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The big picture

We have very good algorithms for univariate polynomials
o arithmetic operations +, x, =

e computing in K — K[X]/f

We would like good algorithms for multivariate polynomials

e one question (among others):
efficient arithmetic in K — K[Xy, ..., Xu]/{f1,...,fs)

e application: solving polynomial systems

Objective: quasi-linear time, no factor of the form c” in the cost
(in particular, expansion is forbidden — cf.
Canny-Kaltofen-Lakshman'’s sparse product)



This talk -

No known solution, even for nice assumptions on (fi, ..., fs) such as
o tdeg or lex Grobner basis

e triangular set

This talk: algorithms for multiplication modulo zero-dimensional
monomial ideals, i.e. multiplication of power series.

NFE
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Main result

Input
e M is a zero-dimensional monomial ideal in K[X1, ..., Xj]

° 5M = dimK K[Xl, . ,Xn]/M
this is the input and output size

e reg,, = maxdeg(m), for m a monomial not in M

Theorem

One multiplication modulo M can be done in O™ (dy reg,, 1)
operations in K (provided K is large enough).

The factor reg), is the price to pay to use evaluation and interpolation
techniques.



Example: total degree truncation

Truncation in total degree is determined by
M= (X1,...,X,)" = (all monomials of degree d ).

Used in many forms of Hensel lifting; the support is a simplex.
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Example: partial degree truncation -

Truncation in partial degree is determined by

M= (XH .. X,

Used in a few (more marginal?) algorithms. The support of such series
is a cube.
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Previous work

1 variable

Truncation does not help for “optimal” algorithms
(Fiduccia-Zalcstein)

Short product: improvement for algorithms like Karatsuba or
Toom-Cook (Schonhage, Mulders, Hanrot-Zimmermann)

2 variables
Upper and lower bounds by Schénhage and Blaser

Total degree truncation
Quasi-linear cost for char k = 0 (Lecerf-S.)
Previous work by Griewank; refinments by van der Hoeven



Part 1

Review: evaluation and interpolation in one variable J
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Polynomial multiplication

We let M be such that polynomials of degree less than 7 can be

multiplied in M(n) base ring operations

Examples
e Naive

Karatsuba

¢ Toom

FFT over nice fields

e FFT in general

+ the assumptions of Chapter 9.



Evaluation and interpolation

Already in one variable, the problem comes in many different flavors:
e polynomial
e dense
e Lagrange

e monomial basis, Newton basis
-1,X,..., x4

- 1,(X—x0),..., (X —x0) -+ (X —x4-1), x; pairwise distinct



Known results (cf. Chapter 10)

M(d) log ()

monomial basis - Newton basis

Borodin-Moenck, Bostan-Lecerf-S.

Bini-Pan, Bostan-S.

Slightly better results for arithmetic progressions (Gerhard); much
better results for geometric progressions (Bluestein, Rabiner et al.,
Mersereau, Bostan-S.).



Known results (cf. Chapter 10)

M(d) log ()

monomial basis - Newton basis

M(d) log(d)

1.5M(d) log(AINOK 2 M(d) log(d)

Borodin-Moenck, Bostan-Lecerf-S.
Bini-Pan, Bostan-S.
Slightly better results for arithmetic progressions (Gerhard); much

better results for geometric progressions (Bluestein, Rabiner et al.,
Mersereau, Bostan-S.).



Part I1

Multivariate evaluation and interpolation J
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Previous work

In multivariate cases, there are many possible views on the problem
(see Gasca-Sauer). From the point of view of feasibility, our
interpolation problem will be simple.

