Esecurity: secure internet & evoting, summer 2010 MICHAEL NÜSKEN, KONSTANTIN ZIEGLER

2. Exercise sheet Hand in solutions until Sunday, 02 May 2010, 23.59 h

Exercise 2.1 (Security estimate).

(6 points)

RSA is a public-key encryption scheme that can also be used for generating signatures. It is necessary for its security that it is difficult to factor large numbers (which are a product of two primes). The best known factoring algorithms achieve the following (heuristic, expected) running times:

method	year	time for n -bit integers
trial division	$-\infty$	$\mathcal{O}^{\sim}(2^{n/2})$
Pollard's $p-1$ method	1974	$\mathcal{O}^{\sim}(2^{n/4})$
Pollard's ϱ method	1975	$\mathcal{O}^{\sim}(2^{n/4})$
Pollard's and Strassen's method	1976	$\mathcal{O}^{\sim}(2^{n/4})$
Morrison's and Brillhart's continued fractions	1975	$2^{\mathcal{O}(1)n^{1/2}\log_2^{1/2}n}$
Dixon's random squares	1981	$2^{(\sqrt{2}+o(1))n^{1/2}\log_2^{1/2}n}$
Lenstra's elliptic curves method	1987	$2^{(1+o(1))n^{1/2}\log_2^{1/2}n}$
quadratic sieve		$2^{(1+o(1))n^{1/2}\log_2^{1/2}n}$
general number field sieve	1990	$2^{((64/9)^{1/3} + o(1))n^{1/3}\log_2^{2/3}n}$

It is not correct to think of o(1) as zero, but for the following rough estimates just do it. Factoring the 663-bit integer RSA-200 needed about 165 1GHz CPU years (ie. 165 years on a single 1GHz Opteron CPU) using the general number field sieve. Estimate the time that would be needed to factor an n-bit RSA number assuming the above estimates are accurate with o(1)=0 (which is wrong in practice!)

(i) for
$$n=1024$$
 (standard RSA), $\cite{1}$ (ii) for $n=2048$ (as required for Document Signer CA), $\cite{1}$ (iii) for $n=3072$ (as required for Country Signing CA).

Repeat the estimate assuming that only Pollard's ϱ method is available

(iv) for
$$n = 1024$$
,

 $\boxed{1}$ (v) for n = 2048,

(vi) for n = 3072.

1

6

Remark: The statistics for discrete logarithm algorithms are somewhat similar as long as we consider groups \mathbb{Z}_p^{\times} . For elliptic curves (usually) only generic

Exercise 2.2 (Powers and goals for attackers of signatures). (10 points)

(i) You have encountered several levels of security:

algorithms are available with running time $2^{n/2}$.

- Unbreakability,
- o Universal Unforgeability,
- Existential Unforgeability (EUF);

along with different means for an attacker:

- o Key-Only Attack,
- Non-adaptive Chosen Message Attack,
- Chosen Message Attack (CMA).

Pairing an adversarial goal with an attack model defines a security notion, e.g. EUF-CMA.

Consider the RSA signature scheme. Assume that FACTORING is hard and decide for each of the 9 security notions whether the scheme is

- o secure,
- o not secure
- or the answer is unknown.

What can you say, if you assume that FACTORING is easy? Use the connections between the security notions to simplify your argument.

(ii) Prove: If RSA-sig is secure, then the hash function is one-way.

Exercise 2.3 (Amplification – or: A little bit better than guessing is enough). (8+4 points)

Think of a boolean variable T and an algorithm \mathcal{A} with output A and a probability slightly better than guessing to determine the value of T, i.e.

(2.4)
$$p = \text{prob}(A == T) > \frac{1}{2}.$$

Imagine a new algorithm \mathcal{B} which calls \mathcal{A} m-times and outputs B as the majority of the As – returning failure in the event of a draw.

(2.5)
$$\operatorname{prob}(B == T) > \sum_{m/2 < i \le m} {m \choose i} p^i (1-p)^{m-i}$$

and give a simple – but still useful – lower bound for the sum. (Hint: Chernoff)

- (ii) How many repetitions m do you need for p=0.6,0.7,0.8 in order to guarantee $\operatorname{prob}(B==T)>0.9$.
- (iii) Let $p = \frac{1}{2} + \frac{1}{n}$. Determine a number of repetitions such that

$$\operatorname{prob}(B == T) > 1 - e^{-cn}$$

for some constant c > 0.