
Lecture Notes

Esecurity: secure internet & evoting

Michael Nüsken

b-it

(Bonn-Aachen International Center

for Information Technology)

Summer 2010

c©2010 Michael Nüsken

IPSEC & IKE

Michael Nüsken

25 June 2007

Before all: we are talking about a collection of protocols. Each partner of
the exchange has to keep some information on the connection. This is in our
context called the security association (SA). It contains specification about the
algorithms that should be used for encryption and authentication, it contains
keys for these, it may contain traffic selectors (filtering rules), and more. Each
SA manages a simplex connection for one type of service. In each direction there
will be an SA for the key exchange (IKE_SA) and one for the encapsulating
security payload or for the authentication header. So each partner has to
maintain at least four SAs. Such an SA is selected by an identifier, the so-
called security parameter index (SPI). It is chosen randomly but so that it is
unique.

1. IPsec

The secure internet protocol modifies the internet protocol slightly. We have
the choice between transport and tunnel mode. In tunnel mode, an IP packet

IP header IP payload

is wrapped in with a new IP header and an IPsec header to

new IP

header
IPsec header IP header IP payload

In transport mode, only the IPsec header is added:

IP header IPsec header IP payload

There are two types of IPsec headers: the encapsulating security payload (ESP)
and the authentication header (AH).

2 Michael Nüsken

1.1. IPsec encapsulating security payload. The ESP specifies that and
how its payload is encrypted and (optionally) authenticated. Actually, this
‘header’ is split into a part before and one after the data:

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Security Parameter Index (SPI)

Sequence number

IV (optional)

Payload data [variable]

TFC padding [optional, variable]

Padding (0-255 octets)

Padding length Next header

Integrity Check Value (ICV) [variable]

The security parameter index identifies the SA and thus all necessary algo-
rithms and key material. To create the secured packet from the original one,
it is first padded. Padding is used to enlarge the data length to a multiple of a
block size that might be associated with the encryption. Traffic flow confiden-
tiality (TFC) padding can be used to disguise the real size of the packet. Then
the data is encrypted; in tunnel mode including the old IP header. To be pre-
cise, all the information from Payload data to Next header is encrypted. Next,
a message authenticion code is calculated for this encrypted text and secu-
rity parameter index, sequence number, initialization vector (IV) and possibly
further padding; actually the message authentication code covers the entire
packet but the header and the integrity check value plus the extended sequence
number and integrity check padding if any.

1.2. IPsec authentication header. The AH authenticates its payload and
also parts of the IP header. (Yes, this does violate the hierarchy.)

IPsec & IKE 3

2. Internet key exchange (version 2)

Any message in the internet key exchange starts with a header of the form

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

IKE_SA initiator’s SPI

IKE_SA responder’s SPI

Next payload
Major

version

Minor

version
Exchange type X I V R X

Message ID

Length

Clearly, the version is 2.0 with the present Exchange type Value

Reserved 0-33

IKE_SA_INIT 34

IKE_AUTH 35

CREATE_CHILD_SA 36

INFORMATIONAL 37

Reserved to IANA 38-239

Reserved for private use 240-255

drafts (major version: 2, minor version: 0).
The flags X are reserved, the I(nitiator) bit
is set whenever the message comes from the
initiator of the SA, the V(ersion) bit is set
if the transmitter can support a higher ma-
jor version, the R(esponse) bit is set if this
message is a response to a message with this
Message ID. The header is usually followed by some payloads like

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Next payload C Reserved(0) Payload length

Payload

The C(ritical) bit indicates that the payload
is critical. In case the recipient does not sup-
port a critical payload it must reject the en-
tire message. A non-critical payload can be
simply skipped. All the payloads defined in
RFC4306 are to be handled as critical ones
whatever the C bit says.

4 Michael Nüsken

Next payload Notation Value

None 0

RESERVED 1-32

Security Association SA 33

Key Exchange KE 34

Identification - Initiator IDi 35

Identification - Responder IDr 36

Certificate CERT 37

Certificate Request CERTREQ 38

Authentication AUTH 39

Nonce Ni, Nr 40

Notify N 41

Delete D 42

Vendor ID V 43

Traffic Selector - Initiator TSi 44

Traffic Selector - Responder TSr 45

Encrypted E 46

Configuration CP 47

Extensible Authentication EAP 48

Reserved to IANA 49-127

Private use 128-255

2.1. Initial exchange.

In
it

ia
to

r

Hdr, SAi 1, KEi, Ni
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Hdr, SAr 1, KEr, Nr, [CERTREQ]
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Hdr, SK

{

IDi, [CERT,][CERTREQ,][IDr,]

AUTH, SAi 2, TSi, TSr

}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Hdr, SK

{

IDr, [CERT,]

AUTH, SAr 2, TSi, TSr

}

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

R
es

p
on

d
er

Protocol 2.1. IKE_SA_INIT.

1. Prepare SAi1, the four lists of supported crypto-
graphic algorithms for Diffie-Hellman key exchange
(groups), for the pseudo random function used to
derive keys, for encryption, and for authentication.
Guess the group for Diffie-Hellman and compute
KEi = ga.
Choose a nonce Ni. Hdr, SAi 1, KEi, Ni

−−−−−−−−−−−−−−−−−−−−−→
2. Choose SAr1 from SAi1 unless no variant is sup-

ported.

IPsec & IKE 5

Compute KEr = gb if the group was guessed cor-
rectly. (Otherwise send:

Hdr,N(INVALID_KE_PAYLOAD, group)

.)
Choose a nonce Nr.

Hdr, SAr 1, KEr, Nr,

[CERTREQ]
←−−−−−−−−−−−−−−−−−−−−−

3. Both parties now derive the session keys. We as-
sume that prf is the selected pseudo random func-
tion which gets a key and a bit string as input.

SKEYSEED = prf(Ni|Nr, gab),

SK_d|SK_ai|SK_ar|SK_ei|SK_er|SK_pi|SK_pr

= prf+(SKEYSEED,Ni |Nr |SPIi |SPIr)

where prf+(K,S) = T1|T2|T3| . . . , and T1 =
prf(K,S|0x01), Ti = prf(K,Ti−1|S|i) for i > 1.
SK_d is used for the derivation of keys in a child
SA. SK_ai and SK_ei are used for authenticat-
ing and encrypting messages sent by the initiator,
SK_ar and SK_er for messages sent by the respon-
der.

