
Esecurity: secure internet & evoting, summer 2010
MICHAEL NÜSKEN, KONSTANTIN ZIEGLER

12. Exercise sheet

Hand in solutions until Sunday, 18 July 2010, 23.59 h

We take a look at the remaining seven protocols not discussed so far: REENCPF,
VOTEPF, PET, MIXNET, REGISTER, VOTE, TABULATE (see the appendix). The
aim of this assignment is to get a first hands-on experience with them.

Exercise 12.1 (VOTEPF and MIXNET). (6+6 points)

Consider VOTEPF and MIXNET. What is the purpose of these protocols? An- 6+6
swer with a complete English sentence without mathematical symbols. Also,
state the information that is verified in each case. Discuss further important
properties.

Exercise 12.2. (7+7 points)

Answer the following questions for the named protocol. 7+7

REENCPF What happens if a lazy prover chooses the random value ti = si in
step 3.

VOTEPF What are similarities and differences to KNOWDLOG?

PET What are similarities and differences to EQDLOG?

MIXNET What is the purpose of the qi?

REGISTER Why the use of nonces instead of simple random choices?

VOTE Why is this called protocol, not algorithm?

TABULATE Concerning the chronological sequence of steps 4-11, which can be
run in parallel, for which can the order be reversed?

Exercise 12.3. (0+4 points)

Assume a scenario where n Tabulation tellers and m voters are involved. How +4
often is every protocol executed (on average/at least/at most)?



2 Michael Nüsken, Konstantin Ziegler

A. Appendix

Protocol A.1. Reencryption proof (REENCPF).
Public input: A list C = [(Ti, Yi)]i of (reencrypted) ciphertexts, a particular

ciphertext Ĉ = (T, Y ), and the recipients’ public key X .
Private input to the prover: An index j into the list C and the reencryption

randomness t′ such that Ĉ = Cj + encX(O; t′).
Output to the prover: REENCPF(j, t′) = (š, ť)

1. The prover performs 2–8.
2. For all indices i of C do 3–5

3. She picks random values si, ti ←−− Zq.
4. T̃i = si(Ti − T ) + tiP and
5. Ỹi = si(Yi − Y ) + tiX .
6. The prover computes c ← Zq(hash(Ĉ, C, [(T̃i, Ỹi)]i)).
7. The prover computes

šj ← c −
∑

i6=j si, and for i 6= j let ši ← si,
ťj ← tj − t′ (šj − sj), and for i 6= j let ťi ← ti.

8. He sends (š, ť). (š, ť)
−−−−−−−→

9. The verifier performs 10–15.
10. He reconstructs T̃ and Ỹ :
11. For all indices i of C do 12–13
12. T̃ ′

i = ši(Ti − T ) + ťiP and
13. Ỹ ′

i = ši(Yi − Y ) + ťiX .
14. He computes c′ ← Zq(hash(Ĉ, C, [(T̃ ′

i , Ỹ
′
i )]i)), and d′ ←

∑
i ši.

15. He verifies c′
?
= d′.

Protocol A.2. Vote Proof (VOTEPF).
Public input: Encrypted credential (T1, Y1, c, r) = CredEnc(s, t, KTT , rid, vid),

encrypted choice (T2, Y2), the prover’s public key X .
Private input to the prover: Temporary keys t1, t2 ∈ Zq such that Ti = tiP .

1. The prover picks s1, s2 ←−− Zq.
2. The prover computes c ← Zq(hash(P, X, T1, Y1, T2, Y2, s1P, s2P )).
3. The prover computes ri ← si − cti in Zq.
4. He sends (c, r1, r2). (c, r1, r2)

−−−−−−−→
5. The verifier checks c

?
= Zq(hash(P, X, T1, Y1, T2, Y2, r1P + cT1, r2P +

cT2)).

Protocol A.3. Plaintext equivalence test (PET).
Public input: Two ciphertexts Cj = (Tj , Yj), encrpyted

with the tabulation tellers’ common public
key XTT =

∑
i Xi.



Esecurity: secure internet & evoting, summer 2010 3

Private input to tabulation teller i: The private key share
xi.

Output: PET(C1, C2)

1. Tabulation teller i performs 2–6.
2. Pick a randomizer zi ∈ Zq and compute T̃i ←

zi(T1 − T2), Ỹi ← zi(Y1 − Y2).
3. Publish a commitment to (T̃i, Ỹi). commit(T̃i, Ỹi)

−−−−−−−−−−−−−−−−−−−−→
4. Wait until commitments of all tabulation tellers are

←−−−−−−−−−−−−−−−−−−−−
available.

5. Publish (T̃i, Ỹi) and a proof of equality of discrete
logarithms for (T, Y, T̃i, Ỹi). (T̃i, Ỹi, EqDlogs(. . . ))

−−−−−−−−−−−−−−−−−−−−→
6. Wait and verify all commitments and proofs.

←−−−−−−−−−−−−−−−−−−−−
7. Let T̃ ←

∑
i T̃i, Ỹ ←

∑
i Ỹi.

