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Introduction

What do we study?

F = {F1, . . . , Fm}: system of m polynomials in m

variables over a field IF of the form. We put

F
(0)
i = Xi

and we study the iterations:

F
(k)
i = Fi

(
F

(k−1)
1 , . . . , F

(k−1)
m

)
where i = 1, . . . ,m.

We discuss various questions about the degree

grows, linear and multiplicative independence and

irreducibility of these polynomial iterations.

Please note that indeed they are mainly questions,

with very few answers . . .



2

Motivation for this talk

• Both Joachim and I like polynomials
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Motivation for giving this talk:

• Both Joachim and I are passionate about poly-

nomials

• Both Joachim and I are passionate about iter-

ations:

Ramenki, Moscow, 1990
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Less important reasons are:

• Links with the theory of dynamical systems

• Better and cryptographically stronger pseudo-

random number generators (PRNG):

• Possible new hash functions
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Notation

A� B or B � A (I. M. Vinogradov)

m

A = O(B) (E. Landau)

� is more compact and easier to use and admits

more informative chains like

A� B = C.

Now try

A = O(B) = C
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Before we iterate:
Polynomial decompositions

Question: Can a polynomial f over a field IK be

written as f = g(h) with nontrivial polynomials g

and h?

Algorithms and Charcterisation

Ritt 1922

Barton & Zippel 1976

Schinzel 1982

Giesbrecht 1988

von zur Gathen 1990

Zannier 1993

Kozen, Landau & Zippel 1996

Beardon & Ng 2000

Gutierrez & Kozen 2003

Gutierrez & Sevilla 2006

Zieve & Müller 2008
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Counting

Let Dn be the number of decomposable polyno-

mials of composite degree n over IFq nd let

αn =

{
2q`+n/`(1− q−1), n 6= `2

q2`(1− q−1), n = `2

where ` is the smallest prime divisor of n.

von zur Gathen 2009

Informally: αn is a good approximation to Dn.

E.g., if gcd(n, q) = 1 then

|Dn − αn| ≤ αnq−n/3`2

Note:

0.5q2n1/2
≤ αn ≤ qn/2+2.
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Approximate decomposition

The following appeared on the rubbles of an at-

tempt of a new cryptosystem

Question: Given a polynomial F ∈ IFq[X] of degree

n and an integer m ≥ 0, find polynomials f, g ∈
IFq[X] with

deg(F − f(g)) ≤ m

or prove that they do not exist.

For m = 0, we write F = f(g) + h where h ∈ Fq
and differentiate. Then f ′ | F ′.

This does not seem to work already with m = 1.
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Degree Growth of Iterations

Multivariate vs. univariate

If f is a univariate polynomial of degree d, the

degree grows

deg f(k) = dk

is fully controlled and exponential (if d ≥ 2).

Question: How about the multivariate case?

Clearly the growth cannot be faster than exponen-

tial, but can it be slower?
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Construction with polynomial degree growth

Ostafe and Shparlinski 2009:

F = {F0, . . . , Fm}: system of m+ 1 polynomials in

m+ 1 variables over IF of the “triangular” form:

F0(X0, . . . , Xm) = X0G0(X1, . . . , Xm) +H0(X1, . . . , Xm),

F1(X0, . . . , Xm) = X1G1(X2, . . . , Xm) +H1(X2, . . . , Xm),

. . .

Fm−1(X0, . . . , Xm) = Xm−1Gm−1(Xm) +Hm−1(Xm),

Fm(X0, . . . , Xm) = gmXm + hm,

where

gm ∈ IF∗, hm ∈ IF,

and Gi has a unique leading monomial:

Gi(Xi+1, . . . , Xm) = giX
si,i+1
i+1 . . . X

si,m
m +G̃i(Xi+1, . . . , Xm),

which “dominates” all other terms:

gi 6= 0, degXj G̃i < si,j, degXj Hi ≤ si,j,

for 0 ≤ i < j ≤ m.
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Lemma 1 Let F0, . . . , Fm ∈ IF[X0, . . . , Xm] be de-

fined as above. Then we have

F
(k)
i = XiGi,k(Xi+1, . . . , Xm) +Hi,k(Xi+1, . . . , Xm),

i = 0, . . . ,m, k = 0,1, . . . ,

where

Gi,k, Hi,k ∈ IF[Xi+1, . . . , Xm], i = 0,1, . . . ,m− 1,

and

degGi,k =
1

(m− i)!
km−isi,i+1 . . . sm−1,m + ψi(k),

with

ψi(T ) ∈ Q[T ], degψi < m− i, i = 0,1, . . . ,m− 1,

and

0 6= Gm,k = gkm ∈ IF.
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Conclusion: For the polynomial systems above, the

degree grows

• polynomially in the number of iterations

• monotonically (beyond a certain point)

Remark: The above effect does not occur in the

univariate case. Thus there are no univariate ana-

logues of our results.

