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I: Lattices, QR-decomposition, LLL-bases 3

lattice basis B = [b1, . . . , bn] ∈ Zm×n

lattice L(B) = {Bx | x ∈ Zn}
norm ‖x‖2 = 〈x, x〉 =

∑m
i=1 x2

i

SV-length λ1(L) = min{‖b‖ | b ∈ L\{0}}

QR-decomposition B = QR ⊂ Rm×n such that
• the GNF — geom. normal form — R = [ri,j ] ∈ Rn×n is

uppertriangular, ri,j = 0 for j < i and ri,i > 0, ( ri,i = ‖b∗i ‖ )
• Q ∈ Rm×n isometric: QtQ = In.

LLL-basis B = QR for δ ∈ (1
4 , 1] (Lenstra, Lenstra, Lovasz 82):

1. |ri,j | ≤ 1
2 ri,i for all j > i (size-reduced) ( ri,j/ri,i = µj,i )

2. δ r2
i,i ≤ r2

i,i+1 + r2
i+1,i+1 for i = 1, . . . , n − 1.

3. α−i+1 ≤ ‖bi‖2λ−2
i ≤ αn−1 for i = 1, ..., n,

4. ‖b1‖2 ≤ α
n−1

2 (detL)2/n, where α = 1/(δ − 1
4).



I: Recall ENUM 1994/95 4

Let Lt = L(b1, ..., bt−1) and πt : span(L) → span(Lt)
⊥ for

t = 1, ..., n denote the orthogonal projection.

Stage (ut, ..., un) of ENUM.

b :=
∑n

i=t uibi ∈ L and ut , ..., un ∈ Z are given. The stage
searches exhaustively for all

∑t−1
i=1 uibi ∈ L such that

‖
∑n

i=1 uibi‖2 ≤ A holds for some A ≥ λ2
1. Obviously

‖
∑n

i=1 uibi‖2 = ‖ζt +
∑t−1

i=1 uibi‖2 + ‖πt(b)‖2,
goal: ≤ A to be minimized spent

where ζt := b− πt(b) ∈ spanLt is the orthogonal projection of
the given b =

∑n
i=t uibi .

Stage (ut , ..., un) exhausts Bt−1(ζt , ρt) ∩ Lt where
Bt−1(ζt , ρt) ⊂ spanLt is the sphere of dimension t − 1 with
center ζt and radius ρt := (A− ‖πt(b)‖2)1/2.



I: The success rate βt of stages 5

The GAUSSIAN volume heuristics estimates |Bt−1(ζt , ρt) ∩ Lt | to
βt =def volBt−1(ζt , ρt)/ detLt .

Here volBt−1(ζt , ρt) = ρt−1
t−1 Vt−1, Vt = π

t
2 /( t

2)! ≈ (2eπ
t )

t
2 /
√

πt
is the volume of the unit sphere of dimension t ,

detLt =
∏t−1

i=1 ri,i , ρ2
t := A− ‖πt(

∑n
i=t uibi)‖2.

We call βt the success rate of stage (ut , ..., un).

If ζt mod Lt is uniformly distributed over the parallelepiped
Pt := {

∑t−1
i=1 ribi |0 ≤ r1, ..., rt−1 < 1}

then Eζt [ |Bt−1(ζt , ρt) ∩ Lt | ] = βt for ζt ∈R Pt ,
because 1/ detLt is the number of points of Lt per volume.

The center ζt = b− πt(b) ∈ spanLt changes rapidly within NEW

ENUM. It is natural to assume that ζt ∈ span(Lt) distributes
nearly randomly, and thus the estimate |Bt−1(ζt , ρt) ∩ Lt | ≈
volBt−1(ζt , ρt)/ detLt of the vol. heur. holds on the average.



I: Outline of New Enum for SVP 6

INPUT LLL-basis B = QR ∈ Zm×n, R ∈ Rn×n, A := n
4(det BtB)2/n,

OUTPUT a sequence of b ∈ L(B) of decreasing length
‖b‖2 ≤ A terminating with ‖b‖ = λ1.