4. The initiator send its identity IDi, optionally one
or more certificates CERT, a certificate request
CERTREQ (possibly including a list of trusted
CAs), and optionally the responders identity IDr (it
may be that the responder serves multiple identities
‘behind’ it).
Further she computes an authentication AUTH (us-
ing the key from the first CERT payload) for the
entire first message concatenated with the respon-
der’s nonce Nr and the value prf(SK_pi, IDi). The
authentication method can be RSA digital signa-
ture (1), shard key message integrity code (2), or
DSS digital signature (3).

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Next payload C Reserved(0) Payload length

Auth method Reserved

Authentication data

The initiator starts to negotiate a child SA in SAi 2
with proposed traffic selectors TSi, TSr.

Hdr, SK































IDi, [CERT,]

[CERTREQ,]

[IDr,]

AUTH, SAi 2,

TSi, TSr































−−−−−−−−−−−−−−−−−−−−−→

6 Michael Nüsken

5. The responder sends its identity IDr, certificate(s).
He computes an authentication AUTH for the en-
tire second message concatenated with the initia-
tor’s nonce Ni and the value prf(SK_pr, IDr).
Further he supplies the answer SAr 2 to the child
SA creation and sends the accepted traffic selectors
TSi, TSr.

Hdr, SK











IDr, [CERT,]

AUTH, SAr 2,

TSi, TSr











←−−−−−−−−−−−−−−−−−−−−−

If this initial exchange is completed successfully the IKE_SA and a CHILD_SA
are ready for use. Keying material for the childs is generated similar to the
IKE_SA keys:

KEYMAT = prf+(SK_d, Ni |Nr)

2.2. Creating additional child SAs. Further childs can be created under
this IKE_SA using a CREATE_CHILD_SA exhange:

In
it

ia
to

r Hdr, SK

{

[N,] SAi 2, Ni, [KEi,]

[TSi, TSr]

}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Hdr, SK

{

SAr 2, Nr, [KEr,]]

[TSi, TSr]

}

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

R
es

p
on

d
er

In case a CHILD_SA shall be rekeyed the notification payload N of type
REKEY_SA specifies which SA is rekeyed. This can be used to established
additional SAs as well as to rekey ages ones. Create new ones and afterwards
delete the old ones. Also the IKE_SA can be rekeyed similarly.

In a CREATE_CHILD_SA exchange including an optional Diffie-Hellman
exchange new keying material uses also the new Diffie-Hellman key gir, it is
concatenated left to the nonces. (Though the Diffie-Hellman key exchange is
optional, it is recommended to either used it or at least to limit the number of
uses of the original key.)

2.3. Denial of Service. If the server has a lot of half open connections
(ie. the first message arrived, the second was sent but the third message is
pending) it may choose to send a cookie first. (In order to defeat a denial of
service attack.) It is suggested to use a stateless cookie consisting of a version
identifier and a hash value of the initiator’s nonce Ni, her IP IPi, her security
parameter index SPIi and some secret:

Cookie = verID | hash(Ni, IPi, SPIi, secretverID)

IPsec & IKE 7

This way the secret can be exchanged periodically, say every second, and the
server only needs to store the last few (randomly) generated secrets.

The authentication AUTH then refers to the second version of the cor-
responding message, so the one including the cookie or responding to that,
respectively. So the protocol becomes:

In
it

ia
to

r

Hdr, SAi 1, KEi, Ni
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Hdr, N(Cookie)
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Hdr, N(Cookie), SAi 1, KEi, Ni
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Hdr, SAr 1, KEr, Nr, [CERTREQ]
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Hdr, SK

{

IDi, [CERT,][CERTREQ,][IDr,]

AUTH, SAi 2, TSi, TSr

}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

Hdr, SK

{

IDr, [CERT,]

AUTH, SAr 2, TSi, TSr

}

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

R
es

p
on

d
er

2.4. Extended authentication protocols. The initiator may leave out
AUTH and thereby tell the responder that she wants to perform an exten-
sible authentication which is then carried out immediately.

2.5. IP compression. The parties can negotiate IP compression.

2.6. ID payload. The ID payload

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Next payload C Reserved(0) Payload length

ID type Reserved

Identification data

can be an IP address (ID type 1), a fully-qualified domain name string (2), a
fully-qualified RFC822 email address string (3), an IPv6 address (5), an ASN.1
X.500 Distinguished Name [X.501] (9), an ASN.1 X.500 general name [X.509]
(10), a vendor specific information (11).

2.7. CERT payload. The CERT payload

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

2
0

2
1

2
2

2
3

2
4

2
5

2
6

2
7

2
8

2
9

3
0

3
1

Next payload C Reserved(0) Payload length

Cert encoding Certificate data

Certificate data

8 Michael Nüsken

can be encoded in various widely used formats. Note that it can also carry
revocation lists.

3. IKE version 1

The version 1 of the internet key exchange distinguishes between a main mode
and an aggressive mode. Further it allows four variants in each mode depending
on the desired type of authentication. Authentication can be based on

◦ public signature keys,

◦ public encryption keys, originial protocol,

◦ public encryption keys, revised protocol, or

◦ a pre-shared secret.

We only give the bare protocol summaries here, using notation similar to
the one used for version 1. (They are not based on RFC240x but on the book
?.)

3.1. Main mode, public signature keys.

A
li
ce

SAi
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

SAr
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

KEi, Ni
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

KEr, Nr
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

SK = f(gab, Ni, Nr)
SK {IDi, AUTH, [CERT]}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
SK {IDr, AUTH, [CERT]}

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

B
ob

3.2. Aggressive mode, public signature keys.

A
li
ce

SAi, KEi, Ni, IDi
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

SAr, KEr, Nr, IDr, AUTH, [CERT]
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

SK {AUTH, [CERT]}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

B
ob

IPsec & IKE 9

3.3. Main mode, public encryption keys, original protocol.

A
li
ce

SAi
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

SAr
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

KEi, {Ni}
Bob

, {IDi}
Bob−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

KEr, {Nr}
Alice

, {IDr}
Alice←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

SK = f(gab, Ni, Nr)
SK {AUTH, [CERT]}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
SK {AUTH, [CERT]}

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

B
ob

3.4. Aggressive mode, public encryption keys, original protocol.

A
li
ce

SAi, KEi, {Ni}
Bob

, {IDi}
Bob−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

SAr, KEr, {Nr}
Alice

, {IDr}
Alice

, AUTH
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

AUTH
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

B
ob

3.5. Main mode, public encryption keys, revised protocol.

A
li
ce

SAi
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

SAr
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

KA = hash(Ni, cookiei)
{Ni}

Bob
, KA {KEi}, KA {IDi}, KA {CERT}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
KB = hash(Nr, cookier)
{Nr}

Alice
, KB {KEr}, KB {IDr}

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
SK = f(gab, Ni, Nr, cookiei, cookier)