Tensor product algorithms
e multidimensional FFT
e Pan (1994): simple evaluation / interpolation at a grid

Evaluation algorithms
o Nusken, Ziegler (2004): bivariate evaluation at arbitrary points,
subquadratic time
e Umans (2007), Kedlaya, Umans (2008): evaluation at arbitrary
points, quasi-linear time
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Setup

Choose an initial segment T C N" for the partial order on N"

Monomial support
° K[Xh...,XH}T: {Xlll X,lqn | (11,,ln) € T}
e bounding box: dy, ..., d, such that
Tc{0,...,dy —1} x---x{0,...,d, — 1}

Sample set
e fori < n, pick pairwise distinct x;, ..., X; 41
o V= {(xLil? C ,xnﬂ‘n) | (il, C ,in) € T}
e V7 is contained in the grid

(X1,05 - -5 X1.d,-1) X === X (Xp05 -5 X1 ,dy—1)



Examples

Monomial support

NFE

Easy sample set

e choose (xp,...,Xi4-1) = (0,...,d; — 1)
e inthiscase Vi =T

e so we are evaluating polynomials supported on K[Xy, ..., X,|r at
the set T.

This is the sample set I will choose, even though using a geometric
progression would be a bit better
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Previous work

Mora, Sauer (but also Macaulay, Hartshorne .. .)

e the evaluation map is invertible
(by a Grobner basis argument)

Werner, 1980

e interpolation in the Newton basis, using divided differences
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Multivariate Newton basis

Polynomials in K[Xj, ..., X;]r can be written on:

e the monomial basis Xil co X
o the Newton basis N; (X1) - - - N;, (X;,), with

N; (X)) = (Xj = x50) -+ (Xj = Xj,5,-1)

Example: T is given as

With a grid based on (0,1,2) x (0, 1,2), the bases are
L 17 Xla X%v XZa X2X17 X%
e 1, Xq, X1(X1 — 1), X2, XoXy, Xa(X2 — 1)



Conversions

Theorem: Changes of basis can be done in time

M(d1)log(d1) . M(dy)log(dy) ~
O<<+ —l—) \T!) c O (n|T|).

dl dn

Done using a tensored version of the univariate algorithms.

Example: T'is given as
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Conversions

Theorem: Changes of basis can be done in time
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Conversions

Theorem: Changes of basis can be done in time
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Conversions

Theorem: Changes of basis can be done in time

M(d1) log(d1) M(d,) log(dn) -
o) ((dl +ot dﬂ) \T|> c O (n|T]).

Done using a tensored version of the univariate algorithms.

Example: T'is given as

M (dl) log(d1 ) dz



Conversions

Theorem: Changes of basis can be done in time

M(d1) log(d1) M(d,) log(dn) -
o) ((dl +ot dﬂ) \T|> c O (n|T]).

Done using a tensored version of the univariate algorithms.

Example: T'is given as

M(dl) log(d1) dz + M(dz) log(dz) dl



Evaluation and interpolation

Theorem: Evaluation and interpolation can be done in time

M(di)log(d1) | M(ds)log(dy) )
o((d1 o R )m) c O (n|T]).

Done in the Newton basis, using a tensored version of the univariate
algorithms.

Example:

po2X2(X2 — 1)
o Po1 X2 p1,1X1X>
0.0 p1oX1  proXi(X1i—1)
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Evaluation and interpolation

Theorem: Evaluation and interpolation can be done in time

M(di)log(d1) | M(ds)log(dy) )
o((d1 o R )m) c O (n|T]).

Done in the Newton basis, using a tensored version of the univariate
algorithms.

Example:

Po2X2(Xp — 1)
® Po,1X2 p11X1X>
00,0 01,0 02.0



Evaluation and interpolation

Theorem: Evaluation and interpolation can be done in time

M(di)log(d1) | M(ds)log(dy) )
o((d1 o R )m) c O (n|T]).

Done in the Newton basis, using a tensored version of the univariate
algorithms.

Example:

po2X2(Xo — 1)
o 00,1X2 011X
00,0 01,0 02,0



Evaluation and interpolation

Theorem: Evaluation and interpolation can be done in time

M(di)log(d1) | M(ds)log(dy) )
o((d1 o R )m) c O (n|T]).

Done in the Newton basis, using a tensored version of the univariate
algorithms.

Example:

00,2X2 (X2 — 1)
o 00,1X2 011X
00,0 01,0 02,0



Evaluation and interpolation

Theorem: Evaluation and interpolation can be done in time

M(di)log(d1) | M(ds)log(dy) )
o<<d1 o R )m) c O (n|T]).