1. s := 1, L := ∅, (we call s the level)
2. Perform algorithm ENUM [SE94] pruned to stages with βt ≥ n−s:

Upon entry of stage (ut , ..., un) compute βt . If βt < n−s delay
this stage and store (βt , ut , ..., un) in the list L of delayed stages.
Otherwise perform stage (ut , ..., un) on level s, and as soon as
some non-zero b ∈ L of length ‖b‖2 ≤ A has been found
give out b and set A := ‖b‖2 − 1. Recompute the stored βt .

3. Perform and delete the stages (ut , ..., un) of L with βt ≥ n−s−1

in increasing order of t and for fixed t in order of decreasing βt .
Collect the called substages (ut ′ , ..., ut , ..., un) with βt ′ < n−s−1

in L. IF L = ∅ THEN terminate by exhaustion.
4. s := s + 1, GO TO 3



II: Optimizing the implementation 7

We efficiently approximate βt using floating point arithmetic.

The space reservations for the list L are quite expensive
compared to the modest arithmetic costs per stage.

The condition βt < n−s has been tested in practice. It replaces
our original condition βt < 2−s. This reduces the list L and the
number of list operations.

For the final exhaustive search that proves ‖b‖ = λ1 the
success rate and the list operations can be suppressed, they
merely slows down the computation.

The start of the final exhaustion can be guessed: if no shorter
vector comes up for an extended period then most likely the
last output b has length λ1.



II: Time Bound for the SVP algorithm 8

Def. The relative density of L: rd(L) := λ1γ
−1/2
n (detL)−1/n

rd(L) = λ1(L)/ max λ1(L′) holds for the maximum of λ1(L′)
over all lattices L′ of dimL′ = n and detL = detL′.

The HERMITE constant γn = max{λ2
1/ det(L)2/n | dim L = n}.

We always have λ2
1 = rd(L)2 γn (detL)2/n.

Theorem 1 Given a lattice basis satisfying GSA and
‖b1‖ ≤

√
eπ nb λ1, b ≥ 0, NEW ENUM solves SVP in time

2O(n)(n1/2+brd(L))n/4. In particular in time 2O(n)nn/8 for b = 0.

The 2O(n) factor disappears under the volume heuristics.

GSA : Let B = QR = Q[ri,j ] satisfy (for ri,i = ‖b∗i ‖):
r2
i,i/r2

i−1,i−1 = q for i = 2, ..., n and some q > 0.

W.l.o.g. let q < 1, otherwise ‖b1‖ = λ1.
The condition ‖b1‖ ≤

√
eπ nb λ1 can "easily" be met for CVP.



II: Polynomial SVP time under the vol. heuristics 9

Finding an unproved shortest vector b′ is easier than proving
‖b′‖ = λ1. We study the time to find an SVP-solution b′ without
proving λ1 = ‖b′‖ under the assumption:

SA ‖πt(b′)‖2 ≈ n−t+1
n λ2

1 holds for all t and NEW ENUM’s
SVP-solution b′, where πt(b′) ∈ span(b1, ..., bt−1)

⊥.

Proposition 1. Let a lattice basis be given that satisfies GSA,
‖b1‖ ≤

√
eπ/2 nbλ1 and rd(L) ≤ n−

1+2b
4 . If NEW ENUM finds a

shortest lattice vector b′ satisfying SA it finds b′, without
proving ‖b′‖ = λ1, under the vol. heuristics in polynomial time.

Polynomial time holds for b = 0, rd(L) ≤ n−1/4. But the time to
prove ‖b′‖ = λ1 is under the vol. heuristics Θ(n

1
2 rd(L))n/4.
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Corollary 1. Given t ∈ Rn and B of L(B) satisfying GSA, if
‖b1‖ = λ1 and rd(L) ≤ n−1/2 then NEW ENUM solves the CVP
‖t− b‖ = ‖t− L‖ under the volume heuristics in poly-time.

A random center ζ = πt(t) of Bn(ζ, ρ) provides a good basis for
the volume heuristics, much better than for solving SVP where
the center ζ = 0 nearly maximizes |Bn(ζ, ρ) ∩ L|.

We adjust the assumption SA from SVP to CVP:

CA Let ‖πt(t− b̈)‖2 ≈ n−t+1
n ‖t− L‖2 hold for all t and

NEW ENUM’s CVP-solution b̈.

