp subalgebra is

B = AΦ = {y ∈ A : yi ∈ Fp}.

and it is an g - dimensional Fp - space. A base for the
Berlekamp algebra Fp can be computed by linear algebra, and
then traditional factoring algorithms proceed by choosing
random b ∈ B and computing the GCD(b(p−1)/2 ± 1, f(X)), as
polynomials in Fp[X].
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Mihăilescu

Introduction III
A remark

The algebra A/Fp is rich in automorphisms: let
A = Aut (A/Fp). Let

ϕi ∈ A : ϕ(y1, y2, . . . , yg) = (y1, y2, . . . , y
p
i , . . . , yg),

Φ = ◦gi=1ϕi : the diagonal Frobenius .

Then B = AΦ is the fixed algebra of the diagonal Frobenius.
But there are more automorphisms, and some can be computed
globally!



Galois Theory
and Factoring of
Polynomials over

Finite Fields.
For Jo’s

p − 1−th
Anniversary

Preda
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Introduction IV
Galois lifts

1 Suppose F ∈ Z[X] is a lift of f such that K = Q[X]/(F ) is
even a galois extension (non abelian lifts are interesting, so
there is some luck in this assumption... but there will be
work arounds).

2 Let G = Gal (K/Q). Then there is an embedding G ↪→ A
that can be computed explicitly and quite efficiently using
algebra in C.

3 We assume additionally that p is not a ausserwesentlicher
Diskriminantenteiler of K. Then an old theorem of
Kummer yields a one to one correspondence ℘i = (p, fi(θ)),
with θ ∈ K, F (θ) = 0 and ℘i the primes above p in K.
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Introduction V
A case for factoring

1 Let D(℘) ⊂ G be the decomposition group of ℘; it is cyclic
since p is unramified.

2 We make the further assumption that d > 1 and there is
some σ ∈ D(℘1) which permutes some of the primes
℘i, i > 1.

3 As a consequence, for y = (y1, y2, . . . , yg) ∈ B, we have
σ(y1) = y1 but σ(yi) 6= yj , i 6= j for at least one i > 1.

4 Then y(σ) = σ(y)− y is a factoring element, in the sense
that the GCD(y(σ), f(X)) – as polynomials in Fp, is non
trivial.

5 Compared to Berlekamp, this happens without additional
exponentiations!
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Introduction VI
Motivation

1 The interest of this construction is that it works without
additional exponentiations in B. When log(p) > n2, say,
this may be of interest.

2 This motivation (...), suggests looking deeper into global
galois actions on algebras over Fp.

3 The mantra of the talk will be to identify numerous
morphisms which can be computed explicitly without use
of the Frobenii ϕi,Φ.
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Introduction VII
Plan

1 We give an overview of global - rational and p - adic - lifts
which can be computed explicitly.

2 We suggest a work around which allows K to have a non
trivial automorphism group, without being necessarily
galois. This reduces in general the degree of the working
extensions.

3 We give some explicite examples where global galois theory
helps improving some classical algorithms over Fp.

4 We present as an application a (not so new) algorithm for
primality testing, which combines cyclotomy and elliptic
curve approaches using common galois algebras over Fp.
The algorithm runs in random cubic time and is
asymptotically best in state of the art (if someone would
still care ...)
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Global lifts and their morphisms I

Completions

Let Fp, f, F,K be like before. The following construction is very
useful in Iwasawa Theory:

Let

K = K⊗Q Qp =
g∏
i=1

K℘i
= Qp[X]/(F ),

where K℘ is the completion at the place ℘. This is a galois
algebra over Qp

Then K℘
∼= K = Qp[X]/(fi), the unramified extension of

degree d of Qp.

Let U(K) = O(K). Then

A = U(K)/(pU(K)).



Galois Theory
and Factoring of
Polynomials over

Finite Fields.
For Jo’s

p − 1−th
Anniversary

Preda
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Global lifts and their morphisms II
Global and local algebra

Thus U(K) is a global lift that preserves information about the
factoring of f , via Hensel lift. Moreover,

Aut (K/Qp) ∼= Aut (A/Fp).

