Esecurity: secure internet & evoting, summer 2010 MICHAEL NÜSKEN, KONSTANTIN ZIEGLER

12. Exercise sheet Hand in solutions until Sunday, 18 July 2010, 23.59 h

We take a look at the remaining seven protocols not discussed so far: REENCPF, VOTEPF, PET, MIXNET, REGISTER, VOTE, TABULATE (see the appendix). The aim of this assignment is to get a first hands-on experience with them.

Exercise 12.1 (VOTEPF and MIXNET).

(6+6 points)

Consider VOTEPF and MIXNET. What is the purpose of these protocols? Answer with a complete English sentence without mathematical symbols. Also, state the information that is verified in each case. Discuss further important properties.

6+6

Exercise 12.2. (7+7 points)

Answer the following questions for the named protocol.

7+7

REENCPF What happens if a lazy prover chooses the random value $t_i = s_i$ in step 3.

VOTEPF What are similarities and differences to KNOWDLOG?

PET What are similarities and differences to EQDLOG?

MIXNET What is the purpose of the q_i ?

REGISTER Why the use of nonces instead of simple random choices?

VOTE Why is this called protocol, not algorithm?

TABULATE Concerning the chronological sequence of steps 4-11, which can be run in parallel, for which can the order be reversed?

Exercise 12.3. (0+4 points)

Assume a scenario where n Tabulation tellers and m voters are involved. How - often is every protocol executed (on average/at least/at most)?

A. Appendix

Protocol A.1. Reencryption proof (REENCPF).

Public input: A list $C = [(T_i, Y_i)]_i$ of (reencrypted) ciphertexts, a particular ciphertext C = (T, Y), and the recipients' public key X.

Private input to the prover: An index j into the list C and the reencryption randomness t' such that $\widehat{C} = C_i + \text{enc}_X(\mathcal{O}; t')$.

Output to the prover: REENCPF(j, t') = (\check{s}, \check{t})

- 1. The prover performs 2–8.
- For all indices i of C do 3–5 2.
- She picks random values $s_i, t_i \stackrel{\clubsuit}{\longleftarrow} \mathbb{Z}_q$. 3.
- $\widetilde{T}_i = s_i(T_i T) + t_i P$ and 4.
- $\widetilde{Y}_i = s_i(Y_i Y) + t_i X.$ 5.
- The prover computes $c \leftarrow \mathbb{Z}_q(\text{hash}(\widehat{C}, C, \lceil (\widetilde{T}_i, \widetilde{Y}_i) \rceil_i)).$ 6.
- 7. The prover computes

$$\check{s}_j \leftarrow c - \sum_{i \neq j} s_i$$
, and for $i \neq j$ let $\check{s}_i \leftarrow s_i$, $\check{t}_j \leftarrow t_j - t' (\check{s}_j - s_j)$, and for $i \neq j$ let $\check{t}_i \leftarrow t_i$.

8. He sends (\check{s},\check{t}) . (\check{s},\check{t})

- 9. The verifier performs 10–15.
- 10. He reconstructs T and Y:
- 11. For all indices i of C do 12–13
- $\widetilde{T}_i' = \check{s}_i(T_i T) + \check{t}_i P$ and $\widetilde{Y}_i' = \check{s}_i(Y_i Y) + \check{t}_i X$. 12.
- 13.
- He computes $c' \leftarrow \mathbb{Z}_q(\mathsf{hash}(\widehat{C}, C, [(\widetilde{T}'_i, \widetilde{Y}'_i)]_i))$, and $d' \leftarrow \sum_i \check{s}_i$. 14.
- He verifies $c' \stackrel{?}{=} d'$. 15.

Protocol A.2. Vote Proof (VOTEPF).

Public input: Encrypted credential $(T_1, Y_1, c, r) = \text{CredEnc}(s, t, K_{TT}, rid, vid)$, encrypted choice (T_2, Y_2) , the prover's public key X.

Private input to the prover: Temporary keys $t_1, t_2 \in \mathbb{Z}_q$ such that $T_i = t_i P$.