8. All tabulation tellers jointly decrypt (T̃ , Ỹ ):
−−−−−−−−−−−−−−−−−−−−→

←−−−−−−−−−−−−−−−−−−−−m′ ← DistDec(T̃ , Ỹ ).

9. If m′ = O then Return Equal Else Return Unequal .

Algorithm A.4. Atomic mix operation (MIX).
Input: A list C = [Ci]i of ciphertexts, and a direction d ∈ {In, Out}.
Output: An anonymized reencryption M = Mix(C) of C, and a list of com-

mitments.
Private output: r, w, p.

1. Pick a permutation π of the indices of C. (Instead of picking it, you can
also compute it such that the reencrypted list M is sorted.)

2. If d = In then p ← π−1 Else p ← π.

3. Pick reencryption randomnesses ri ←−− Z
×
q and commitment randomizers

wi ←−− R.
4. Let M ← [Reenc(Cπ(i); ri)]i.
5. Let S ← [Commit(wi, p(i))].
6. Return M , S .

Protocol A.5. The anonymizing mix net (MIXNET).
Public input: A list C = [Ci]i of ciphertexts.
Output: Anonymization MIXNET(C) of C.

1. Let M0,2 ← C.
2. For i = 1 . . . n do 3–6
3. Wait for Mi−1,2.

←−−−−−−−−−−−−−−−−−−−−
4. Mix i computes (Mi,1, Si,1) ← Mix(Mi−1,2, Out)

and publishes that. Mi,1, Si,1
−−−−−−−−−−−−−−−−−−−−→



4 Michael Nüsken, Konstantin Ziegler

5. Mix i computes (Mi,2, Si,2) ← Mix(Mi,1, In) and
publishes that. Mi,2, Si,2

−−−−−−−−−−−−−−−−−−−−→

6. Pick a further random value qi ←−− R and publish
a commitment to it. Commit(qi)

−−−−−−−−−−−−−−−−−−−−→
7. Wait for all mixes to finish.

←−−−−−−−−−−−−−−−−−−−−
8. Then each mix publishes qi. qi

−−−−−−−−−−−−−−−−−−−−→
9. Wait and verify all other mixes’ commitments.

←−−−−−−−−−−−−−−−−−−−−
10. Let q ← hash(q1, . . . , qn).
11. Compute the challenge ci ← hash(q, i).
12. For i ∈ {1, . . . , n} in parallel do 13–20
13. Mix i publishes rj or rp(j) depending on bitj(ci),

wj and p(j) from the mixing resulting in Mi,1+bitj(ci)

for all indices j of C.

[({
rj if bitj(ci) = 0

rp(j) if bitj(ci) = 1
, wj , p(j)

)]

j
−−−−−−−−−−−−−−−−−−−−→

14. Now all the mixing information can be erased.
15. Wait for the other mixes’ responses.

←−−−−−−−−−−−−−−−−−−−−
16. Verify Commit(wj , p(j)) = Si,1+bitj(ci).
17. If bitj(ci) = 0 then
18. Verify ReencX(Mi−1,2,p(j); rj) = Mi,1,j .
19. Else
20. Verify ReencX(Mi,1,j ; rp(j)) = Mi,2,p(j).
21. Return Mn,2

Protocol A.6. Registration (REGISTER).

Public input: The distributed public key XTT

of the tabulation tellers, a pub-
lic RSA key KRTi

of the registra-
tion teller i. The voter’s public
designation key Xvid. The voter’s
public registration RSA key Kvid.
Identifiers of election (eid), voter
(vid), registration tellers (rid), and
block (bid). Public credentials
Sj = CredEnc(sj ; r; XTT ; rid, vid)
for each registration teller j ∈ rid.

Private input to registration teller RTi: Private
credential si ∈ M and encryp-
tion randomness r ∈ Z

×
q .

Private input to the voter: Private registration
RSA key kvid, . . .

Output to the voter: private credentials
Register(vid, rid, sid)

1. The voter picks a nonce Nvid and sends the
election id eid, his id vid, and the nonce en-
crypted to the registration teller i. RSAencKRTi

(eid, vid, Nvid)
−−−−−−−−−−−−−−−−−−−−−−−−−−−→

2. The registration teller RTi verifies that vid
is a voter in block (precinct) bid in election
eid, and that for each registration tellers j in



Esecurity: secure internet & evoting, summer 2010 5

rid the public credential Sj is available and
CredVer(Sj ; j, vid) succeeds.