Corollary 2. Let B = [b1, ..., bn] in Zm×n satisfy GSA,
‖b1‖ = O(λ1) and let b̈ satisfy CA for B, t. If rd(L) = o(n−1/4)
and ‖t− L‖ = O(λ1) then NEW ENUM finds the CVP-solution
b̈ ∈ L under the volume heuristics in polynomial time, but
without proving ‖t− b̈‖ = ‖t− L‖.
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Let N be a positive integer that is not a prime power. Let
p1 < · · · < pn enumerate all primes less than (ln N)α. Then

n = (ln N)α/(α ln ln N + O(1)).
Let the prime factors p of N satisfy p > pn.

We show how to factor N by solving "easy" CVP’s for the prime
number lattice L(B), basis matrix B = [b1, . . . , bn] ∈ R(n+1)×n :

B =


√

ln p1 0 0

0
. . . 0

0 0
√

ln pn
Nc ln p1 · · · Nc ln pn

, N =


0
...
0

Nc ln N ′

,

and the target vector N ∈ Rn+1, where either N ′ = N or
N ′ = N pn+j for one of the next n primes pn+j > pn, j ≤ n.

Lemma 5.3 [ MG02] λ2
1 ≥ 2c ln N.

rd(L) = o(n−1/4) for c = (ln N)β , some α > 2β + 2, β > 0.



III: Outline of the factoring method from [S93/91] 12

We identify the vector b =
∑n

i=1 eibi ∈ L(B) with the pair (u, v)

of integers u =
∏

ej>0 pej
j , v =

∏
ej<0 p−ej

j ∈ N.

Then u, v are free of primes larger than pn and gcd(u, v) = 1.

We compute vectors b =
∑n

i=1 eibi ∈ L(B) close to N such that

|u − vN ′| < pn. The prime factorizations |u − vN ′| =
∏n

i=1 pe′i
i

and u =
∏

ej>0 pej
j yield for "suitable" α, c a non-trivial relation∏

ei>0 pei
i = ±

∏n
i=1 pe′i

i mod N. (7.1)
Given n + 1 independent relations (7.1) we write these relations

with p0 = −1 and ei,j , e′i,j ∈ N as
∏n

i=0 p
ei,j−e′i,j
i = 1 mod N

for j = 1, ..., n + 1. Any non-trivial solution z1, ..., zn+1 ∈ Z of∑n+1
j=1 zj(ei,j − e′i,j) = 0 mod 2, i = 0, ..., n

solves X 2 = 1 mod N by X =
∏n

i=0 p
1
2

Pn+1
j=1 zj (ei,j−e′i,j )

i mod N.
Hence gcd(X ± 1, N) factors N if X 6= ±1 mod N.



V: Vectors b ∈ L closest to N yield relations (7.1) 13

An integer z is called y -smooth, if all prime factors p of z
satisfy p ≤ y . Let N ′ be either N or Npn+j for one of the next n
primes pn+j > pn. We denote

Mα,c,N =
{

(u, v) ∈ N2 u ≤ Nc , |u − vN ′| = 1, Nc−1/2 < v < Nc−1

u, v are squarefree and (ln N)α−smooth

}
.

Theorem 4 [S93/91] If the equation |u − du/NcN| = 1 is for
random u of order Nc nearly statistically independent from the
event that u, du/Nc are squarefree and (ln N)α-smooth then
Mα,c,N 6= ∅ holds if α

α−2β−2 < c ≤ (ln N)β and α > 2β + 2.

Theorem 4 extends the result of [S93/91] from a constant c > 0
to c = (ln N)β , required for rd(L) = o(n1/4).

Theorem 5 The vector b =
∑n

i=1 eibi ∈ L(B) closest to N
provides a non-trivial relation (7.1) provided that Mα,c,N 6= ∅.
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Theorem 6 If ‖b1‖ = O(λ1) and Mα,c,N 6= ∅ for c = (ln N)β ,
α > 2β + 2 we can minimize ‖L(B)− N‖ under GSA, CA and
the volume heuristics in polynomial time.

Proof. It follows from Mα,c,N 6= ∅ for N ′ ∈ {N, Npn+j} that
‖L − N‖2 ≤ (2c − 1) ln N ′ + 1 = (2c − 1 + o(1)) ln N.

