The Art of Cryptography: Integral Lattices, summer 2010 Prof. Dr. Joachim von zur Gathen, Daniel Loebenberger

1. Exercise sheet Hand in solutions until Sunday, 18 April 2010, 23:59h.

Reminders.

- For the course we remind you of the following dates:
 - Lectures: Monday and Thursday 13:00h-14:30h sharp, b-it bitmax.
 - Tutorial: Monday 11:00h-12:30h sharp, Room t.b.a.
- A word on the exercises. They are important. Of course, you know that. In order to be admitted to the exam it is necessary that you earned at least 20% of the credits. Just as an additional motivation, you will get a bonus for the final exam if you attended the tutorial regularily and earned more than 60% or even more than 80% of the credits.

Exercise 1.1 (Discrete sets). (3 points) Show that the set $A := \{\frac{1}{n} \mid n \in \mathbb{N}_{\geq 1}\}$ is discrete but the set $B := A \cup \{0\}$ is not. 3 **Exercise 1.2** (Discrete groups). (9 points)

Consider a subgroup L of $(\mathbb{R}^n, +)$. For $x \in \mathbb{R}^n$ denote as in the lecture the open ball around x with radius r by $\mathcal{B}(x, r)$.

(i) Show that *L* is discrete if and only if for some r > 0 we have $L \cap \mathcal{B}(0, r) = \{0\}$. 3

Let $b_1, \ldots, b_m \in \mathbb{R}^n$ be vectors and let $B := [b_1| \ldots |b_m] \in \mathbb{R}^{n \times m}$. As in the lecture write $\mathcal{L}(B)$ for the set of all integral linear combinations of the b_i 's.

- (ii) Show that the set $\mathcal{L}(\begin{bmatrix} 1 & \sqrt{2} \end{bmatrix})$ is not discrete.
- (iii) Show that the set $\mathcal{L}(B)$ is discrete if
 - (a) $b_1, \ldots, b_m \in \mathbb{Q}^n$ or
 - (b) b_1, \ldots, b_m are linearly independent. Hint: Use your result from (i) and consider the region $P = \left\{ \sum_{1 \le i \le m} x_i \cdot b_i \mid |x_i| < 1 \right\}.$

2

4

(4 points)

Exercise 1.3 (Lattices and the gcd).

Let $a, b \in \mathbb{N}$ and consider the lattice $L = a\mathbb{Z} + b\mathbb{Z}$ spanned by the vectors (*a*) and (*b*).

- (i) Show that $L = gcd(a, b)\mathbb{Z}$. Hint: Extended Euclidean Algorithm!
- (ii) Conclude that a shortest vector in *L* has length gcd(a, b).

Exercise 1.4 (Transforming bases).

(5+5 points)

Let $B \in \mathbb{R}^{n \times m}$ be a basis of the lattice $L = \mathcal{L}(B)$. Express each of the following matrix operations on B as a right multiplication by a unimodular matrix U, i.e. an integer matrix with $\det(U) = \pm 1$:

- (i) Swap the order of the columns of *B*,
- (ii) Multiply a column by -1,

2

+5

+1

+1

+1

+1

- (iii) Add an integer multiple of a column to another column, i.e. set $b_i \leftarrow b_i + ab_j$ where $i \neq j$ and $a \in \mathbb{Z}$.
- (iv) Show that any unimodular matrix can be expressed as a sequence of these three elementary integer column transformations.

Exercise 1.5 (Tool: Groups).

(0+7 points)

In this exercise you will get comfortable with the concept of a group. Always remember: Don't PANIC. Which of the following sets, together with the given operation form a group? Check for each property (Proper, Associative, Neutral, Inverse, Commutative) if it is well-defined, and if so if it is fulfilled or not:

- (i) $(\mathbb{Z}, -)$: The integers \mathbb{Z} with subtraction.
- (ii) $(\mathbb{N} \setminus \{0\}, \hat{})$: The positive integers $\mathbb{N} \setminus \{0\}$ with exponentiation.
- (iii) (\mathbb{B}, \lor) : The set $\mathbb{B} := \{\top, \bot\}$ with operation \lor (the logical OR), defined as:

\vee	Т	\perp
Т	Т	Τ
\perp	Т	\bot

(iv) (\mathbb{B}, \oplus) : The set \mathbb{B} with operation \oplus (the logical XOR), defined as:

\oplus	H	\perp
Т	\perp	Т
\perp	Т	\perp

- (v) $(4\mathbb{Z}+1, \cdot)$: The set $4\mathbb{Z}+1 := \{z \in \mathbb{Z} \mid z = 1 \text{ in } \mathbb{Z}_4\}$ with multiplication.
- (vi) $(\{\mathbb{Z}_7 \to \mathbb{Z}_7\}, \circ)$: The set $\{\mathbb{Z}_7 \to \mathbb{Z}_7\} := \{f : \mathbb{Z}_7 \to \mathbb{Z}_7\}$ with concatenation \circ of functions. An example: If $g_1, g_2 : \mathbb{Z}_7 \to \mathbb{Z}_7$ are two functions then $(g_1 \circ g_2)(x) := g_1(g_2(x))$ for all $x \in \mathbb{Z}_7$.
- (vii) $(\mathcal{S}(\mathbb{Z}_{13}), \circ)$: The set $\mathcal{S}(\mathbb{Z}_{13}) := \{f : \mathbb{Z}_{13} \to \mathbb{Z}_{13} \mid f \text{ bijective}\}$ with concatenation \circ .

(viii) (\mathbb{Z}_3^2, \Box) : The set $\mathbb{Z}_3^2 := \{(a, b) \mid a \in \mathbb{Z}_3, b \in \mathbb{Z}_3\}$ with the following operation \Box :

$$\Box: \begin{array}{cccc} \mathbb{Z}_3^{2} \times \mathbb{Z}_3^{2} & \longrightarrow & \mathbb{Z}_3^{2}, \\ (a,b), (c,d) & \longmapsto & (ac+bd, ad+bc) \end{array}$$