The Art of Cryptography: Integral Lattices, summer 2010
 Prof. Dr. Joachim von zur Gathen, Daniel Loebenberger

1. Exercise sheet

Hand in solutions until Sunday, 18 April 2010, 23:59h.

Reminders.

- For the course we remind you of the following dates:
- Lectures: Monday and Thursday 13:00h-14:30h sharp, b-it bitmax.
- Tutorial: Monday 11:00h-12:30h sharp, Room t.b.a.
- A word on the exercises. They are important. Of course, you know that. In order to be admitted to the exam it is necessary that you earned at least 20% of the credits. Just as an additional motivation, you will get a bonus for the final exam if you attended the tutorial regularily and earned more than 60% or even more than 80% of the credits.

Exercise 1.1 (Discrete sets).

Show that the set $A:=\left\{\left.\frac{1}{n} \right\rvert\, n \in \mathbb{N}_{\geq 1}\right\}$ is discrete but the set $B:=A \cup\{0\}$ is not.

Exercise 1.2 (Discrete groups).
(9 points)
Consider a subgroup L of $\left(\mathbb{R}^{n},+\right)$. For $x \in \mathbb{R}^{n}$ denote as in the lecture the open ball around x with radius r by $\mathcal{B}(x, r)$.
(i) Show that L is discrete if and only if for some $r>0$ we have $L \cap \mathcal{B}(0, r)=\{0\}$.

Let $b_{1}, \ldots, b_{m} \in \mathbb{R}^{n}$ be vectors and let $B:=\left[b_{1}|\ldots| b_{m}\right] \in \mathbb{R}^{n \times m}$. As in the lecture write $\mathcal{L}(B)$ for the set of all integral linear combinations of the b_{i} 's.
(ii) Show that the set $\mathcal{L}\left(\left[\begin{array}{ll}1 & \sqrt{2}\end{array}\right]\right)$ is not discrete.
(iii) Show that the set $\mathcal{L}(B)$ is discrete if
(a) $b_{1}, \ldots, b_{m} \in \mathbb{Q}^{n}$ or
(b) b_{1}, \ldots, b_{m} are linearly independent. Hint: Use your result from (i) and consider the region $P=\left\{\sum_{1 \leq i \leq m} x_{i} \cdot b_{i}| | x_{i} \mid<1\right\}$.

Exercise 1.3 (Lattices and the gcd).
Let $a, b \in \mathbb{N}$ and consider the lattice $L=a \mathbb{Z}+b \mathbb{Z}$ spanned by the vectors (a) and (b).
(i) Show that $L=\operatorname{gcd}(a, b) \mathbb{Z}$. Hint: Extended Euclidean Algorithm!
(ii) Conclude that a shortest vector in L has length $\operatorname{gcd}(a, b)$.

Exercise 1.4 (Transforming bases).
Let $B \in \mathbb{R}^{n \times m}$ be a basis of the lattice $L=\mathcal{L}(B)$. Express each of the following matrix operations on B as a right multiplication by a unimodular matrix U, i.e. an integer matrix with $\operatorname{det}(U)= \pm 1$:
(i) Swap the order of the columns of B,
(ii) Multiply a column by -1 ,
(iii) Add an integer multiple of a column to another column, i.e. set $b_{i} \leftarrow b_{i}+a b_{j}$ where $i \neq j$ and $a \in \mathbb{Z}$.
(iv) Show that any unimodular matrix can be expressed as a sequence of these three elementary integer column transformations.

Exercise 1.5 (Tool: Groups).

In this exercise you will get comfortable with the concept of a group. Always remember: Don't PANIC. Which of the following sets, together with the given operation form a group? Check for each property (Proper, Associative, Neutral, Inverse, Commutative) if it is well-defined, and if so if it is fulfilled or not:
(i) $(\mathbb{Z},-)$: The integers \mathbb{Z} with subtraction.
(ii) $\left(\mathbb{N} \backslash\{0\},{ }^{\wedge}\right)$: The positive integers $\mathbb{N} \backslash\{0\}$ with exponentiation.
(iii) (\mathbb{B}, \vee) : The set $\mathbb{B}:=\{\top, \perp\}$ with operation \vee (the logical OR), defined as:

\vee	\top	\perp
\top	\top	\top
\perp	\top	\perp

(iv) (\mathbb{B}, \oplus) : The set \mathbb{B} with operation \oplus (the logical XOR), defined as:

\oplus	\top	\perp
\top	\perp	\top
\perp	\top	\perp

(v) $(4 \mathbb{Z}+1, \cdot)$: The set $4 \mathbb{Z}+1:=\left\{z \in \mathbb{Z} \mid z=1\right.$ in $\left.\mathbb{Z}_{4}\right\}$ with multiplication.
(vi) $\left(\left\{\mathbb{Z}_{7} \rightarrow \mathbb{Z}_{7}\right\}, \circ\right)$: The set $\left\{\mathbb{Z}_{7} \rightarrow \mathbb{Z}_{7}\right\}:=\left\{f: \mathbb{Z}_{7} \rightarrow \mathbb{Z}_{7}\right\}$ with concatenation \circ of functions. An example: If $g_{1}, g_{2}: \mathbb{Z}_{7} \rightarrow \mathbb{Z}_{7}$ are two functions then $\left(g_{1} \circ\right.$ $\left.g_{2}\right)(x):=g_{1}\left(g_{2}(x)\right)$ for all $x \in \mathbb{Z}_{7}$.
(vii) $\left(\mathcal{S}\left(\mathbb{Z}_{13}\right), \circ\right)$: The set $\mathcal{S}\left(\mathbb{Z}_{13}\right):=\left\{f: \mathbb{Z}_{13} \rightarrow \mathbb{Z}_{13} \mid f\right.$ bijective $\}$ with concatenation \circ.
(viii) $\left(\mathbb{Z}_{3}^{2}, \square\right)$: The set $\mathbb{Z}_{3}^{2}:=\left\{(a, b) \mid a \in \mathbb{Z}_{3}, b \in \mathbb{Z}_{3}\right\}$ with the following operation $\square:$

$$
\begin{aligned}
\mathbb{Z}_{3}^{2} \times \mathbb{Z}_{3}^{2} & \longrightarrow \mathbb{Z}_{3}^{2}, \\
(a, b),(c, d) & \longmapsto(a c+b d, a d+b c)
\end{aligned}
$$