SK {AUTH}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

SK {AUTH}
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

B
ob

10 Michael Nüsken

3.6. Aggressive mode, public encryption keys, original protocol.

A
li
ce

KA = hash(Ni, cookiei)
SAi, {Ni}

Bob
, KA {KEi}, KA {IDi}, KA {CERT}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
KB = hash(Nr, cookier)

SAr, {Nr}
Alice

, KB {KEr}, KB {IDr}, AUTH
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

SK = f(gab, Ni, Nr, cookiei, cookier)
SK {AUTH}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

B
ob

3.7. Main mode, pre-shared secret.

A
li
ce

SAi
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

SAr
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

KEi, Ni
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

KEr, Nr
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

SK = f(secret, gab, Ni, Nr, cookiei, cookier)
SK {IDi, AUTH}

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
SK {IDr, AUTH}

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

B
ob

3.8. Aggressive mode, pre-shared secret.

A
li
ce

SAi, KEi, Ni, IDi
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

SAr, KEr, Nr, IDr, AUTH
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

AUTH
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

SK = f(secret, gab, Ni, Nr, cookiei, cookier)

B
ob

Michael Nüsken

b-it, Bonn, Germany

Civitas — algorithms 1

1. El Gamal encryption and gimmicks

Algorithm 1.1. El Gamal parameter generation.

Input: Security parameters k, `.
Output: Group G, a prime q, and a generator P ∈ G of order q.

1. Select a random k-bit prime q.
2. Select an `-bit prime p with p ≡q 1 and letting G = Z

×

p with multiplication.
Note that #G = p− 1 and by construction q | p− 1.

3. Pick a random element P of order q in G. (Pick an arbitrary random

element R of G and consider P = R
#G

q . If P is the neutral element of G
then retry. Otherwise P has order q.)

4. Return (G, q, P).

Note, as of present knowledge, to achieve 80-bit security we need

bitlength(p) = k ≈ 1024

when choosing Zp or a subgroup of Zp. ElGamal originally proposed to use
this with q = p − 1. Schnorr and DSA improved this by choosing an element
of prime order q, with bitlength(q) = ` ≈ 160. However, all this was before the
advent of elliptic curves: with elliptic curves

bitlength(p) = k ≈ 160

suffices.

Algorithm 1.2. El Gamal parameter generation.

Input: Security parameters k.
Output: Group G, a prime q, and a generator P ∈ G of order q.

1. Select a random k-bit prime p.
2. Repeat 3–8

3. Select a point P = (xP , yP)←−− Fp × Fp.

4. Select a value a←−− F
×

p .
5. Set b = y2P − (x3

P + axP).
6. If 4a3 + 27b2 = 0 in Fp then try again.
7. Let G be the elliptic curve given by

y2 = x3 + ax+ b

2 Michael Nüsken

over Fp. [Its points are all solutions (x, y) of the equation and a further
special point O at infinity. In particular, P is a point.
Addition of two points Q1 and Q2 is essentially defined as follows: con-
sider the line through the points and find the third point Q3 of inter-
section with the curve. Define Q1 + Q2 := −Q3 by mirroring at the
x-axis.]

8. Determine q = #G.
9. Until q prime

10. Return (G, q, P).

Notice that we only need to store x and the “sign” of y to identify a point.

Algorithm 1.3. El Gamal key pair generation.

Input: El Gamal parameters (G, q, P).
Output: A key pair with private key x ∈ Zq and public key X ∈ G.

1. Choose x←−− Z
×

q .
2. Let X ← xP .
3. Return (x,X)

Algorithm 1.4. Homomorphic El Gamal encryption.

Publicly known: El Gamal parameters (G, q, P).
Input: The recipient’s public key X ∈ G and the message M ∈ G.
Output: The ciphertext encX(m).

1. Pick a unpredictable temporary private key t←−− Zq.
2. Return (tP,M + tX)

Algorithm 1.5. Homomorphic El Gamal decryption.

Publicly known: El Gamal parameters (G, q, P).
Input: The recipient’s private key x ∈ Zq, the ciphertext (T, Y) ∈ G×G.
Output: The plaintext decx(T, Y).

1. Return Y − xT

It is easy to check that decrypting returns the original plaintext: Let (T, Y)
be a ciphertext of the message M for the recipient with public key X, ie. T = tP

Civitas — algorithms 3

and Y = M + tX. Note that the public key X is given by the private key x as
X = xP . Now, the decryption routine returns

Y − xT = M + tX − xT = M + txP − xtP = M.

Thus the ElGamal scheme works correctly.
Observe that we have

decx(m1 encX(M1) +m2 encX(M2)) = m1M1 +m2M2.

This property is called homomorphic: we can combine stuff in the encrypted
form and after decription we obtain the corresponding combination of the plain-
texts. (In general, it is not necessary that the combination is given by the group
operation. Any sort of easily computable combination would do.) As a special
case we obtain the reencryption by simply adding an encryption of the neutral
element of G, ie. reencx(M) = encx(M) + encx(O).

Algorithm 1.6. El Gamal reencryption.

Publicly known: El Gamal parameters (G, q, P).
Input: The recipient’s public key X ∈ G and a ciphertext (T, Y) ∈ G×G.
Output: A ciphertext encX(m).

1. Pick a unpredictable temporary private key t′ ∈ Zq.
2. Return (t′P + T, t′X + Y)

By the homomorphism property the decryption is M +O = M again.

2. Non-malleability

The highest security level for encryptions requires that an attacker cannot
manipulate messages in a predictable way (non-malleability) under adaptive
chosen-ciphertext attacks (NM-CCA2). This is equivalent to the weaker model
that an attacker cannot distinguish two self-chosen messages after encryption
under adaptive chosen-ciphertext attacks (IND-CCA2). However, it is obvious
that the attacker can use the homomorphism property to decrypt without ask-
ing the forbidden ciphertext: just add the encryption of a known message M2,
get the decryption from the oracle, and finally subtract M2. Thus the attacker
gets the decryption, can thus easily determine which of his two self-chosen
messages was encrypted, and thus wins the game.

To spoil this attack various proposals have been made. One consists in
signing the ciphertext with a Schnorr signature:

4 Michael Nüsken

Algorithm 2.1. Non-malleable El Gamal encryption.

Publicly known: El Gamal parameters (G, q, P).
Input: The recipient’s public key X ∈ G, the message M ∈ G.
Output: The ciphertext nmencX(m).

