The Art of Cryptography: Integral Lattices, summer 2010 Prof. Dr. Joachim von zur Gathen, Daniel Loebenberger

2. Exercise sheet Hand in solutions until Sunday, 25 April 2010, 23:59h.

Exercise 2.1 (Gram-Schmidt orthogonalization). (17+10 points)

Consider the Gram-Schmidt orthogonalization from the lecture. There we constructed, given a basis $B \in \mathbb{R}^{n \times m}$ of the vectorspace $V := \operatorname{span}(B)$, an orthogonal basis B^* by defining $b_1^* := b_1$, $b_i^* := b_i - \sum_{j < i} \mu_{i,j} b_j^*$ with $\mu_{i,j} := \frac{\langle b_i, b_j^* \rangle}{\langle b_i^*, b_i^* \rangle}$.

- (i) Show that for $i_1 \neq i_2$ the vectors $b_{i_1}^*$ and $b_{i_2}^*$ are orthogonal.
- (ii) Show that for i < j the vectors b_i and b_j^* are orthogonal.
- (iii) Consider the vector space V = span(B), spanned by the basis

$$B := \left[\begin{array}{rrr} 2 & 1 & 2 \\ 0 & 2 & 1 \\ 0 & 0 & 2 \end{array} \right]$$

Compute an orthogonal basis of V.

- (iv) Is your orthogonal basis of V also a basis of $\mathcal{L}(B)$? Justify your answer.
- (v) Define the orthogonal projection operator of \mathbb{R}^n to span (b_i^*, \ldots, b_n^*) as

$$\pi_i(x) := \sum_{i \le j \le n} \frac{\langle x, b_j^* \rangle}{\langle b_j^*, b_j^* \rangle} b_j^*.$$

Show that $b_i^* = \pi_i(b_i)$.

- (vi) Construct out of the Gram-Schmidt orthogonalization procedure a method 3 which returns an ortho*normal* basis, i.e. an orthogonal basis B^* , where we have for all b_i^* that $||b_i^*|| = 1$.
- (vii) Implement Gram-Schmidt in a programming language of your choice! Hand +10 in the source code.

Exercise 2.2 (A note on the volume).

(5 points)

3

3

2

2

4

Let $B \in \mathbb{R}^{n \times m}$ a basis of the lattice $L = \mathcal{L}(B)$ and let B^* be the Gram-Schmidt matrix of B. We have defined the determinant of the lattice as $\det(L) = \operatorname{vol}(P(B)) = \sqrt{\det(B^T B)}$. Prove that $\det(L) = \prod_i ||b_i^*||$. Hint: Use the fact that $B^* = BT$ for some upper triangular matrix T with $T_{i,i} = 1$ for all $i = 1 \dots m$.

Exercise 2.3 (The orthogonalized centered parallelepiped). (3 points)

Let *B* be a basis of the lattice $L = \mathcal{L}(B)$ and let B^* be the Gram-Schmidt matrix of *B*.

(i) Show that the parallelepiped

$$P(B) := \{ Bx \mid x_1, \dots, x_m \in [0, 1) \}$$

is a fundamental region of the lattice.

(ii) Show that the orthogonalized centered parallelepiped

 $C(B^*) = \{B^*x \mid x_1, \dots, x_m \in [-1/2, 1/2)\}$

is a fundamental region of the lattice. Hint: You may use again the fact that $B^* = BT$ for some upper triangular matrix *T*.

Exercise 2.4 (Orthogonal sublattices).

4

+2

+2

+3

(4 points)

We will show here that – although not every lattice has an orthogonal basis – every integer lattice has an orthogonal sublattice. More specifically we will show that for any nonsingular $B \in \mathbb{Z}^{m \times m}$ with $d := |\det(B)|$ we have $d\mathbb{Z}^n \subseteq \mathcal{L}(B)$. Consider a vector $v = dy \in d\mathbb{Z}^n$. Show, using Cramer's rule, that $v \in \mathcal{L}(B)$.

Exercise 2.5 (A glimpse on the applications of basis reduction). (0+7 points)

In this exercise we will explore the power of the basis reduction algorithm. We will show that we can write every prime p for which $p \equiv 1 \pmod{4}$ as the sum of two squares, i.e. that there are integers $a, b \in \mathbb{Z}$ with $p = a^2 + b^2$. This seems to be a difficult problem, but it is so easy to solve using lattices!!!

(i) Show that if $p \equiv 1 \pmod{4}$ there is an element $i \in \mathbb{F}_p$ with $i^2 = -1$. Hint: Little Fermat, for all $a \in \mathbb{F}_p^{\times}$ we have $a^{p-1} = 1$.

We consider now the two dimensional lattice $L = \mathcal{L}(B)$ spanned by the basis

$$B = \left[\begin{array}{cc} 1 & 0\\ i & p \end{array} \right]$$

(ii) Show that every element $[a, b]^T \in L$ has the property that $a^2 + b^2$ is a multiple of p.

Now the magic of lattice basis reduction applies: If we find a reduced basis of *L*, we know from the lecture that $||b_1|| \leq \alpha^{1/4} \det(B)^{1/2}$ where $\alpha = \frac{1}{\delta - 1/4}$ and δ is the parameter of the lattice reduction algorithm.

(iii) Use this fact to observe that for $\delta > 3/4$ the short vector b_1 found by the algorithm gives you an algorithmic solution to the problem of writing the prime *p* as the sum of two squares.