In particular, G ↪→ Aut (K/Qp).
The decomposition of U(K) only depends on the primes ℘i but
not on the particular polynomial representation of the algebra.
One can thus choose among many isomorphisms representing K.
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Global lifts and their morphisms III
Computing G

1 Let α1, α2, . . . , αn ∈ C be the zeroes of F and α = α1.
Then σ ∈ G is fixed by the value αi = σ(α).

2 Given αi ∈ C, one can compute using essentially
discriminants, the polynomials gi ∈ Q[X] with

σi(α) = αi = gi(α).

3 The required precision can be controlled and gi ∈ Z(p)[X]
(the algebraic localization) iff (disc(F ), p) = 1.
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Global lifts and their morphisms IV

The polynomial action of G
1 For β ∈ K one can compute with the same methods the

polynomial h ∈ Q[X] with β = h(α).

2 In this case, for arbitrary β = h(α) ∈ K, we have

σi(β) = σi(h(α)) = h(σi(α)) = h ◦ gi(α).

Note thus that polynomial composition is contravariant:
σ ◦ h = h ◦ g.

3 If (disc(F ), p) = 1 all the above computations have good
reduction at p.
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Global lifts and their morphisms V
Computing isomorphisms of A

Let θ ∈ K be an other generator of K as a simple extension
and θ = h(α) have minimal polynomial T ∈ Q[X].

Assume that (disc(F ), p) = (disc(T ), p) = 1 and let
t = T mod p ∈ Fp[X]. Then the algebra

A′ = Fp[X]/(t(X)) ∼= A.

If a = X + (f(X)) ∈ A, b = X + (t(X)) ∈ A′, then the
isomorphism ι : A′ ↪→ A is given explicitly by a→ h(a).
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Global lifts and their morphisms VI

Non galois extensions

We consider now the case when natural lifts F of f fail to be
galois – which is the general case.

Let like before αi ∈ C be the zeroes of F . We extract an
arbitrary subset, say A = {α1, α2, . . . , αj} of these zeroes.

By building an adequate linear combination

β =
j∑
i=1

ciαi ∈ C,

we obtain a simple extension K = Q[β] = Q[X]/(F ) ⊃ A,
where F is the minimal polynomial of β.

This minimal polynomial can be computed in C using, for
instance, Newton sums.
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Global lifts and their morphisms VII
Using global automorphisms

Then, assuming that K contains no further roots of F ,
Aut (K/Q) ↪→ Σj and the automorphisms
σ ∈ Aut (K/Q) can be computed explicitly, together with
isomorphisms sending K to its conjugate fields.

Note that the primes above p in K have also in this case
the degree d - but the primes (p, fi(α)) of Q[X]/(F ) split
completely in K.
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Global lifts and their morphisms VIII
Back to factoring

Consider the following lucky case:

1 Let f ∈ Fp[X] be given as above and F ∈ Z[X] be some
lift. Let a subset A ⊂ F−1(0) of j elements be given, such
that Q[A] = Q[β] = Q[X]/(F ).

2 Let ℘i = (p, fi(α)) ⊂ O(K) be ideals above p (these are not
primes, for j > 1).

3 Suppose that F,A can be found such that they enjoy the
following property:

∃σ ∈ Aut (K/Q) : σ(℘) = ℘, σ(℘i) 6= ℘i,

for some i with αi ∈ A.
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Global lifts and their morphisms IX
... factoring

1 Then we have a case for factoring: let
f = F mod p ∈ Fp[X] and A = Fp[X]/(f),B = AΦ

, the
Berlekamp algebra of A.

2 Like in the galois case, σ(b)− b ∈ B is a factoring element
that induces a non trivial factorization not only for f but
also for f .



Galois Theory
and Factoring of
Polynomials over

Finite Fields.
For Jo’s

p − 1−th
Anniversary

Preda
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Global lifts and their morphisms X
Open theoretical questions

Note that the previous algorithms all require the fact that K is
not abelian: in the abelian case, all automorphisms act like
Frobenii. Non abelian extensions can be easily achieved, by
choosing adequate lifts F . Here are some open questions.

1 Given the number g of factors of f , what is the average
size of j, such that the above construction may succeed?
Are there further obstructions?