Question: Why are these polynomial systems im-

portant?

The above properties of the degree growth of the

degrees of the iterations of F has allowed to ob-

tain rather strong results about the distribution of

PRNG’s, much stronger than for arbitrary polyno-

mials generators.
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Permutation Systems

For some applications it is also desirable to guaran-

tee that the map generated by F is a permutation

on IFm+1
p .

We are interested in polynomial permutation sys-

tems they

• lead to better bounds on the distribution prop-

erties of the corresponding PRNG

• have some cryptographic applications
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In order to get a permutation from our “triangu-

lar” polynomial systems

Fi = XiGi(Xi+1, . . . , Xm) +H1(Xi+1, . . . , Xm),

we request that Gi, i = 0, . . . ,m, do not have zeros

over IFp.

Remark: “Typical” polynomial F in m ≥ 2 variables

over IFp always has lots of zeros: Lang and Weil

1954, Schmidt 1974:

An absolutely irreducible polynomial F in m ≥ 2

variables over IFp always has

pm−1 +O
(
D2pm−3/2

)
zeros, where D = degF .

Dead end?

Not really, there are also “atypical” polynomials.
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Example: One of the attractive choices of polyno-

mials which would lead to a fast PRNG is

Gi(Xi+1, . . . , Xm) =
m−i∏
j=1

(X2
i+j − ai,j)

and

Hi(Xi+1, . . . , Xm) = bi,

where ai,j are nonresidues modulo p and bi are any

constants in IFp.

Even simpler, one can take

Gi(Xi+1, . . . , Xm) = (X2
i+1 − ai),

where ai are nonresidues.
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Polynomial Pseudorandom Number
Generators

Construction

Consider the PRNG defined by a recurrence rela-

tion in IFp

wn+1,i = Fi(wn,0, . . . , wn,m), n = 0,1, . . . ,

with some initial values

w0,0, . . . , w0,m, i = 0, . . . ,m.

Using the vector notation

wn = (wn,0, . . . , wn,m)

and

F = (F0(X0, . . . , Xm), . . . , Fm(X0, . . . , Xm)),

we have the recurrence relation

wn+1 = F(wn).
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IFp = finite field =⇒ sequence of vectors (wn) is

eventually periodic with some period τ ≤ pm+1.

We always assume that it is purely periodic, i.e.,

wn+τ = wn, n = 0,1, . . . .

We sometimes discard the last component and de-

fine the truncated vectors

un = (wn,0, . . . , wn,m−1), n = 0,1, . . . .
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Quality Measure of PRNG’s

Discrepancy

Informally: The discrepancy can be viewed as a

quantitative measure for the deviation from the

uniform distribution, or, in other words, for the

irregularity of the distribution.

Formal definition: Given a set of N points:

Γ =
{

(γn,0, . . . , γn,m−1)|n = 0, . . . , N − 1
}
⊂ [0,1)m,

one defines the discrepancy

DN = sup
B⊆[0,1)m

∣∣∣∣∣TΓ(B)

N
− vol(B)

∣∣∣∣∣ ,
TΓ(B) =the number of points of Γ inside the box

B = [α1, β1)× . . .× [αm, βm) ⊆ [0,1)m

and the supremum is taken over all such boxes.

Our case: γn,i = un,i/p, i = 0, . . . ,m− 1.

Motivation: Good pseudorandom sequences should

have a small discrepancy!!!
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How do we estimate DN?

General method:

• Estimate exponential sums

Sa(N) =
N−1∑
n=0

e

m−1∑
i=0

aiun,i

 ,
where

ep(z) = exp(2πiz/p)

and a = (a0, . . . , am−1) ∈ IFmp .

• Use Erdős-Turan-Koksma inequality:

DN �
1

L
+

1

N

∑
|a0|,...,|am−1|≤L
a2

0+...+a2
m−1>0

m−1∏
j=0

1

|aj|+ 1
|Sa(N)| ,

for any L > 1 (typical choice: L = N).
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Informally: Trivial bound

|Sa(N)| ≤ N

(as it is a sum on N roots of unity).

Assume we have a nontrivial bound

|Sa(N)| ≤ N∆

with some “saving” ∆ < 1.