1. Pick two random temporary keys t, u←−− Zq.
2. Encrypt (T, Y)← (tP,M + tX).
3. Compute a challenge c← Zq(hash(uP, T, Y)) ∈ Zq.
4. Compute the response r ← u+ ct in Zq.
5. Return (T, Y, c, r)

Algorithm 2.2. Non-malleable El Gamal decryption.

Publicly known: El Gamal parameters (G, q, P).
Input: The recipient’s private key x ∈ Zq, the ciphertext (T, Y, c, r) ∈ G×G×

Zq × Zq.
Output: The plaintext nmdecx(T, Y, c, r).

1. Compute U ← rP − cT and c′ ← Zq(hash(U, T, Y)) ∈ Zq.
2. If c′ 6= c then Return Failure
3. Return Y − xT

Notice that Algorithm 2.1 step 3–4 and the verification c′
?
= c in Algorithm 2.2

form a non-interactive proof of knowledge for the discrete logarithm t of T with
respect to P .

Actually, the attacker’s task would be to — say — reencrypt (T, Y, c, r).
He can of course easily present (T ′, Y ′) with the same plain text. However,
constructing (c′, r′) as well would be a proof of knowledge of the discrete loga-
rithm of T ′ with respect to P , and thus (as the attacker chooses T ′− T) of the
discrete logarithm of T with respect to P . So either the attacker is the sender
or he can break the DLP. But we assume he cannot. This reasoning however
neglects possible effects of the choice of c as the value of a hash function.

Civitas — algorithms 5

3. A zero-knowledge argument

Protocol 3.1. Interactive zero-knowledge proof of equalitiy of discrete logarithms.

Publicly known: El Gamal parameters (G, q, P).
Public input: Group elements P, T,X, Y ∈ G.
Private input to the prover: The discrete logarithm t of

T wrt. P and of Y wrt. X, ie. t ∈ Zq

such that T = tP and Y = tX.

1. The prover chooses a temporary private key u←−− Zq

and computes U ← uP and V ← uX in G. She sends
U and V to the verifier. (U, V)

−−−−−−−−−−−−−−−−−−−→

2. The verifier chooses a challenge c ←−− Zq and sends
it to the prover. c

←−−−−−−−−−−−−−−−−−−−
3. The prover computes the response r ← u + ct and

sends it to the verifier. r
−−−−−−−−−−−−−−−−−−−→

4. The verifier checks that rP = U + cT and rX =
V + cY .

An interactive zero-knowledge proof is a protocol with the properties

(computational) completeness If both parties, Paula and Victor, are hon-
est the verifier (almost) always accepts.

(computational) soundness If the prover Patrick cheats the (honest) veri-
fier Victor almost never accepts.

(computational) zero-knowledge Even if the verifier Vlad cheats he can
still not learn anything. That is, whatever the verifier Vlad can compute
after a conversation he can also compute without a conversation.

This is usually established by the existence of a simulator which produces
a transcript that looks like a conversation and the probabilities for the
transcripts are (almost) the same as the probabilities for the conversa-
tions.

Actually, in the following we restrict mainly to the case of a semi-honest

verifier: Vlad is allowed to learn from the protocol but otherwise follows
exactly the honest verifier Victor’s algorithm. The semi-honest Vlad def-
initely does not choose c depending on (U, V).

We assume that all parties are randomized polynomial time bounded. Each
computation may fail with negligible probability.

6 Michael Nüsken

We make it non-interactive by the Fiat & Shamir (1986) heuristic: replace
the random challenge sent by the verifier with a deterministic computation
whose outcome is unpredictable to the prover even if she messes around with
the entire variables at her disposal. (Actually, one can always transform a proof
of knowledge into one where the verifier only sends random bits. But we have
that already.) We obtain:

Protocol 3.2. Non-interactive zero-knowledge proof of equalitiy of discrete loga-
rithms.

Publicly known: El Gamal parameters (G, q, P).
Public input: Group elements P, T,X, Y ∈ G.
Private input to the prover: The discrete logarithm t of

T wrt. P and of V wrt. U , ie. t ∈ Zq

such that T = tP and Y = tX.

1. The prover chooses a temporary private key u←−− Zq

and computes U ← uP and V ← uX in G. She sends
U and X to the verifier. (U, V)

−−−−−−−−−−−−−−−−−−−→
2. The prover computes a challenge c← Zq(hash(T, Y, U, V))

and sends it to the verifier. c
−−−−−−−−−−−−−−−−−−−→

3. The prover computes the response r ← u + ct and
sends it to the verifier. r

−−−−−−−−−−−−−−−−−−−→
4. The verifier checks that rP = U + cT , rX = V + cY

and c = Zq(hash(T, Y, U, V)).

We can further simplify this by dropping (U, V) from the messages since
they can be reconstructed from c and r easily, a computation that the verifier
must perform anyways. Thus in the last step the verifier only checks

c = Zq(hash(T, Y, rP − cT, rX − cY)).

Civitas — algorithms 7

4. A proof of knowledge

Protocol 4.1. Interactive proof of knowledge of a discrete logarithm.

Publicly known: El Gamal parameters (G, q, P).
Public input: Group elements P, T ∈ G.
Private input to the prover: The discrete logarithm of T

wrt. P , ie. t ∈ Zq such that T = tP .

1. The prover chooses a temporary private key u←−− Zq

and computes U ← uP in G. She sends U to the
verifier. U

−−−−−−−−−−−−−−−−−−−→

2. The verifier chooses a challenge c ←−− Zq and sends
it to the prover. c

←−−−−−−−−−−−−−−−−−−−
3. The prover computes the response r ← u + ct and

sends it to the verifier. r
−−−−−−−−−−−−−−−−−−−→

4. The verifier checks that rP = U + cT .

A proof of knowledge is an interactive zero-knowledge protocol with the
additional property

proof of knowledge A cheating verifier that can talk to the same(!) prover
several times can extract the knowledge from the conversations. Here,
same prover means that the prover is using the same random bits again.

8 Michael Nüsken

Again, we make it non-interactive by the Fiat & Shamir (1986) heuristic.
We obtain:

Protocol 4.2. Non-interactive proof of knowledge of a discrete logarithm.

Publicly known: El Gamal parameters (G, q, P).
Public input: Group elements P, T ∈ G.
Private input to the prover: The discrete logarithm of T

wrt. P , ie. t ∈ Zq such that T = tP .

1. The prover chooses a temporary private key u←−− Zq

and computes U ← uP in G. She sends U to the
verifier. U

−−−−−−−−−−−−−−−−−−−→
2. The prover computes a challenge c← Zq(hash(T,U))

and sends it to the verifier. c
−−−−−−−−−−−−−−−−−−−→

3. The prover computes the response r ← u + ct and
sends it to the verifier. r

−−−−−−−−−−−−−−−−−−−→
4. The verifier checks that rP = U+cT and c = Zq(hash(T,U)).