2 Is there any lower bound on j(g) such that the algorithm is
necessarily successful? Is there any work around for the
case when d = 1 ?

3 What are further special algorithms, in which the use of
global automorphisms can bring advantages?
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Global lifts and their morphisms XI

A p - adic question
1 Let F,G ∈ Z[X] be two distinct lifts of the same f ∈ Fp[X]

and K = Q[X]/(F ),L = Q[X]/(G), while the completions
are K = Qp[X]/(F ); L = Qp[X]/(G).

2 The fields K and L are unrelated, but since they are
unramified at p, the completions K ∼= L and we have seen
how to construct the isomorphism κ at ground level.

3 Modulo p, the isomoprhism restricts to an isomorphism of
the algebra A = Fp[X]/(f). Over the global field Qp we
have however different factors for F and G, which are
identical only in the first approximation.

4 Can κ be lifted p - adically? Can this observation bring
more information on the actual factors? (Experiments are
going on ...)
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Some applications I

Factoring cyclotomic polynomials

Let q be a prime and F = Φq(X) ∈ Z[X] be the q−th
cyclotomic polynomial. The factors Ψi ∈ Fp[X] of this
polynomial all have degree d = ordq(p); there are thus
g = q−1

d such factors.

Let χ : (Z/q · Z)∗ → C be a primitive character of order g
and conductor q and τ(χ)g ∈ Z[ρg] be its Gauss sum.

It is a fact that g is in general small with respect to q. If
both p and q are large, even one Frobenius in Fp[X]/(F )
can be more than afforded.

Using galois theory, one can reduce the cost of factoring F
to essentially computing some Gauss sums of order
(dividing) g and conductor q as follows:
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Some applications II
Factoring with Gauss sums

1 Let A ⊃ Fp be some galois algebra containing an g−th root
of unity and β ∈ A be the image of τ(χ).

2 By choice of g, the equation Xg = β has a solution in A,
which can be computed using usual methods in extensions
of degree δ ≤ g. From the solutions one can compute the
images of Gauss periods of conductor q and order g in Fp;
let these be ηi ∈ Fp; i = 1, 2, . . . , g.

3 The irreducible factors Ψ =
∑d−1
k=0 ckX

k ∈ Fp[X]. The
Newton sums S(j) =

∑d
k=1 α

j
k of the zeroes of Ψ are Gauss

periods. Therefore, the only computation that depends on
q, consists in the retrieval of ck from the values S(j). For
this, O∼(q) algorithms are known (Ask Alin).
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Some applications III
Polynomial cyclic algebras

The above example indicates that galois theory helps
saving operations even in algorithms which are purported
to be best understood.

The central idea in the above factoring variant is the use of
Lagrange resolvents in algebras A in which A contains an
abelian subgroup.

A simple generalization are polynomial cyclic
algebras:(Joint work with V. Vuletescu)

The polynomial cyclic algebras describe the algebras
generated by polynomials with cyclic global lifts.
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Some applications IV
... definition

Definition

Let K be a finite field of characteristic p and f ∈ K[X] be a
polynomial of degree n. Assume that there exists a polynomial
C ∈ K[X], with m−th iterate denoted by C(m)(X),m > 0, such
that

A. f(C(X)) ≡ 0 mod f(X).

B. C(n)(X)−X ≡ 0 mod f(X) and (C(m)(X)−X, f(X)) = 1
for m < n.

Then A = K[X]/(f) is called a polynomially cyclic algebra
and C is its cyclicity polynomial.
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Some applications V
... and properties

The cyclicity polynomial behaves like we have seen that
the polynomials gσ describing global automorphisms must
behave.

With help of cyclicity polynomials, one may define in an
intrinsic way (i.e. without use of global lifts), what
Lagrange resolvents are, and verify that their properties
are consistent with the usual ones from galois theory.

Lagrange resolvents help reduce operations in larger
algebras (or even fields) A, to more operations in
subalgebras of minimal degrees.

The example of factoring cyclotomic polynomials is the
simplest such reduction.
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Some applications VI

The discrete logarithm in the SEA algorithm

(Joint work with F. Morain and É. Schost)

Torsion groups of elliptic curves yield interesting examples,
in which the cyclicity polynomials stem from the point
multiplication.