Then the Erdős-Turan-Koksma inequality implies

that

DN �∆ (log(1/∆))m

(instead of the trivial DN ≤ 1).

That is, the same “saving” ∆ is preserved with

only logarithmic losses
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How do we estimate |Sa(N)|?

Niederreiter and Shparlinski 1999:

estimating |Sa(N)| reduces to estimating the ex-

ponential sum with polynomials:∣∣∣∣∣∣∣∣
∑

v∈IFm+1
p

e

m−1∑
i=0

ai(F
(k)
i (v)− F (l)

i (v))


∣∣∣∣∣∣∣∣ ,

where, as before, e(z) = exp(2πiz/p) and

F
(k)
i − F (l)

i = Xi(Gi,k −Gi,l) +Hi,k −Hi,l.

Why do we win?

• slow degree growth of the polynomials Gi,k.

Remark: Slow, but not too slow!!! ... so that

Gi,k −Gi,l is nontrivial for k 6= l (holds only for

i < m, =⇒ we discard the last component).

• the linearity of the polynomials Fi in Xi

Remark: We do not use the Weil bound. In-

stead we evaluate exponential sume with linear

functions and estimate the number of zeros of

Gi,k−Gi,l, k 6= l: any nontrivial m-variate poly-

nomial of degree D has at most Dpm−1 zeros.
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Previous work

Nonlinear polynomial generators in residue rings or

finite fields have been considered for many years.

They are hard to study as the degree of itera-

tions grows exponentially which is detrimental for

all known methods of dealing with such sequences.

General cases:

Niederreiter and Shparlinski 1999 and Niederreiter

and Winterhof 2008: nonlinear univariate polyno-

mial generator

Gutierrez and Gomez 2001: nonlinear multivari-

ate polynomial generators

DN = O(N−1/2pm/2(log p)−1/2(log log p)s)

Nontrivial: N ≥ pm/ log p

⇓

Results are nontrivial in microscopic ranges
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Special cases:

Niederreiter and Shparlinski 2001: inversive gen-

erator (x 7→ a+ b/x)

DN = O(N−1/2p1/4(log p)s)

Nontrivial: N ≥ p1/2(log p)2s

Friedlander and Shparlinski 2001: power genera-

tor x 7→ xe

Gomez, Gutierrez and Shparlinski 2006: Dickson

generator x 7→ De(x)

Gutierrez and Winterhof 2007: Redei generator

⇓

Better results

Remark: The proofs of all these results are “cus-

tom” made and do not work for any other case.

They also depend on the Weil bound of exponen-

tial sums.
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General systems

Ostafe and Shparlinski 2009: polynomial genera-

tors described above, truncated vectors un

DN = O
(
pαm,νN−βm,ν(log p)m

)
where

αm,ν =
m2 +mν +m

2ν(m+ ν)
and βm,ν =

1

2ν

Nontrivial: N ≥ pm+ε for some ε > 0

Max. Range: N could be up to pm+1.

Ostafe and Shparlinski 2009: In the same range

of N , polynomial generators described above, for

full vectors wn
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Permutation systems

Ostafe 2009: For any ε > 0 there exists δ > 0

such that almost all initial vectors v, polynomial

generators described above, truncated vectors un

DN(v)� N−δ

provided N ≥ (log p)2+ε.

Ostafe and Shparlinski 2009:

In the same range of N , one can estimate the dis-

crepancy for full vectors wn (with a slightly weaker

estimate)
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General Comments

The method does not depend on the Weil bound

of exponential sums— a standard tool in all previ-

ous approaches.

⇓

The method extends to arbitrary residue rings,

where the Weil bound doesn’t work which stops

other approaches from being efficient in those rings.

E.g. we can get similar results in “computer friendly”

residue rings modulo 2r.

. . . but keep in mind that we still need to estimate

the number of zeros of some polynomials, so the

results are still a little weaker.
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What is next?

• to get better bounds on the number of zeros

of polynomials we might need absolute irre-

ducibility of the iterations of polynomials

Remark:The polynomials Gi,k − Gi,l are never

irreducible!

Remark: This leads to a question about the al-

gebraic structure of polynomial iterates, which

is of independent interest.
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Multiplicative character sums

Similar approach also applies to multiplicative char-

acter sums with the same sequences:

Ostafe, Shparlinski and Winterhof 2010-??

However:

• We need a more subtle version of Lemma 1

as the polynomials Hi,k now matter (just the

degree argument is not enough).

• Optimisation of the right strategy is more dif-

ficult and we need the Weil bound (for some

parameter ranges).
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Multiplicative independence

For our applications, the linear independance of

iterates is the keystone.