Lemma 5.3 of [MG02] proves that λ2
1 ≥ 2c ln N −Θ(1)

[ λ2
1 = 2c ln N + O(1) holds if 0 < α

α−2β−2 < c ≤ (ln N)β . ]

rd(L) = λ1/(
√

γn(detL)
1
n ) .

(2eπ 2c ln N
(ln N)α

) 1
2

= O(c ln N)(1−α)/2 = O((ln N)1−α).
We have for c = (ln N)β , α > 2β + 2 that 2c ln N

(ln n)α = o(n−1/2)

Hence rd(L) = o(n−1/4). �



III: Providing a nearly shortest vector for L(B) 15

For solving ‖t− b̈‖ = ‖t− L‖ heur. in poly-time Theorem 6
requires some ‖b1‖ = O(λ1).

We extend the prime number basis B and L(B) by a nearly
shortest lattice vector for the extended lattice, preserving rd(L),
det(L) and the structure of the lattice.

We extend the prime base by a prime p̄n+1 of order Θ(Nc) such
that |u − p̄n+1| = O(1) holds for a squarefree (ln N)α-smooth u.
Then ‖

∑
i eibi − bn+1‖2 = 2c ln N + O(1) holds for u =

∏
i pei

i
and the additional basis vector bn+1 corresponding to p̄n+1.∑

i eibi − bn+1 is a nearly shortest vector of L(b1, ..., bn+1).

Efficient construction of p̄n+1 . Generate random u =
∏

i pi
and test the nearby p̄ for primality. p̄n+1 and bn+1 can be found
in probabilistic polynomial time if the density of primes near the
u is not exceptionally small. A single p̄n+1 can be used to solve
all CVP’s for the factorization of all integers of order Θ(N).
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Theorem 1 Given a lattice basis satisfying GSA and
‖b1‖ ≤

√
eπ nb λ1, b ≥ 0, NEW ENUM solves SVP in time

2O(n)(n1/2+brd(L))n/4.

NEW ENUM essentially performs stages in decreasing order of
the success rate βt . Let b′ =

∑n
i=1 u′i bi ∈ L denote the unique

vector of length λ1 that is found by NEW ENUM.
Let β′t be the success rate of stage (u′t , ..., u′n).

NEW ENUM performs stage (u′t , ..., u′n) prior to all stages
(ut , ..., un) of success rate βt ≤ 1

nβ′t

Simplifying assumption. We assume that NEW ENUM
performs stage (u′t , ..., u′n) prior to all stages of success rate
βt < β′t , ( i.e., ρt < ρ′t ).
By definition ρ2

t = A− ‖πt(b)‖2 and ρ′t
2 = A− ‖πt(b′)‖2.

Without using the simplifying assumption, the proven time
bound of Theorem 4.1 increases at most by the factor n.



IV: A proven version of the volume heuristics 17

Consider the number Mt of stages (ut , ..., un) with
‖πt(

∑n
i=t uibi)‖ ≤ λ1: Mt := #

(
Bn−t+1(0, λ1) ∩ πt(L)

)
.

Modulo the heuristic simplifications Mt covers the stages that
precede (u′t , ..., u′n) and those that finally prove ‖b′‖ = λ1.

Lemma 1 Mt ≤ e
n−t+1

2
∏n

i=t(1 +
√

8π λ1√
n−t+1 ri,i

).

The proof uses the method of Lemma 1 of MAZO, ODLYZKO

[MO90] and follows the adjusted proof of inequality (2) in
section 4.1 of HANROT, STEHLÉ [HS07].

Now r2
i,i = ‖b1‖2qi−1, λ2

1/(γn rd(L)2) = (det L)
2
n = ‖b1‖2q

n−1
2

hold by GSA and thus γn ≥ n
2 eπ directly imply for i = t , ..., n

√
n − t + 1 ri,i ≤

√
2eπ rd(L)−1λ1 q(2i−n−1)/4.

By Lemma 1 Mt ≤
∏n

i=t
e
√

π rd(L)−1 λ1 q(2i−n−1)/4+
√

8eπ λ1√
n−t+1 ri,i

(4.0)



IV: Proof of Theorem 1 continued 18

For the remainder of the proof let t := n
2 + 1− c and

m(q, c) := [if c > 0 then q
1−c2

4 else 1]. Then

Mt ≤ m(q, c)
( (2+

√
e)
√

2eπ λ1√
n−t+1 rd(L)

)n−t+1
/ det πt(L), (4.1)

where m(q, c) = q
1−c2

4 = q−
1
4

Pc
i=0(2i−1) covers in (4.0) the

factors q
2i−n−1

4 > 1 for t < i < n
2 + 1.