In the Elkies variant of Schoof’s point counting algorithm
for elliptic curves one encounters the following discrete
logarithm problem:

Let E : Y 2 = X3 + aX + b be an elliptic curve defined over
Fp and let ` be a prime.

Let ψ`(X)[a, b] denote the ell−th division polynomial, i.e.
the polynomial over Z, whose zeroes are all the x
coordinates of `−th division points in E [`].
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Some applications VII
Elkies case

An eigenfactor f(X)|ψ(X) of degree `− 1 over Fp is
known.

Let ρ = X + (f(X)), and gk(X) be the multiplication
polynomials, with gk(Px) = ([k]P )x for P ∈ E [`]. Then

ρp = gλ(ρ).

Here λ is an eigenvalue of the Frobenius, which should be
computed.

The traditional solution for finding λ, is to compute ρp and
then use some small step giant step strategy for computing
λ.
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Some applications VIII
and elliptic Gauss sums

Using Lagrange resolvents, one considers characters χ of
conductor ` and order q|(`− 1) that map to some algebra
A ⊃ Fp and computes (essentially)

τe(χ) =
∑

x∈(Z/`·Z)∗

gx(ρ)χ(x).

Analogues of Gauss periods occur in this sum, and these
can be computed efficiently in extensions of degree at most
q.

The elliptic Gauss sums verify, like their traditional
counterparts

(τe(χ))p = χ(λ−p) · τe(χp).
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Some applications IX
Elkies and Atkin cases

1 By exponentiations in small extensions, one recovers the
value of χ(λ) for a set of characters which generate the
dual ̂(Z/` · Z)∗, thus determining λ ∈ F`.

2 In the so called Atkin case of the SEA algorithm, there are
no eigenpolynomials. The characteristic polynomial
F (X) = X2 − tX + p of the Frobenius is irreducible over
F`, so Frobenius acts on a pair of point P, P p, spanning
E [`], like a matrix MΦ ∈ GL (2,F`).

3 In this case, one usually is contempted with the
determination of the order of MΦ.
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Some applications X

Atkin case
1 Using Lagrange resolvents and cyclic polynomials, one may

construct a map µ : A[X]/(F )→ A[ξ], where A is an
algebra containing the traces of the kernels of the ` -
isogenies of E (or alternatively, A is defined by the modular
equation Ψ`, which is a polynomial of degree `+ 1). The
variable ξ is an `−th root of unity.

2 Like in the Elkies case, computations take place in smaller
subfields or subalgebras. The value of the trace t can easily
be recovered using µ. Thus one can compute in the Atkin
case the trace t almost as efficiently as in the Elkies case.

3 The run time is dominated in both cases by one Frobenius
in A. This method is described but not implemented yet.
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CIDE - primality proving in cubic time
I

General primality proving

Let n be a large integer, which is a pseudoprime. Its
primality should be proved efficiently.

There are essentially two efficient, general approaches to
this problem: the cyclotomy approach CPP and the
elliptic curve approach ECPP.

Primes in the order of 20000 decimal digit are state of the
art for fans. They are proved using ECPP, which is well
maintained by F. Morain (CPP is by noone).
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CIDE - primality proving in cubic time
II
more ...

The first is de facto more efficient for some still actual
range of integers, but is loaded with a final trial division
step, which is asymptotically not polynomial.

The second has been improved over decades to run in
essential quartic time.

The deterministic algorithm AKS is beautiful, but
unafordable, mainly for space reasons: an improved variant
due to Berrizbeitia solves in part the time problem.
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CIDE - primality proving in cubic time
III
The cyclotomic approach

One chooses parameters s, t = ords(n) with s highly
decomposed and t = O

(
log(n)log log log(n)

)
. For all pairs

(pk, q) with pk|(q − 1) and q|s, one chooses characters
χp,q : (Z/q · Z)∗ → Ap and computes the Jacobi sums

J(p, q) = (τ(χp,q))p
k

, G(p, q) =
τ(χn(p)

p,q )

τ(χn(p)
p,q )

, n(p) = n rem pk.