Gao 1999:

Multiplicative independence of iterations of uni-

variate polynomoials over IFq (excluding monomi-

als and a few other obvious exceptions).

Question: Are there any analogues of these results

for multivariate polynomials?
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Let’s come back to irreducibility!!!

At some point of the argument we need to esti-

mate the number of zeros of some linear com-

binations of several distinct iterates F
(k)
i (X) of

F0, . . . , Fm.

It is natural to start with studying the same iter-

ates:

Question 1: Is the variety

F
(k)
0 (X) = . . . = F

(k)
m (X) = 0

absolutely irreducible?

Question 2: Are the polynomials F
(k)
i (X) abso-

lutely irreducible?

NO RESULTS!

⇓

Let’s start with the univariate case (Q.1 = Q.2)

. . . still no results.

⇓

Let’s start with quadratic polynomials

. . . Not too many results but there are some!!
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Stability

For a field IF, f ∈ IF[X] is called stable if f(k)

irreducible for all k.

Very few known results (only for deg f = 2):

• Irreducibility is very common over Q. =⇒ over

Q a “random” polynomial is expected to be

stable. Ahmadi, Luca, Ostafe and Shparlin-

ski 2009: proved this for monic and arbitrary

quadratic polynomials.
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• Over IFq irreducibility is rare: prob. ∼ 1/d for

a random polynomial of degree d. =⇒ We

expect very few stable polynomials (recall that

deg f(k) grows fast).

– Gomez Perez and Piñera Nicolas (2009):

For odd q, there are O(q14/5) stable poly-

nomials over IFq.

– Ahamdi Luca, Ostafe and Shparlinski 2009:

No stable quadratic polynomial over IF2n.

Remark: It has nothing to do with char = 2

as x2 + t is stable over IF2(t).
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Stability testing of quadratic polynomials over IFq

f(X) = aX2 + bX + c ∈ IFq[X], a 6= 0

γ = −b/2a the unique critical point of f

Critical orbit of f :

Orb(f) = {f(n)(γ) : n = 2,3, . . .}

∃t such that f(t)(γ) = f(s)(γ) for some positive

integer s < t.

tf =the smallest value of t with the above condi-

tion. Then:

Orb(f) = {f(n)(γ) : n = 2, . . . , tf}

Jones and Boston 2009:

f ∈ IFq[X] is stable if and only if the adjusted crit-

ical orbit

Orb(f) = {−f(γ)}
⋃

Orb(f)

contains no squares.
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Trivially #Orb(f) ≤ q and thus one can test f ∈
IFq[X] for stability in q steps.

Ostafe and Shparlinski 2009:

Theorem 2 For any odd q and any stable quadratic

polynomial f ∈ IFq[X] we have

tf = O
(
q3/4

)
.

Corollary 3 For any odd q, a quadratic polyno-

mial f ∈ IFq[X] can be tested for stability in time

q3/4+o(1).

Questions:

• What about polynomials of higher degree? Can

the stability be tested in finitely many steps

(even over IFq)?

• Is there an algorithm to check a quadratic poly-

nomial for stability in Q[X] in finitely many

steps?
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Sparse Polynomials

Let

f(X) =
n∑
i=1

aiX
ki ∈ IR[X]

Descartes Rule: f has a most n distinct real posi-

tive roots.

Khovanski, Risler, . . . 1980–. . .

Multidimensional generalisations.

Question: What about finite fields??

Waarning: Beware of Xq−1 − 1 and X(q−1)/2 − 1.
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Let

f(X) =
n∑
i=1

aiX
ki ∈ IFq[X]

Canetti, Friedlander, Konyagin, Larsen, Lieman

and Shparlinski 1999:

#{x ∈ IFq : f(x) = 0} � q1−1/(t−1)D1/(t−1)

where

D = min
1≤i≤t

max
j 6=i

gcd(kj − ki, q − 1).

Question: How tight is it??

... probably not all.
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Let Nn(q) be the number of sequences

0 ≤ k1 < . . . < kn ≤ q − 2,

for which there exist a1, . . . , an ∈ IFq such that

f(X) =
n∑
i=1

aiX
ki ∈ IFq[X]

split into linear factors over Fq.

Shparlinski 1999:

Nn(p) = O
(
pn−1 log log p

)

Question: Obtain an analogue of this result for

arbitraty fields.

Question: Any lower bounds on the degree of the

splitting field of “typical” sparse polynomials.

Holy Grail: Estimate the number of irreducible sparse

polynomials.