Clearly, the prover can send everything together in a sin-
gle message (U, c, r).

As earlier we can drop U from the messages and instead recompute it and
check

c = Zq(hash(T, rP − cT)).

We could instead also drop c and reconstruct that, but for many groups you
need more bits to store U than you need to store c.

Civitas — algorithms 9

5. Distributed keys

Protocol 5.1. Distributed key generation.

Publicly known: El Gamal parameters (G, q, P).
Input to Si: Id i and connections to all other share holders Sj.
Private output to Si: Private key shares xi.
Output: A public key X, and public key shares Xi.

1. Share holder Si chooses a private key share xi ←−− Zq and compute Xi ←
xiP ∈ G.

2. Share holder Si publishes (ie. sends to all other share holders) a commit-
ment hash(Xi) on its public key share Xi.

3. Wait until all share holders are done so far.
4. Share holder Si publishes Xi and proves knowledge of xi non-interactively,

ie. publishes KnowDlog(P,Xi).
5. Wait until all share holders are done so far.
6. Each share holder checks all commitments and proofs. If something cannot

be verified, shout and stop.
7. Return X =

∑
iXi, (Xi)i

The sender merely encrypts his message with the shared public key X.
However, as long as one share holder is honest, the corresponding private key
x =

∑
i xi is not known to any entity. To decrypt all share holders have to

work together again:

Protocol 5.2. Distributed decryption.

Publicly known: El Gamal parameters (G, q, P).
Input: The ciphertext (T, Y) ∈ G × G, and the public

shares Xi.
Private inputs: Share holder Si gets its private key share

xi.
Output: DistDec(xi)i(T, Y).

1. Share holder Si computes and publishes Ti ← xiT

and proves equality of discrete logarithms of Ti wrt.
Xi and T wrt. P , ie. EqDlog(P, T,Xi, Ti). Ti, EqDlog(. . .)

−−−−−−−−−−−−−−−−−−−→
2. Wait until all share holders are done so far.

←−−−−−−−−−−−−−−−−−−−
3. Each share holder checks all proofs. If something can-

not be verified, shout and stop.
4. Compute M ← Y −

∑
Ti.

5. Return M

10 Michael Nüsken

Important: in both protocols no share holder learns private key shares of
other (honest) share holders. [Proof: Exercise.]

6. A more sophisticated zero-knowledge proof

The problem in remote elections is that nobody can see whether the voter is
under pressure during his voting. So the above zero-knowledge proof is actually
too good, as also a coercer will be convinced by such a proof if he is standing
“behind” the voter. But we can do better: The following two zero-knowledge
proofs prove the statement:

The El Gamal ciphertexts (T, Y) and (T ′, Y ′) encrypt the same
message (for the recipient with public key X)

or

the prover knows the voter’s private key.

This statement can be proved by the party that generated (T, Y) from (T ′, Y ′)
or it can be proved by the voter. As zero-knowledge proofs are always witness-
indistinguishable, a coercer in the role of the verifier cannot tell which of the
two forms he sees.

Protocol 6.1. Interactive designated verifier proof.

Publicly known: El Gamal parameters (G, q, P).
Public input: Group elements T, Y, T ′, Y ′ ∈ G and the public key

Xvid of the voter vid.
Private input to the prover: The reencryption randomness z ∈ Zq

such that T ′ − T = zP and Y ′ − Y = zX.

1. The prover chooses temporary private keys s, t, w ←−− Zq and
computes in G

◦ T̃ ← sP ,

◦ Ỹ ← sX and

◦ Ṽ ← tP +wXvid.

She sends T̃ , Ỹ and Ṽ to the verifier. (T̃ , Ỹ , Ṽ)
−−−−−−−−−−−−−→

2. The verifier chooses a challenge c←−− Zq and sends it to the
prover. c

←−−−−−−−−−−−−−
3. The prover computes the response r ← s+z(c+w) and sends

it to the verifier. (r, t, w)
−−−−−−−−−−−−−→

Civitas — algorithms 11

4. The verifier computes

◦ T̃ ′ ← rP − (c+ t)(T ′ − T),

◦ Ỹ ′ ← rX − (c+ t)(Y ′ − Y) and

◦ Ṽ ′ ← tP + wXvid.

He checks whether T̃ ′
?
= T̃ , Ỹ ′

?
= Ỹ , and Ṽ ′

?
= Ṽ .

Protocol 6.2. Interactive fake designated verifier proof.

Publicly known: El Gamal parameters (G, q, P).
Public input: Group elements T, Y, T ′, Y ′ ∈ G and the public key

Xvid of the voter vid.
Private input to the prover: The verifier’s private key xvid.

1. The prover chooses the response r ←−− Zq and random values

a, v ←−− Zq and computes in G

◦ T̃ ← rP − a(T ′ − T),

◦ Ỹ ← rX − a(Y ′ − Y) and

◦ Ṽ ← vP .

She sends T̃ , Ỹ and Ṽ to the verifier. (T̃ , Ỹ , Ṽ)
−−−−−−−−−−−−−→

2. The verifier chooses a challenge c←−− Zq and sends it to the
prover. c

←−−−−−−−−−−−−−
3. The prover computes t ← a − c, w ← (v − t)x−1

vid
in Zq and

sends (r, t, w) to the verifier. (r, t, w)
−−−−−−−−−−−−−→

4. The verifier computes

◦ T̃ ′ ← rP − (c+ t)(T ′ − T),

◦ Ỹ ′ ← rX − (c+ t)(Y ′ − Y) and

◦ Ṽ ′ ← tP + wXvid.

He checks whether T̃ ′
?
= T̃ , Ỹ ′

?
= Ỹ , and Ṽ ′

?
= Ṽ .

12 Michael Nüsken

By the Fiat & Shamir (1986) heuristic we can again transform both into a
non-interactive protocol:

Protocol 6.3. Non-interactive designated verifier proof.

Publicly known: El Gamal parameters (G, q, P).
Public input: Group elements T, Y, T ′, Y ′ ∈ G and the public key

Xvid of the voter vid.
Private input to the prover: The reencryption randomness z ∈ Zq

such that T ′ − T = zP and Y ′ − Y = zX.

1. The prover chooses temporary private keys s, t, w ←−− Zq and
computes in G

◦ T̃ ← sP ,

◦ Ỹ ← sX and

◦ Ṽ ← tP +wXvid.