- 1. The prover picks $s_1, s_2 \stackrel{\P_{\bullet}}{\longleftarrow} \mathbb{Z}_q$.
- 2. The prover computes $c \leftarrow \mathbb{Z}_q(\text{hash}(P, X, T_1, Y_1, T_2, Y_2, s_1P, s_2P))$.
- 3. The prover computes $r_i \leftarrow s_i ct_i$ in \mathbb{Z}_q .
- 4. He sends (c, r_1, r_2) .
- 5. The verifier checks $c \stackrel{?}{=} \mathbb{Z}_q(\operatorname{hash}(P,X,T_1,Y_1,T_2,Y_2,r_1P+cT_1,r_2P+cT_1,T_2P))$ $cT_2)$).

Protocol A.3. Plaintext equivalence test (PET).

Public input: Two ciphertexts $C_j = (T_j, Y_j)$, encryyted with the tabulation tellers' common public key $X_{TT} = \sum_{i} X_{i}$.

 $\operatorname{commit}(\widetilde{T}_i, \widetilde{Y}_i)$

 $(\widetilde{T}_i, \widetilde{Y}_i, \operatorname{EqDlogs}(\dots))$

Private input to tabulation teller *i*: The private key share

Output: $PET(C_1, C_2)$

- 1. Tabulation teller *i* performs 2–6.
- 2. Pick a randomizer $z_i \in \mathbb{Z}_q$ and compute $\widetilde{T}_i \leftarrow z_i(T_1 T_2)$, $\widetilde{Y}_i \leftarrow z_i(Y_1 Y_2)$.
- 3. Publish a commitment to $(\widetilde{T}_i, \widetilde{Y}_i)$.
- 4. Wait until commitments of all tabulation tellers are available.
- 5. Publish $(\widetilde{T}_i, \widetilde{Y}_i)$ and a proof of equality of discrete logarithms for $(T, Y, \widetilde{T}_i, \widetilde{Y}_i)$.
- 6. Wait and verify all commitments and proofs.
- 7. Let $\widetilde{T} \leftarrow \sum_{i} \widetilde{T}_{i}$, $\widetilde{Y} \leftarrow \sum_{i} \widetilde{Y}_{i}$.
- 8. All tabulation tellers jointly decrypt $(\widetilde{T}, \widetilde{Y})$:

$$m' \leftarrow \mathrm{DistDec}(\widetilde{T}, \widetilde{Y}).$$

9. If $m' = \mathcal{O}$ then Return Equal Else Return Unequal .

Algorithm A.4. Atomic mix operation (MIX).

Input: A list $C = [C_i]_i$ of ciphertexts, and a direction $d \in \{In, Out\}$.

Output: An anonymized reencryption $M=\operatorname{Mix}(C)$ of C, and a list of commitments.

Private output: r, w, p.

- 1. Pick a permutation π of the indices of C. (Instead of picking it, you can also compute it such that the reencrypted list M is sorted.)
- 2. If $d = \ln \text{ then } p \leftarrow \pi^{-1} \text{ Else } p \leftarrow \pi$.
- 3. Pick reencryption randomnesses $r_i \stackrel{\bullet}{\longleftarrow} \mathbb{Z}_q^{\times}$ and commitment randomizers $w_i \stackrel{\bullet}{\longleftarrow} \mathcal{R}$.
- 4. Let $M \leftarrow [\text{Reenc}(C_{\pi(i)}; r_i)]_i$.
- 5. Let $S \leftarrow [\mathsf{Commit}(w_i, p(i))]$.
- 6. Return M, S.

Protocol A.5. The anonymizing mix net (MIXNET).

Public input: A list $C = [C_i]_i$ of ciphertexts.

Output: Anonymization MIXNET(C) of C.