We see from (4.1) and det πt(L) = ‖b1‖n−t+1q
Pn

i=t
i−1

2 that

Mt ≤ m(q, c)
( (2+

√
e)
√

2eπ√
n−t+1

λ1
b1‖rd(L)

)n−t+1
/q

Pn−1
i=t−1 i/2 (4.2)

The [KL78] bound γn ≤ 1.744 (n+o(n))
2eπ ≤ n

eπ for n ≥ n0 and
1

n−1
∑n−1

i=t−1 i = n
2 −

(t−1)(t−2)
2(n−1) and q

n−1
2 = λ2

1/(‖b‖2γn rd(L)2)

show
Mt ≤ m(q, c)

( (2+
√

e)
√

2eπ λ1√
n−t+1 rd(L) ‖b1‖

)n−t+1(√n rd(L) ‖b1‖√
eπ λ1

)n− (t−1)(t−2)
n−1 .
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The difference of the exponents
de(t) = n − (t−1)(t−2)

n−1 − n + t − 1 = (t − 1)(1− t−2
n−1) is positive

for t ≤ n and de(n
2 + 1− c) = n2/4−c2

n−1 . Hence for
‖b1‖ ≤

√
eπ nb λ1 and all t ≤ n :

Mt ≤ m(q, c)
(
(
√

8 +
√

2e)
√

n
n−t+1)n−t+1 (

n
1
2 +brd(L)

) n2/4−c2

n−1

For c > 0, t ≤ n
2 we have

m(q, c) = q
1−c2

4 =
(‖b1‖

√
γn rd(L)
λ1

) c2−1
n−1 ≤ (n

1
2 +brd(L))

c2−1
n−1 , and

thus : Mt ≤ (4 + 2
√

e)n−t+1 (
n

1
2 +brd(L)

) n2/4−1
n−1 =

2O(n)
(
n

1
2 +brd(L)

) n+1
4 , where n2/4−1

n−1 ≤ n+1
4 .

For c ≤ 0, t > n
2 we have

Mt ≤
(
(
√

8 +
√

2e)
√

n
n−t+1

)n−t+1 (
n

1
2 +brd(L)

) n2/4
n−1

= 2O(n)
(
n

1
2 +brd(L)

) n+2
4 where n2/4

n−1 ≤ n+2
4 . �
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MAZO, ODLYZKO [MO90] show for the lattice L = Zn :
#{x ∈ Zn | ||x‖2 ≤ an} = 2Θ(n)

for a0 ≤ a ≤ 1
2eπ and any a0 > 0,

whereas the vol. heuristics estimates this cardinality to O(1).

The center ζ = 0 of the sphere is bad for the vol. heur.:
It can nearly maximize |Bn(ζ, ρ) ∩ L|.

NEW ENUM for SVP tries to keep the center ζt = b− πt(b)
∈span Lt close to 0 ∈ Rt−1. Can this in practice generate
substantial errors of the volume heuristics?.
NEW ENUM for CVP keeps for center ζt = b− t− πt(b− t)
close to πt(t). For random t this better justifies the volume
heuristics in the analysis of NEW ENUM for CVP.



II: Ajtai’s worst case / average case equivalence 21

5.2 nc-unique-SVP lattices: every lattice vector that is linearly
independent of a shortest nonzero lattice vector has at least
length λ1nc for some c > 1, i.e., λ2 ≥ λ1nc .

Proposition 1 shows that all nc-unique-SVP’s can be solved
under GSA and the volume heuristics in polynomial time given
a very short lattice vector.

5.3 Ajtai’s worst case / average case equivalence. AJTAI

[Aj96, Thm 1] solves every nc-unique-SVP using an oracle that
solves SVP for a particular random lattice. However, all
nc-unique-SVP’s are somewhat easy. This makes the worst
case / average case equivalence suspicious.

[MR07] reduces nc in Ajtai’s reduction to n lnO(1) n.
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