She sends T̃ , Ỹ and Ṽ to the verifier.
2. The prover computes a challenge

c← Zq(hash(T, Y, T ′, Y ′, T̃ , Ỹ , Ṽ))

and sends it to the verifier. c
−−−−−−−−−−−−−→

3. The prover computes the response r ← s+z(c+w) and sends
it to the verifier. (r, t, w)

−−−−−−−−−−−−−→
4. The verifier computes

◦ T̃ ′ ← rP − (c+ t)(T ′ − T),

◦ Ỹ ′ ← rX − (c+ t)(Y ′ − Y) and

◦ Ṽ ′ ← tP + wXvid.

He checks whether T̃ ′ = T̃ , Ỹ ′ = Ỹ , and Ṽ ′ = Ṽ by computing

c′ ← Zq(hash(T, Y, T ′, Y ′, T̃ ′, Ỹ ′, Ṽ ′))

and checking c′
?
= c.

Civitas — algorithms 13

Protocol 6.4. Non-interactive fake designated verifier proof.

Publicly known: El Gamal parameters (G, q, P).
Public input: Group elements T, Y, T ′, Y ′ ∈ G and the public key

Xvid of the voter vid.
Private input to the prover: The verifier’s private key xvid.

1. The prover chooses the response r ←−− Zq and random values

a, v ←−− Zq and computes in G

◦ T̃ ← rP − a(T ′ − T),

◦ Ỹ ← rX − a(Y ′ − Y) and

◦ Ṽ ← vP .

She sends T̃ , Ỹ and Ṽ to the verifier.
2. The prover computes a challenge

c← Zq(hash(T, Y, T ′, Y ′, T̃ , Ỹ , Ṽ))

and sends it to the verifier. c
−−−−−−−−−−−−−→

3. The prover computes t ← a − c, w ← (v − t)x−1
vid

in Zq and
sends (r, t, w) to the verifier. (r, t, w)

−−−−−−−−−−−−−→
4. The verifier computes

◦ T̃ ′ ← rP − (c+ t)(T ′ − T),

◦ Ỹ ′ ← rX − (c+ t)(Y ′ − Y) and

◦ Ṽ ′ ← tP + wXvid.

He checks whether T̃ ′ = T̃ , Ỹ ′ = Ỹ , and Ṽ ′ = Ṽ by computing

c′ ← Zq(hash(T, Y, T ′, Y ′, T̃ ′, Ỹ ′, Ṽ ′))

and checking c′
?
= c.

14 Michael Nüsken

7. Voting specials

Algorithm 7.1.

Publicly known: El Gamal parameters (G, q, P).
Input: A message m ∈ Zq.
Output: The encoded message M = encode(m) ∈ G.

1. Return mP

The voting scheme will most of the time encrypt the encoded message.
Decoding this — in general — is impossible, but if the message m comes from a
known tiny subset of Zq, we can compute it by brute force. Typical tiny subsets
could be the set of indices of the voting options, for example, {1, 2, 3, 4, 5, 6} if
there are six choices for the voter. Also the possible sum of votes for a certain
option may occur, so then the set in question would be N≤2500 in a distinct
with 2500 voters.

Algorithm 7.2. Credential encryption.

Publicly known: El Gamal parameters (G, q, P).
Input: The public key KTT of a tabulation teller, a private credential share s ∈

M, the temporary private key t ∈ Z
×

q and the identifiers of registration
teller rid and voter vid.

Output: credenc(s, t,KTT , rid, vid).

1. Pick a random temporary keys u←−− Zq.
2. Encrypt (T, Y)← (tP, encode(s) + tKTT).
3. Compute a challenge c← Zq(hash(uP, T, Y, rid, vid)) ∈ Zq.
4. Compute the response r ← u+ ct in Zq.
5. Return (T, Y, c, r)

Algorithm 7.3. Credential verification.

Publicly known: El Gamal parameters (G, q, P).
Input: Public credential share S = (T, Y, c, r) and the identifiers of registration

teller rid and voter vid.
Output: credverify(S, rid, vid).

1. Compute U ← rP − cT and c′ ← Zq(hash(U, T, Y, rid, vid)) ∈ Zq.

2. Return c′
?
= c

Civitas — algorithms 15

8. Further proofs

Protocol 8.1. Reencryption proof (ReencPf).

Public input: A list C = [(Ti, Yi)]i of (reencrypted) ciphertexts, a partic-
ular ciphertext Ĉ = (T, Y), and the recipients’ public key
X.

Private input to the prover: An index j into the list C and the reencryp-
tion randomness t′ such that Ĉ = Cj + encX(O; t′).

Output to the prover: ReencPf(j, t′) = (š, ť)

1. The prover performs 2–8.
2. For all indices i of C do 3–5

3. She picks random values si, ti ←−− Zq.

4. T̃i = si(Ti − T) + tiP and
5. Ỹi = si(Yi − Y) + tiX.
6. The prover computes c← Zq(hash(Ĉ, C, [(T̃i, Ỹi)]i)).
7. The prover computes

šj ← c−
∑

i 6=j si, and for i 6= j let ši ← si,

ťj ← tj − t′ (šj − sj), and for i 6= j let ťi ← ti.
8. He sends (š, ť). (š, ť)

−−−−−−→
9. The verifier performs 10–15.

10. He reconstructs T̃ and Ỹ :
11. For all indices i of C do 12–13
12. T̃ ′

i = ši(Ti − T) + ťiP and

13. Ỹ ′

i = ši(Yi − Y) + ťiX.

14. He computes c′ ← Zq(hash(Ĉ, C, [(T̃ ′

i , Ỹ
′

i)]i)), and d′ ←
∑

i ši.

15. He verifies c′
?
= d′.

Completeness The reconstruction produces identical results for i 6= j since
the prover sends his data there. For i = j however we have

T̃ ′

j = šj(Tj − T) + ťjP

=
(
t′šj + ťj

)
P

= (t′šj + tj − t′ (šj − sj))P

= (t′sj + tj)P = sj(Tj − T) + tjP = T̃j .

The computation for Ỹ ′

j = Ỹj is similar (replace T by Y and P by X).

16 Michael Nüsken

Protocol 8.2. Vote Proof (VotePf).

Public input: Encrypted credential (T1, Y1, c, r) = CredEnc(s, t,KTT , rid, vid),
encrypted choice (T2, Y2), the prover’s public key X.

Private input to the prover: Temporary keys t1, t2 ∈ Zq such that Ti =
tiP .