If r(p) = (n− n(p))/pk, the central test stage consists in
verifying that

J(p, q)r(p) ·G(p, q) ∈< ζpk >⊂ A.
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CIDE - primality proving in cubic time
IV
The cyclotomic approach ...

If all these tests are passed successfully, one has the proof
for the following fact:

∀r | n, ∃j < t : r ≡ nj mod s. (1)

The possible remaining factors are then eliminated in a
final trial division. This step is the crux of the approach.
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CIDE - primality proving in cubic time
V
The elliptic curve approach

One uses modular forms to find an order O ⊂ K of an
imaginary quadratic field, in which n = ν · ν splits.
Moreover, a Hilbert polynomial associated to the class
group of this order has zeroes in Z/(n · Z).

One determines a curve E : Y 2 = X3 + aX + b with the
property that if n is prime, then
|En| = m(K) = n±Tr(ν) + 1.

This step is repeated until some m is found with a large
factor q|m, q > (p1/4 + 1)2. One is not happy if m(K) is
prime.
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CIDE - primality proving in cubic time
VI
The elliptic curve approach

When these steps have been completed, it suffices to find
by simple trial and error a point Q ∈ En with Q 6= O but
[qQ] = O. Since q can only be a probable prime, the
algorithm proceeds recursively, so we need descent.

The case when m is pseudoprime is thus unfavorable for
ECPP, since it does not allow (in general) descent.
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Mihăilescu

CIDE - primality proving in cubic time
VII
Dual elliptic primes

If m = m(K) is prime, there is a factorization m = µ · µ
and µ = ν ± 1. Thus µ, ν are quadratic version of twin
primes. We call these dual elliptic primes.

The following property of dual elliptic primes allows the
combination of the CPP and ECPP approaches in a mixed
algorithm CIDE, which runs in cubic time:

Suppose that m,n were found to be pseudoprimes, in the
first stage of ECPP (a long list of conditions, which we
spare here...). Then both m and n are square free and
their smallest prime factors p|m, q|n are actual dual
elliptic primes.
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CIDE - primality proving in cubic time
VIII
CIDE - the idea

1 One starts by performing the CPP test for both m,n ...
but it can be shown that it suffices now to select
s > (m+ n)1/4.

2 Let n = ν · ν,m = (ν − 1)(ν − 1) be the factorizations in K.
If they are composite, then the relation (1) together with
the property of dual elliptic pseudoprimes, imply that

p = ππ ≡ (ν − 1)j(ν − 1)j mod s

q = ρρ ≡ νkνk mod s.
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CIDE - primality proving in cubic time
IX
CIDE - the idea

1 This reduces, for any product of primes L|s to an equation

(ν − 1)j − νk ≡ ±1 mod LO.

For this reduction, some additional tests on elliptic Gauss
sums, defined in the same working algebras used for the
CPP test, are required. Their number is small.

2 Suppose that one can, by eventually adding a few factors
to s, find L|s such that the equation above has only the
trivial solution k = j = 1 modulo LO
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CIDE - primality proving in cubic time
X

CIDE - Strategy
1 In general L has at most 1− 3 prime facotrs. Note that ν

is fixed by the input number n and the order O, so the free
parameters are indeed k, j.

2 In this case, it follows that the final trial division step of
CPP is superfluous, since we obtained a proof for
j = k = 1, so the only possible divisors of m,n are their
remainders modulo s.

3 If, nevertheless, m,n are composite, then they must both
be decomposed and their least prime factors p, q, which are
dual elliptic primes and thus very close, verify
|p− q| < (n1/4 + 1). This explains why one can choose
smaller values for s in CIDE.
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CIDE - primality proving in cubic time
XI
CIDE - Analysis

1 The first step of CIDE consists in finding two dual elliptic
pseudoprimes m,n. This corresponds to the first stage of
ECPP and takes heuristic cubic time (note that ECPP
only has an heuristic run-time, it is not provable).

2 The next step requires finding L, and is fast.

3 The central step consists in two CPP tests and few
additional elliptic Gauss sum tests. The number of algebra
exponentiations is O(log(n)1−ε), so this step takes also
cubic time.

4 There is no final trial division. The test requires however
some precomputed Jacobi sums - alternatively, these can
be computed by using LLL.


