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Introduction

Let q be a prime power. In this talk, we consider univariate
polynomials over a finite field Fq.

We are interested in the following aspects:

counting polynomials with special forms;

random polynomials in algorithms;

average-case analysis of algorithms; and

decomposition of random polynomials in its irreducible factors.

It is well-known that a polynomial of degree n over Fq is
irreducible with probability close to 1/n.

Can we say something more?
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How many irreducible factors a random polynomial has?

How often will it be squarefree or k-free?

What is the expected largest (smallest) degree among its
irreducible factors?

How is the degree distribution among its irreducible factors?

How often a polynomial is m-smooth (all irreducible factors of
degree ≤ m)?

How often two polynomials are m-smooth and coprime?

How is the degree distribution among the irreducible factors of
the gcd of several polynomials?

What is the expected degree of the splitting field of a random
polynomial?

and so on.
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Algebraic algorithms that deal with polynomials over finite fields
can often be analyzed counting polynomials with particular
properties. Examples:

irreducibility tests for polynomials,

polynomial factorization,

gcd computations, and

discrete logarithm problem.

The most important characteristics of these algorithms can be
treated systematically by a methodology based on generating
functions and asymptotic analysis: analytic combinatorics.

This methodology relates finite fields and their applications to
combinatorics and number theory.
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Schedule of the talk

Basic methodology:

generating functions and asymptotic analysis;
example: expected number of irreducible factors.

Algorithms:

“folklore” polynomial factorization;
analysis of intervals.

Random properties:

what is the degree distribution of the gcd computation of
several polynomials?
what do random polynomials look like?

Conclusions and related problems.
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General framework

Let In be the number of monic irreducible polynomials in Fq. The
generating functions of monic irreducible polynomials and monic
polynomials are

I(z) =
∑
j≥1

Ijz
j , and

P (z) =
∏
j≥1

(1 + zj + z2j + · · · )Ij =
∏
j≥1

(1− zj)−Ij .

Since [zn]P (z) is qn, we have P (z) = (1− qz)−1, and these
relations implicitly determine In

In =
qn

n
+O

(
qn/2

n

)
.

A fraction very close to 1/n of the polynomials of degree n over Fq
are irreducible.
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From
1

1− qz
=
∞∏
j=1

(1− zj)−Ij ,

we get

log
1

1− qz
=

∑
j≥1

(Ij) log(1− zj)−1 =
∑
j≥1

I(zj)
j

.

Expanding the log and equating the coefficients in zn we get

qn

n
=
∑
k|n

In/k

k
.

Mobius inversion formula gives

In =
1
n

∑
k|n

µ(k)qn/k.
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As usual, we consider bivariate generating functions to take care of
critical parameters of the problems we are interested in.
Asymptotic analysis is then used to extract coefficient information.

Example: expected number of irreducible factors. Let

P (u, z) =
∏
j≥1

(1 + uzj + u2z2j + · · · )Ij =
∏
j≥1

(1− uzj)−Ij

where [ukzn]P (u, z) is the number of polynomials of degree n with
k irreducible factors.

Differentiating two times with respect to the parameter, putting
u = 1 and asymptotic analysis gives expectation log n and
standard deviation

√
log n.

Flajolet and Soria (1990) prove that the number of irreducible
factors has a Gaussian distribution.
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Theorem. Let Ωn be a random variable counting the number of
irreducible factors of a random polynomial of degree n over Fq,
where each factor is counted with its order of multiplicity.

1 The mean value of Ωn is asymptotic to log n+O(1)
(Berlekamp; Knuth).

2 The variance of Ωn is asymptotic to log n+O(1)
(Knopfmacher and Knopfmacher; Flajolet and Soria).

3 For any two real constants λ < µ,

Pr
{

log n+ λ
√

log n < Ωn < log n+ µ
√

log n
}
→ 1√

2π

∫ µ

λ
e−t

2/2dt.

4 The distribution of Ωn admits exponential tails (Flajolet and
Soria).

5 A local limit theorem holds (Gao and Richmond).

6 The behaviour of Pr{Ωn = m} for all m is known (Cohen;
Car; Hwang).
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A general factorization algorithm

Folklore Algorithm

ERF Elimination of repeated factors replaces a polynomial
by a squarefree one which contains all the irreducible
factors of the original polynomial with exponents
reduced to 1.

DDF Distinct-degree factorization splits a squarefree
polynomial into a product of polynomials whose
irreducible factors have all the same degree.

EDF Equal-degree factorization factors a polynomial
whose irreducible factors have the same degree.
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Analysis of intervals

One drawback of the DDF algorithm is that most of the gcds
computed will be equal to 1. Since a random polynomial of degree
n has about log n irreducible factors on average this is even more
precise in that case.

How can we save gcd computations?

Von zur Gathen and Shoup (1992) and Kaltofen and Shoup (1995)
present new algorithms for the DDF step based on a baby-step
giant-step strategy:

Divide the interval 1, . . . , n into about
√
n intervals of

size
√
n; for each interval, compute the joint product of

the irreducible factors whose degree lies in that interval.
Use DDF for every interval with more than one
irreducible factor.
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The algorithms by von zur Gathen and Shoup (1992) and Kaltofen
and Shoup (1995) split the interval [1 . . . n] into about

√
n pieces

of size
√
n each. When dealing with random polynomials, this

breaking strategy is not the best possible.

The number of irreducible factors in a random polynomial of
degree n tends to a Gaussian distribution with mean value log n.