1. The prover picks s1, s2 ←−− Zq.
2. The prover computes c← Zq(hash(P,X, T1, Y1, T2, Y2, s1P, s2P)).
3. The prover computes ri ← si − cti in Zq.
4. He sends (c, r1, r2). (c, r1, r2)

−−−−−−→
5. The verifier checks c

?
= Zq(hash(P,X, T1, Y1, T2, Y2, r1P + cT1, r2P +

cT2)).

This is merely a parallel execution of two copies of Protocol 4.2, and proves
knowledge of the two temporary encryption keys.

9. Main protocols

Protocol 9.1. Plaintext equivalence test (PET).

Public input: Two ciphertexts Cj = (Tj , Yj), encrpyted
with the tabulation tellers’ common public
key XTT =

∑
iXi.

Private input to tabulation teller i: The private key share
xi.

Output: PET(C1, C2)

1. Tabulation teller i performs 2–6.
2. Pick a randomizer zi ∈ Zq and compute T̃i ←

zi(T1 − T2), Ỹi ← zi(Y1 − Y2).
3. Publish a commitment to (T̃i, Ỹi). commit(T̃i, Ỹi)

−−−−−−−−−−−−−−−−−−−→
4. Wait until commitments of all tabulation tellers

←−−−−−−−−−−−−−−−−−−−
are available.

5. Publish (T̃i, Ỹi) and a proof of equality of discrete
logarithms for (T1 − T2, Y1 − Y2, T̃i, Ỹi). (T̃i, Ỹi,EqDlogs(. . .))

−−−−−−−−−−−−−−−−−−−→
6. Wait and verify all commitments and proofs.

←−−−−−−−−−−−−−−−−−−−
7. Let T̃ ←

∑
i T̃i, Ỹ ←

∑
i Ỹi.

8. All tabulation tellers jointly decrypt (T̃ , Ỹ):
−−−−−−−−−−−−−−−−−−−→
←−−−−−−−−−−−−−−−−−−−

m′ ← DistDec(T̃ , Ỹ).

9. If m′ = O then Return Equal Else Return Unequal .

Civitas — algorithms 17

Algorithm 9.2. Atomic mix operation (MIX).

Input: A list C = [Ci]i of ciphertexts, and a direction d ∈ {In,Out}.
Output: An anonymized reencryption M = Mix(C) of C, and a list of com-

mitments.
Private output: r, w, p.

1. Pick a permutation π of the indices of C. (Instead of picking it, you can
also compute it such that the reencrypted list M is sorted.)

2. If d = In then p← π−1 Else p← π.

3. Pick reencryption randomnesses ri ←−− Z
×

q and commitment randomizers

wi ←−− R.
4. Let M ← [Reenc(Cπ(i); ri)]i.
5. Let S ← [Commit(wi, p(i))].
6. Return M , S .

Protocol 9.3. The anonymizing mix net (MixNet).

Public input: A list C = [Ci]i of ciphertexts.
Output: Anonymization MixNet(C) of C.

1. Let M0,2 ← C.
2. For i = 1 . . . n do 3–6
3. Wait for Mi−1,2. ←−−−−−−−−−−−−−−−−−−−
4. Mix i computes (Mi,1, Si,1) ← Mix(Mi−1,2,Out)

and publishes that. Mi,1, Si,1
−−−−−−−−−−−−−−−−−−−→

5. Mix i computes (Mi,2, Si,2) ← Mix(Mi,1, In) and
publishes that. Mi,2, Si,2

−−−−−−−−−−−−−−−−−−−→

6. Pick a further random value qi ←−− R and publish
a commitment to it. Commit(qi)

−−−−−−−−−−−−−−−−−−−→
7. Wait for all mixes to finish.

←−−−−−−−−−−−−−−−−−−−
8. Then each mix publishes qi. qi

−−−−−−−−−−−−−−−−−−−→
9. Wait and verify all other mixes’ commitments.

←−−−−−−−−−−−−−−−−−−−
10. Let q ← hash(q1, . . . , qn).
11. Compute the challenge ci ← hash(q, i).
12. For i ∈ {1, . . . , n} in parallel do 13–20
13. Mix i publishes rj or rp(j) depending on bitj(ci),

wj and p(j) from the mixing resulting in Mi,1+bitj(ci)

for all indices j of C.

[({
rj if bitj(ci) = 0

rp(j) if bitj(ci) = 1
, wj , p(j)

)]

j
−−−−−−−−−−−−−−−−−−−→

14. Now all the mixing information can be erased.
15. Wait for the other mixes’ responses.

←−−−−−−−−−−−−−−−−−−−
16. Verify Commit(wj , p(j)) = Si,1+bitj(ci).
17. If bitj(ci) = 0 then

18. Verify ReencX(Mi−1,2,p(j); rj) = Mi,1,j .
19. Else

18 Michael Nüsken

20. Verify ReencX(Mi,1,j; rp(j)) = Mi,2,p(j).
21. Return Mn,2

The qi-business ensures that the challenges are influenced by all mixes in
an unpredictable way. No mix can predetermine its challenge.

The proof of correct mixing reveals exactly half of the mixing process for
each index j to the middle layer Mi,1. In this example:

Mi,0,0 Mi,1,0 Mi,2,0

Mi,0,1 Mi,1,1 Mi,2,1

Mi,0,2 Mi,1,2 Mi,2,2

Mi,0,3 Mi,1,3 Mi,2,3

Mi,0,4 Mi,1,4 Mi,2,4
...

...
...

p
Out(3) 7→ 3

3 7→ pIn(3)

either the information transforming Mi,0,0 to Mi,1,3 or the information trans-
forming Mi,1,3 to Mi,2,2 is revealed.

If a mix cheats it remains undetected only with probability 2−#C .
Note that these proofs can be checked by anyone after the mixing.

10. The election

Finally, we now reach the election itself.
Note that before the election a supervisor sets up various stuff. In particular

a broadcast bulletin board ABB is started and rules for the election are posted
there. All verification information will be posted there. Each registration teller
generates credentials for each possible voter on its block (precinct), encrypts
and posts them to ABB.

We start with the registration.

Protocol 10.1. Registration (Register).

Public input: The distributed public key XTT

of the tabulation tellers, a pub-
lic RSA key KRTi

of the registra-
tion teller i. The voter’s public
designation key Xvid. The voter’s
public registration RSA key Kvid.
Identifiers of election (eid), voter
(vid), registration tellers (rid), and
block (bid). Public credentials

Civitas — algorithms 19

Sj = CredEnc(sj ; t;XTT ; rid, vid)
for each registration teller j ∈ rid.