3. The registration teller picks a nonce NR and
an AES key k (of security level ℓ).

4. Send the registration teller ids rid, the nonces
NR and NV and the chosen AES key k to the
voter. RSAencKvid(rid, NR, NV , k)

←−−−−−−−−−−−−−−−−−−−−−−−−−−−
5. The voter decrypts and verifies rid and NV ,

and sends the nonce NR back to the registra-
tion teller RTi. NR−−−−−−−−−−−−−−−−−−−−−−−−−−−→

6. The registration teller RTi verifies NR.

7. The registration teller picks r′ ←−− Z
×
q and

computes w ← r′ − r and another encryption
S′

i ← Enc(si; r
′, XTT ) of the private creden-

tial.
8. The registration teller sends AES encrypted

the private credential share and the new ran-
domness r′ together with a designated ver-
ifier proof that Si and S′

i encrypt the same
message. AESenck(si, r

′, DVRP(. . . ), bid)
←−−−−−−−−−−−−−−−−−−−−−−−−−−−

9. The voter decrypts and verifies the desig-
nated verifier proof against Si from the bul-
letin board.

Algorithm A.7. Fake credentials (FACECREDENTIAL).

Input obtained from registration: Private credential shares si, public creden-
tial shares Si, reencryption factors ri, and designated verifier
proofs Di from each registration teller RTi.

Input: Index set L of registration teller for which to fake shares. The voter’s
designation key pair (Xvid, xvid).

Output: Fake private credential shares . . .

1. For i do 2–9
2. If i ∈ L then

3. Pick r̃i ←−− Z
×
q .

4. Pick s̃i randomly.
5. Else
6. Let r̃i ← ri.
7. Let s̃i ← si.
8. S̃i ← enc(s̃i; r̃i; XTT).
9. Compute a non-interactive fake designated verifier proof D̃i by Proto-

col 6.4
10. Return [(s̃i, r̃i, D̃i)]i



6 Michael Nüsken, Konstantin Ziegler

Protocol A.8. Vote (VOTE).
Public input: The distributed public key XTT of the tabu-

lation tellers. Well-known choice ciphertext
list C.

Private input: The voter’s choice t and his credentials s.
Output to the ballot box: Vote(t, s)

1. The voter picks a randomness rs and encrypts his cre-
dentials S ← enc(s; rs; XTT ) for the tabulation tellers.

2. He picks a randomness rv and reencrypts his choise
Ct: V ← reenc(Ct; rv).

3. He prepares a vote proof Pw of correct voting by Pro-
tocol A.2 with inputs S, V , rs, rv, and further context.

4. He prepares a REENCPF Pk that V is a reencryption of
one of the cipher texts C by Protocol A.1.

5. Let vote ← (S, V, Pw, Pk) and send this to the ballot
box. vote

−−−−−−−−−−−−−−−−−−−−→

Protocol A.9. Tabulate (TABULATE).
Principals: Tabulation tellers TT1, . . . , TTn, broadcast bul-

letin board ABB, ballot boxes VBB1, . . . , VBBm,
supervisor Sup.

Public input: XTT, contents of bulletin board ABB.
Private input to TTi: Private key share xi of XTT.
Output: Election tally for one block.

1. Each ballot box VBBi posts commitments on the list of
all votes on the tabulation board ABB. Commit(received votes)

−−−−−−−−−−−−−−−−−−−−→
2. The supervisor signs the list of all received VBB com-

mitments. signSup(ABB so far)
−−−−−−−−−−−−−−−−−−−−→

3. The tabulation tellers TTi jointly execute 4–11.
4. Retrieve votes. Retrieve all votes from all endorsed votes

←−−−−−−−−−−−−−−−−−−−−
ballot boxes VBBi. Verify the commitments. Let
A ← list of votes. A

−−−−−−−−−−−−−−−−−−−−→
5. Check proofs. Verify all VotePfs and ReencPfs in

retrieved votes. Eliminate any votes with an in-
valid proof. Let B be the list of remaining votes. B

−−−−−−−−−−−−−−−−−−−−→
6. Duplicate elimination. Run the plaintext equiv-

alence test PET(S′
i, S

′
j) for all pairs (i, j), where

S′
x is the encrypted credential in vote Bx. Elimi-

nate equivalent votes according to a revoting pol-
icy. Let C be the list of remaining votes. C

−−−−−−−−−−−−−−−−−−−−→
7. Mix votes. D ← MixNet(C). D

−−−−−−−−−−−−−−−−−−−−→
8. Mix credentials. Let E be the list of all initially E

←−−−−−−−−−−−−−−−−−−−−
created encrypted credentials. Anonymize it: F ←
MixNet(E). F

−−−−−−−−−−−−−−−−−−−−→



Esecurity: secure internet & evoting, summer 2010 7

9. Invalid elimination. Run the plaintext equiva-
lence test PET(Si, S

′
j) for all pairs (i, j) where Si =

Fi, Sj = Dj . Eliminate votes from D for which
there is no equivalent credential found in F . Let G

be the list of remaining votes. G
−−−−−−−−−−−−−−−−−−−−→

10. Decrypt. Let Hi ← DistDec(Gi) for all i. H
−−−−−−−−−−−−−−−−−−−−→

11. Tally. Compute the tally of H according to an elec-
tion method specified by the supervisor. tally

−−−−−−−−−−−−−−−−−−−−→
12. Finally, the supervisor endorses the tally (if . . . ). Sign ABB so far.

−−−−−−−−−−−−−−−−−−−−→