- 1. Let $M_{0,2} \leftarrow C$.
- 2. For $i = 1 \dots n \text{ do } 3-6$
- 3. Wait for $M_{i-1,2}$.
- 4. Mix i computes $(M_{i,1}, S_{i,1}) \leftarrow \text{Mix}(M_{i-1,2}, \text{Out})$ and publishes that. $M_{i,1}, S_{i,1}$

- 5. Mix i computes $(M_{i,2}, S_{i,2}) \leftarrow \text{Mix}(M_{i,1}, \text{In})$ and publishes that.
- $M_{i,2}, S_{i,2}$
- Pick a further random value $q_i \leftarrow \mathcal{R}$ and publish 6. a commitment to it.
- $Commit(q_i)$

7. Wait for all mixes to finish.

- 8. Then each mix publishes q_i .
- 9. Wait and verify all other mixes' commitments.
- 10. Let $q \leftarrow \text{hash}(q_1, \ldots, q_n)$.
- 11. Compute the challenge $c_i \leftarrow \text{hash}(q, i)$.
- 12. For $i \in \{1, ..., n\}$ in parallel do 13–20
- Mix i publishes r_j or $r_{p(j)}$ depending on $\mathrm{bit}_j(c_i)$, 13. w_i and p(j) from the mixing resulting in $M_{i,1+\mathrm{bit}_j(c_i)}$ for all indices j of C.
 - Now all the mixing information can be erased.
- 15. Wait for the other mixes' responses.
- Verify Commit $(w_j, p(j)) = S_{i,1+bit_j(c_i)}$. 16.
- 17. If $bit_i(c_i) = 0$ then
- 18. Verify Reenc_X $(M_{i-1,2,p(i)}; r_i) = M_{i,1,j}$.
- 19. Else

14.

- Verify Reenc_X $(M_{i,1,j}; r_{p(j)}) = M_{i,2,p(j)}$. 20.
- 21. Return $M_{n,2}$

if $\operatorname{bit}_{j}(c_{i}) = 0$ if $\operatorname{bit}_{j}(c_{i}) = 1$, $w_{j}, p(j)$

Protocol A.6. Registration (REGISTER).

Public input: The distributed public key X_{TT} of the tabulation tellers, a public RSA key K_{RT_i} of the registration teller i. The voter's public designation key X_{vid} . The voter's public registration RSA key K_{vid} . Identifiers of election (eid), voter (vid), registration tellers (rid), and block (bid). Public credentials $S_i = \text{CredEnc}(s_i; r; X_{TT}; \text{rid}, \text{vid})$ for each registration teller $j \in \text{rid}$.

Private input to registration teller RT_i: Private credential $s_i \in \mathcal{M}$ and encryption randomness $r \in \mathbb{Z}_q^{\times}$.

Private input to the voter: Private registration RSA key $k_{\rm vid}, \dots$

Output to the voter: private credentials Register(vid, rid, sid)

- 1. The voter picks a nonce N_{vid} and sends the election id eid, his id vid, and the nonce encrypted to the registration teller i.
- 2. The registration teller RT_i verifies that vid is a voter in block (precinct) bid in election eid, and that for each registration tellers j in

 $RSAenc_{K_{RT_i}}(eid, vid, N_{vid})$

rid the public credential S_j is available and CredVer(S_j ; j, vid) succeeds.

- 3. The registration teller picks a nonce N_R and an AES key k (of security level ℓ).
- 4. Send the registration teller ids rid, the nonces N_R and N_V and the chosen AES key k to the voter.
- 5. The voter decrypts and verifies rid and N_V , and sends the nonce N_R back to the registration teller RT_i .
- 6. The registration teller RT_i verifies N_R .
- 7. The registration teller picks $r' \xleftarrow{\P_q} \mathbb{Z}_q^{\times}$ and computes $w \leftarrow r' r$ and another encryption $S_i' \leftarrow \operatorname{Enc}(s_i; r', X_{TT})$ of the private credential.
- 8. The registration teller sends AES encrypted the private credential share and the new randomness r' together with a designated verifier proof that S_i and S'_i encrypt the same message.
- 9. The voter decrypts and verifies the designated verifier proof against S_i from the bulletin board.

 $AESenc_k(s_i, r', DVRP(...), bid)$

Algorithm A.7. Fake credentials (FACECREDENTIAL).

Input obtained from registration: Private credential shares s_i , public credential shares S_i , reencryption factors r_i , and designated verifier proofs D_i from each registration teller RT_i .