These log n factors are not equally distributed in the interval [1, n]:
the expected number of irreducible factors of degree k in a random
polynomial is roughly 1/k. Thus, one expects to have more factors
of lower degrees than of higher degrees.
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When dealing with random polynomials, it is natural to consider
partitions with growing interval sizes in order to avoid collision of
irreducible factors in intervals.

Von zur Gathen and Gerhard (2002) use polynomially growing
interval sizes to factor large degree random polynomials over F2.

These intervals have led to the million-degree factorization of
Bonorden, von zur Gathen, Gerhard, Müller and Nöcker (2000).

The analysis of these algorithms involve studying the degree
distribution of irreducible factors in intervals. A first step towards
this analysis is in von zur Gathen, Panario and Richmond
(submitted).
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We provide useful information on the parameters related to
partitions of the interval [1, n]:

mean value and variance for the number of gcds executed;

mean value and variance for the number of multi-factor
intervals of a polynomial (intervals with more than one
irreducible factor);

mean value and variance for the number of irreducible factors
of a polynomial whose degrees lie in any of its multi-factor
intervals;

mean value and variance for the total degree of irreducible
factors (of a polynomial) whose degrees lie in any of the
multi-factor intervals for the polynomial;

and so on.
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Gcd computations

We are interested in the distribution of the common factors of
several random monic polynomials over Fq. Related results:

The probability that several polynomials are coprime has been
studied by Corteel, Savage, Wilf and Zeilberger (1998), and
Reifegerste (2000).

Drmota and Panario (2002) study pairs of coprime
polynomials with the condition of being smooth.

The continued fraction for polynomials has been studied by
Knopfmacher and Knopfmacher (1988, 1991), and Friesen
and Hensley (1996).

The analysis of the Euclidean algorithm for polynomials over
F2 is in Ma and von zur Gathen (1990), and for any finite
field in Lhote (2006).

Let ~n = (n1, n2, . . . , nl), where n1, n2, . . . , nl are the degrees of `
polynomials.
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Consider the following random variables:

Zr(~n): number of irreducible factors in the gcd;
Zd(~n): number of distinct irreducible factors in the gcd;
Zt(~n): total degree of the gcd.

Gao and Panario (2004) show that the limiting distribution of
Zt(~n) is a geometric distribution, and the distributions of Zd(~n)
and Zr(~n) are very close to Poisson distributions when q ≥ 64:

derive probability generating functions F (z1, . . . , z`;u) for the
above random variables;
show that F (z1, . . . , z`;u) is equal to

1
1− qz1

. . .
1

1− qz`
F0(z1, . . . , z`;u)

where F0(z1, . . . , z`;u) depends on the random variable;
show that F0(z1, . . . , z`;u) is analytic in |zi| < (1 + δ)/q,
δ > 0, and that F0(1/q, . . . , 1/q;u) 6= 0 for |u| ≤ 1 + ε,
and apply the next lemma.
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The generating functions have dominant singularities at zj = 1/q,
j = 1, . . . , `. We need transfer lemmas similar to those of Flajolet
and Odlyzko (1990) but for multivariate generating functions.
Lemma. Let G(z1, . . . , z`;u) be a generating function equal to

1
1− qz1

1
1− qz2

. . .
1

1− qz`
F (z1, . . . , z`;u),

where, for |u| ≤ 1 + ε, F (z1, . . . , z`;u) is analytic in{
(z1, . . . , z`) : |zj | <

1 + δ

q
, δ > 0, j = 1, 2, . . . , `

}
,

and F (1/q, . . . , 1/q;u) 6= 0. Then, uniformly for |u| ≤ 1 + ε

[zn1
1 . . . zn`

` ]G(z1, . . . , z`;u) = F (1/q, . . . , 1/q;u) qn1+···+n`(
1 +O

(
1
n1

+ · · ·+ 1
n`

))
.
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A simplified picture of a random polynomial:

it is irreducible with probability tending to 0 as n→∞;

it is k-free with probability 1− 1/qk−1;

it has a factor of degree r with probability 1/r (not concent.);

it has no linear factors with asymptotic probability ranging
from 0.25 to 0.3678 . . . as q grows;

it has log n irreducible factors (concentrated);

it has ckn expected kth largest degree irreducible factor,
where c1 = 0.62433 . . ., c2 = 0.20958 . . ., c3 = 0.08831 . . .
and the remaining irreducible factors have small degree (here
c1 is Dickman-Golomb’s constant);

it has expected first and second smallest degree factors
asymptotic to e−γ log n and e−γ log2 n/2 (not concentrated);

it has irreducible factors of distinct degree with asymptotic
probability between 0.6656 . . . and e−γ = 0.5614 . . . as
q →∞.
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Other results

We comment on a methodology for counting random polynomials
over finite fields based on analytic combinatorics.

Arratia, Barbour and Tavaré (1993) and Hansen (1993) study
the joint degree distribution of the irreducible factors from a
probabilistic point of view.

Other techniques have been used. Dixon and Panario (2004)
study the expected degree of the splitting field of a random
polynomial over a finite field using methods related to the
order of a permutation (Goh and Schmutz, 1991; Stong,
1998), and to the normal distribution of the logarithm of the
order of a permutation (Erdös and Turan, 1967).

Counting multivariate polynomials over finite fields has been
treated by Carlitz and others, and more recently by von zur
Gathen, Viola and Ziegler.
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From the acknowledgements of my thesis:

Joachim von zur Gathen was influential at several levels.
First, he proposed the topic for this thesis. Our numerous
discussions at that time greatly increased my
understanding of the area. Later, as a co-author, his
meticulous way of working was inspiring. I hope some
day I can state such interesting questions with such
meticulous answers.

Thank you Joachim!
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