Done in the Newton basis, using a tensored version of the univariate
algorithms.

Example:

o 011X
01,0 02,0



Evaluation and interpolation

Theorem: Evaluation and interpolation can be done in time

M(di)log(d1) | M(ds)log(dy) )
o<<d1 o R )m) c O (n|T]).

Done in the Newton basis, using a tensored version of the univariate
algorithms.

Example:

02.0



Evaluation and interpolation

Theorem: Evaluation and interpolation can be done in time

M(di)log(d1) | M(ds)log(dy) )
o((d1 o R )m) c O (n|T]).

Done in the Newton basis, using a tensored version of the univariate
algorithms.

Example:
w11

wWo,0 w10 w20
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Evaluation and interpolation

Theorem: Evaluation and interpolation can be done in time

M(di)log(d1) | M(ds)log(dy) )
o((d1 o R )m) c O (n|T]).

Done in the Newton basis, using a tensored version of the univariate
algorithms.

Example:

po2X2(X2 — 1)
() Po1 X2 p1,1X1Xp
0.0 p1oX1  proXi(Xi—1)



Evaluation and interpolation

Theorem: Evaluation and interpolation can be done in time

M(di)log(d1) | M(ds)log(dy) )
o((d1 o R )m) c O (n|T]).

Done in the Newton basis, using a tensored version of the univariate
algorithms.

Example:

o Po,1 X2 p11X1X>
Po,0 p1,0X1

To evaluate P at (1,1), we just need the coefficients “under” (1,1)



Part 11T

Power series multiplication J
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Review

Setup

e M: zero-dimensional monomial ideal in K[Xi, . ..

e T: exponents of the monomials not in M

e oy =dimK[Xy,...,X,]/M = |T|
this is the input and output size
e reg,, = maxdeg(m), for m not in M

e T=1{(0,0), (1,0), (0,1)}

e K[Xj, Xp]r generated by 1, X1, Xp
o opm =3, reg, =1

Example M = (X2, X1 X5, X3)

s Xl
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Evaluation / interpolation techniques

Theorem (2005). One multiplication modulo M can be done using

e O(reg,,) evaluations / interpolations at T of polynomials in
K[X1,..., XulT

e 0y univariate power series products at precision O(reg,,)

(at the time, I did not know how to do the evaluation / interpolation)

Ingredient: APA-algorithms (as in fast matrix multiplication)
e Bini-Capovani-Romani-Lotti: floating-point products

e Bini: relation to exact computations

e Bini-Lotti-Romani, Schénhage: multiplication modulo X?



The algorithm on an example

..

to multiply modulo
(X5, X1 X5, X3)
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The algorithm on an example

S

to multiply modulo multiply modulo
X3 XX, X)) (X(Xa - e), XiXo, Xa(Xa —€))
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The algorithm on an example

0
0 ¢
to multiply modulo multiply modulo

(X3, X1Xa, X3) (X1(X1 —¢€), X1Xa, Xo(Xp —€))

lete =0
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The algorithm on an example

S

to multiply modulo multiply modulo
(X7, XiXa, X3)  (Xu(X1 —e), XiXa, Xo(X2 —¢))
(by evaluation / interpolation)

lete =0
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The algorithm on an example

S

to multiply modulo multiply modulo
(X7, XiXa, X3)  (Xu(X1 —e), XiXa, Xo(X2 —¢))
(by evaluation / interpolation)

lete =0

e in general:
in
every member a{'x3:... 0" of the basis of P change zV'd =1, 2, ..., n) to
Zi(@i—1) ... (5—pit1).
e do evaluation / interpolation, with power series coefficients
e correctness (again) from Mora-Sauer-... s argument
precision in € = 2 x regularity
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Going beyond

1. The factor reg,, is annoying
e Ishould allow expansion: allows product modulo (X4, ..., X%) in
time O7(54V1089)

e but still, does not solve

—7

2. Computing modulo a zero-dimensional Grobner basis?

e initial ideals obtained through one-parameter deformations

e homotopy techniques?
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