Input: Index set L of registration teller for which to fake shares. The voter's designation key pair $(X_{\text{vid}}, x_{\text{vid}})$.

Output: Fake private credential shares ...

```
1. For i do 2–9

2. If i \in L then

3. Pick \widetilde{r}_i \stackrel{\bullet}{\longleftarrow} \mathbb{Z}_q^{\times}.

4. Pick \widetilde{s}_i randomly.

5. Else

6. Let \widetilde{r}_i \leftarrow r_i.

7. Let \widetilde{s}_i \leftarrow s_i.

8. \widetilde{S}_i \leftarrow \operatorname{enc}(\widetilde{s}_i; \widetilde{r}_i; X_{\operatorname{TT}}).
```

- 9. Compute a non-interactive fake designated verifier proof \tilde{D}_i by Protocol 6.4
- 10. Return $[(\widetilde{s}_i, \widetilde{r}_i, \widetilde{D}_i)]_i$

Protocol A.8. Vote (VOTE).

Public input: The distributed public key X_{TT} of the tabu-

lation tellers. Well-known choice ciphertext

list C.

Private input: The voter's choice t and his credentials s. Output to the ballot box: Vote(t,s)

- 1. The voter picks a randomness r_s and encrypts his credentials $S \leftarrow \text{enc}(s; r_s; X_{TT})$ for the tabulation tellers.
- 2. He picks a randomness r_v and reencrypts his choise C_t : $V \leftarrow \text{reenc}(C_t; r_v)$.
- 3. He prepares a vote proof P_w of correct voting by Protocol A.2 with inputs S, V, r_s , r_v , and further context.
- 4. He prepares a REENCPF P_k that V is a reencryption of one of the cipher texts C by Protocol A.1.
- 5. Let vote $\leftarrow (S, V, P_w, P_k)$ and send this to the ballot box.

vote

Protocol A.9. Tabulate (TABULATE).

Principals: Tabulation tellers $TT_1, ..., TT_n$, broadcast bulletin board ABB, ballot boxes $VBB_1, ..., VBB_m$, supervisor Sup.

Public input: X_{TT} , contents of bulletin board ABB. Private input to TT_i : Private key share x_i of X_{TT} . Output: Election tally for one block.

- 1. Each ballot box VBB_i posts commitments on the list of all votes on the tabulation board ABB.
- 2. The supervisor signs the list of all received VBB commitments.
- 3. The tabulation tellers TT_i jointly execute 4–11.
- 4. **Retrieve votes**. Retrieve all votes from all endorsed ballot boxes VBB_i . Verify the commitments. Let $A \leftarrow$ list of votes.
- 5. **Check proofs**. Verify all VotePfs and ReencPfs in retrieved votes. Eliminate any votes with an invalid proof. Let *B* be the list of remaining votes.
- 6. **Duplicate elimination**. Run the plaintext equivalence test $PET(S'_i, S'_j)$ for all pairs (i, j), where S'_x is the encrypted credential in vote B_x . Eliminate equivalent votes according to a revoting policy. Let C be the list of remaining votes.
- 7. **Mix votes**. $D \leftarrow MixNet(C)$.
- 8. **Mix credentials**. Let E be the list of all initially created encrypted credentials. Anonymize it: $F \leftarrow \text{MixNet}(E)$.

Commit	(received	l votes)	
sion	(ABB sc	(far)	

votes

A

В

 $\begin{array}{c}
C \\
D \\
E
\end{array}$

- 9. **Invalid elimination**. Run the plaintext equivalence test $PET(S_i, S'_j)$ for all pairs (i, j) where $S_i = F_i$, $S_j = D_j$. Eliminate votes from D for which there is no equivalent credential found in F. Let G be the list of remaining votes.
- 10. **Decrypt.** Let $H_i \leftarrow \text{DistDec}(G_i)$ for all i.
- 11. **Tally**. Compute the tally of *H* according to an election method specified by the supervisor.
- 12. Finally, the supervisor endorses the tally (if ...).

G	
H	(
tally	
Sign ABB so far.	\longrightarrow