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The Art of Cryptography: Integral Lattices, summer 2010
PROF. DR. JOACHIM VON ZUR GATHEN, DANIEL LOEBENBERGER

2. Exercise sheet
Hand in solutions until Sunday, 25 April 2010, 23:59h.

Exercise 2.1 (Gram-Schmidt orthogonalization). (17+10 points)

Consider the Gram-Schmidt orthogonalization from the lecture. There we con-
structed, given a basis B ∈ R

n×m of the vectorspace V := span(B), an orthogonal

basis B∗ by defining b∗
1

:= b1, b∗i := bi −
∑

j<i µi,jb
∗
j with µi,j :=

〈bi,b
∗

j 〉

〈b∗
j
,b∗

j
〉 .

(i) Show that for i1 6= i2 the vectors b∗i1 and b∗i2 are orthogonal. 3

(ii) Show that for i < j the vectors bi and b∗j are orthogonal. 3

(iii) Consider the vector space V = span(B), spanned by the basis 2

B :=





2 1 2
0 2 1
0 0 2



 .

Compute an orthogonal basis of V .

(iv) Is your orthogonal basis of V also a basis of L(B)? Justify your answer. 2

(v) Define the orthogonal projection operator of R
n to span(b∗i , . . . , b

∗
n) as 4

πi(x) :=
∑

i≤j≤n

〈x, b∗j 〉

〈b∗j , b
∗
j〉

b∗j .

Show that b∗i = πi(bi).

(vi) Construct out of the Gram-Schmidt orthogonalization procedure a method 3
which returns an orthonormal basis, i.e. an orthogonal basis B∗, where we
have for all b∗i that ‖b∗i ‖ = 1.

(vii) Implement Gram-Schmidt in a programming language of your choice! Hand +10
in the source code.

Exercise 2.2 (A note on the volume). (5 points)

Let B ∈ R
n×m a basis of the lattice L = L (B) and let B∗ be the Gram-Schmidt ma- 5

trix of B. We have defined the determinant of the lattice as det(L) = vol(P (B)) =
√

det(BT B). Prove that det(L) =
∏

i ‖b
∗
i ‖. Hint: Use the fact that B∗ = BT for

some upper triangular matrix T with Ti,i = 1 for all i = 1 . . .m.
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2 Prof. Dr. Joachim von zur Gathen, Daniel Loebenberger

Exercise 2.3 (The orthogonalized centered parallelepiped). (3 points)

Let B be a basis of the lattice L = L (B) and let B∗ be the Gram-Schmidt matrix of 3
B.

(i) Show that the parallelepiped

P (B) := {Bx x1, . . . , xm ∈ [0, 1)}

is a fundamental region of the lattice.

(ii) Show that the orthogonalized centered parallelepiped

C(B∗) = {B∗x x1, . . . , xm ∈ [−1/2, 1/2)}

is a fundamental region of the lattice. Hint: You may use again the fact that
B∗ = BT for some upper triangular matrix T .

Exercise 2.4 (Orthogonal sublattices). (4 points)

We will show here that – although not every lattice has an orthogonal basis – every4
integer lattice has an orthogonal sublattice. More specifically we will show that for
any nonsingular B ∈ Z

m×m with d := |det(B)| we have dZ
n ⊆ L (B). Consider a

vector v = dy ∈ dZ
n. Show, using Cramer’s rule, that v ∈ L (B).

Exercise 2.5 (A glimpse on the applications of basis reduction). (0+7 points)

In this exercise we will explore the power of the basis reduction algorithm. We will
show that we can write every prime p for which p ≡ 1 (mod 4) as the sum of two
squares, i.e. that there are integers a, b ∈ Z with p = a2 + b2. This seems to be a
difficult problem, but it is so easy to solve using lattices!!!

(i) Show that if p ≡ 1 (mod 4) there is an element i ∈ Fp with i2 = −1. Hint:+2
Little Fermat, for all a ∈ F

×
p we have ap−1 = 1.

We consider now the two dimensional lattice L = L (B) spanned by the basis

B =

[

1 0
i p

]

(ii) Show that every element [a, b]T ∈ L has the property that a2 +b2 is a multiple+2
of p.

Now the magic of lattice basis reduction applies: If we find a reduced basis of L,
we know from the lecture that ‖b1‖ ≤ α1/4 det(B)1/2 where α = 1

δ−1/4
and δ is the

paramteter of the lattice reduction algorithm.

(iii) Use this fact to observe that for δ > 3/4 the short vector b1 found by the+3
algorithm gives you an algorithmic solution to the problem of writing the
prime p as the sum of two squares.


