# The Art of Cryptography: Integral Lattices, summer 2010 <br> Prof. Dr. Joachim von zur Gathen, Daniel Loebenberger 

## 2. Exercise sheet

 Hand in solutions until Sunday, 25 April 2010, 23:59h.
## Exercise 2.1 (Gram-Schmidt orthogonalization).

(17+10 points)
Consider the Gram-Schmidt orthogonalization from the lecture. There we constructed, given a basis $B \in \mathbb{R}^{n \times m}$ of the vectorspace $V:=\operatorname{span}(B)$, an orthogonal basis $B^{*}$ by defining $b_{1}^{*}:=b_{1}, b_{i}^{*}:=b_{i}-\sum_{j<i} \mu_{i, j} b_{j}^{*}$ with $\mu_{i, j}:=\frac{\left\langle b_{i}, b_{j}^{*}\right\rangle}{\left\langle b_{j}^{*}, b_{j}^{*}\right\rangle}$.
(i) Show that for $i_{1} \neq i_{2}$ the vectors $b_{i_{1}}^{*}$ and $b_{i_{2}}^{*}$ are orthogonal.
(ii) Show that for $i<j$ the vectors $b_{i}$ and $b_{j}^{*}$ are orthogonal.
(iii) Consider the vector space $V=\operatorname{span}(B)$, spanned by the basis

$$
B:=\left[\begin{array}{lll}
2 & 1 & 2 \\
0 & 2 & 1 \\
0 & 0 & 2
\end{array}\right]
$$

Compute an orthogonal basis of $V$.
(iv) Is your orthogonal basis of $V$ also a basis of $\mathcal{L}(B)$ ? Justify your answer.
(v) Define the orthogonal projection operator of $\mathbb{R}^{n}$ to $\operatorname{span}\left(b_{i}^{*}, \ldots, b_{n}^{*}\right)$ as

$$
\pi_{i}(x):=\sum_{i \leq j \leq n} \frac{\left\langle x, b_{j}^{*}\right\rangle}{\left\langle b_{j}^{*}, b_{j}^{*}\right\rangle} b_{j}^{*} .
$$

Show that $b_{i}^{*}=\pi_{i}\left(b_{i}\right)$.
(vi) Construct out of the Gram-Schmidt orthogonalization procedure a method which returns an orthonormal basis, i.e. an orthogonal basis $B^{*}$, where we have for all $b_{i}^{*}$ that $\left\|b_{i}^{*}\right\|=1$.
(vii) Implement Gram-Schmidt in a programming language of your choice! Hand in the source code.

Exercise 2.2 (A note on the volume).
Let $B \in \mathbb{R}^{n \times m}$ a basis of the lattice $L=\mathcal{L}(B)$ and let $B^{*}$ be the Gram-Schmidt matrix of $B$. We have defined the determinant of the lattice as $\operatorname{det}(L)=\operatorname{vol}(P(B))=$ $\sqrt{\operatorname{det}\left(B^{T} B\right)}$. Prove that $\operatorname{det}(L)=\prod_{i}\left\|b_{i}^{*}\right\|$. Hint: Use the fact that $B^{*}=B T$ for some upper triangular matrix $T$ with $T_{i, i}=1$ for all $i=1 \ldots m$.

Exercise 2.3 (The orthogonalized centered parallelepiped).
(3 points)
Let $B$ be a basis of the lattice $L=\mathcal{L}(B)$ and let $B^{*}$ be the Gram-Schmidt matrix of $B$.
(i) Show that the parallelepiped

$$
P(B):=\left\{B x \mid x_{1}, \ldots, x_{m} \in[0,1)\right\}
$$

is a fundamental region of the lattice.
(ii) Show that the orthogonalized centered parallelepiped

$$
C\left(B^{*}\right)=\left\{B^{*} x \mid x_{1}, \ldots, x_{m} \in[-1 / 2,1 / 2)\right\}
$$

is a fundamental region of the lattice. Hint: You may use again the fact that $B^{*}=B T$ for some upper triangular matrix $T$.

Exercise 2.4 (Orthogonal sublattices).
(i) Show that if $p \equiv 1(\bmod 4)$ there is an element $i \in \mathbb{F}_{p}$ with $i^{2}=-1$. Hint: Little Fermat, for all $a \in \mathbb{F}_{p}^{\times}$we have $a^{p-1}=1$.

We consider now the two dimensional lattice $L=\mathcal{L}(B)$ spanned by the basis

$$
B=\left[\begin{array}{ll}
1 & 0 \\
i & p
\end{array}\right]
$$

(iii) Use this fact to observe that for $\delta>3 / 4$ the short vector $b_{1}$ found by the algorithm gives you an algorithmic solution to the problem of writing the prime $p$ as the sum of two squares.