Private input to registration teller RTi: Private
credential si ∈ M and encryp-
tion randomness t ∈ Z

×

q .
Private input to the voter: Private registration

RSA key kvid, . . .
Output to the voter: private credentials

Register(vid, rid, sid)

1. The voter picks a nonce Nvid and sends the
election id eid, his id vid, and the nonce en-
crypted to the registration teller i. RSAencKRTi

(eid, vid, Nvid)
−−−−−−−−−−−−−−−−−−−−−−−−−−→

2. The registration teller RTi verifies that vid
is a voter in block (precinct) bid in election
eid, and that for each registration tellers j in
rid the public credential Sj is available and
CredVer(Sj; j, vid) succeeds.

3. The registration teller picks a nonce NR and
an AES key k (of security level `).

4. Send the registration teller ids rid, the nonces
NR and NV and the chosen AES key k to the
voter. RSAencKvid

(rid, NR, NV , k)
←−−−−−−−−−−−−−−−−−−−−−−−−−−

5. The voter decrypts and verifies rid and NV ,
and sends the nonce NR back to the registra-
tion teller RTi. NR−−−−−−−−−−−−−−−−−−−−−−−−−−→

6. The registration teller RTi verifies NR.

7. The registration teller picks t′ ←−− Z
×

q and
computes w ← t′− t and another encryption
S′

i ← Enc(si; t
′,XTT) of the private creden-

tial.
8. The registration teller sends AES encrypted

the private credential share and the new ran-
domness t′ together with a designated veri-
fier proof that Si and S′

i encrypt the same
message. AESenck(si, t

′,DVRP(. . .), bid)
←−−−−−−−−−−−−−−−−−−−−−−−−−−

9. The voter decrypts and verifies the desig-
nated verifier proof against Si from the bul-
letin board.

20 Michael Nüsken

Algorithm 10.2. Fake credentials (FakeCredential).

Input obtained from registration: Private credential shares si, public creden-
tial shares Si, reencryption factors ti, and designated verifier
proofs Di from each registration teller RTi.

Input: Index set L of registration teller for which to fake shares. The voter’s
designation key pair (Xvid, xvid).

Output: Fake private credential shares . . .

1. For i do 2–10
2. If i ∈ L then

3. Pick t̃i ←−− Z
×

q .
4. Pick s̃i randomly.
5. S̃i ← enc(s̃i; t̃i;XTT).

6. Compute a non-interactive fake designated verifier proof D̃i by Pro-
tocol 6.4

7. Else

8. Let t̃i ← ti.
9. Let s̃i ← si.

10. Let D̃i ← Di

11. Return [(s̃i, t̃i, D̃i)]i

Protocol 10.3. Vote (Vote).

Public input: The distributed public key XTT of the tab-
ulation tellers. Well-known choice cipher-
text list C.

Private input: The voter’s choice t and his credentials s.
Output to the ballot box: Vote(t, s)

1. The voter picks a randomness rs and encrypts his
credentials S ← enc(s; rs;XTT) for the tabulation
tellers.

2. He picks a randomness rv and reencrypts his choise
Ct: V ← reenc(Ct; rv).

3. He prepares a vote proof Pw of correct voting by Pro-
tocol 8.2 with inputs S, V , rs, rv, and further context.

4. He prepares a ReencPf Pk that V is a reencryption
of one of the cipher texts C by Protocol 8.1.

5. Let vote ← (S, V, Pw, Pk) and send this to the ballot
box. vote

−−−−−−−−−−−−−−−−−−−→

Civitas — algorithms 21

Protocol 10.4. Tabulate (Tabulate).

Principals: Tabulation tellers TT1, . . . , TTn, broadcast
bulletin board ABB, ballot boxes VBB1, . . . ,
VBBm, supervisor Sup.

Public input: XTT, contents of bulletin board ABB.
Private input to TTi: Private key share xi of XTT.
Output: Election tally for one block.

1. Each ballot box VBBi posts commitments on the list
of all votes on the tabulation board ABB. Commit(received votes)

−−−−−−−−−−−−−−−−−−−→
2. The supervisor signs the list of all received VBB com-

mitments. signSup(ABB so far)
−−−−−−−−−−−−−−−−−−−→

3. The tabulation tellers TTi jointly execute 4–11.
4. Retrieve votes. Retrieve all votes from all en- votes

←−−−−−−−−−−−−−−−−−−−
dorsed ballot boxes VBBi. Verify the commit-
ments. Let A← list of votes. A

−−−−−−−−−−−−−−−−−−−→
5. Check proofs. Verify all VotePfs and ReencPfs

in retrieved votes. Eliminate any votes with an
invalid proof. Let B be the list of remaining votes. B

−−−−−−−−−−−−−−−−−−−→
6. Duplicate elimination. Run the plaintext equiv-

alence test PET(S′

i, S
′

j) for all pairs (i, j), where
S′

x is the encrypted credential in vote Bx. Elimi-
nate equivalent votes according to a revoting pol-
icy. Let C be the list of remaining votes. C

−−−−−−−−−−−−−−−−−−−→
7. Mix votes. D ← MixNet(C). D

−−−−−−−−−−−−−−−−−−−→
8. Mix credentials. Let E be the list of all ini- E

←−−−−−−−−−−−−−−−−−−−
tially created encrypted credentials. Anonymize
it: F ← MixNet(E). F

−−−−−−−−−−−−−−−−−−−→
9. Invalid elimination. Run the plaintext equiv-

alence test PET(Si, S
′

j) for all pairs (i, j) where
Si = Fi, Sj = Dj . Eliminate votes from D for
which there is no equivalent credential found in
F . Let G be the list of remaining votes. G

−−−−−−−−−−−−−−−−−−−→
10. Decrypt. Let Hi ← DistDec(Gi) for all i. H

−−−−−−−−−−−−−−−−−−−→
11. Tally. Compute the tally of H according to an

election method specified by the supervisor. tally
−−−−−−−−−−−−−−−−−−−→

12. Finally, the supervisor endorses the tally (if . . .). Sign ABB so far.
−−−−−−−−−−−−−−−−−−−→

11. Security model and trust assumptions

. . .

22 Michael Nüsken

References

Michael R. Clarkson, Stephen Chong & Andrew C. Myers (2008). Civitas:
Toward a Secure Voting System. Computing and Information Science Technical Re-
port http://hdl.handle.net/1813/7875, Department of Computer Science, Cornell
University. Previously TR 2007-2081.

Amos Fiat & Adi Shamir (1986). How To Prove Yourself: Practical Solutions to
Identification and Signature Problems. In Advances in Cryptology: Proceedings of

CRYPTO ’86, Santa Barbara CA, A. M. Odlyzko, editor, number 263 in Lecture
Notes in Computer Science, 186–194. Springer-Verlag. ISSN 0302-9743.

