The Art of Cryptography: Integral Lattices, summer 2010 Prof. Dr. Joachim von zur Gathen, Daniel Loebenberger

3. Exercise sheet Hand in solutions until Sunday, 2 May 2010, 23:59h.

Exer	cise 3.1 (The basis reduction algorithm). (32+3 points)	
gorit	is exercise we will do several experiments with the lattice basis reduction al- hm. For that (and also for later programming tasts) we need a running imple- ation.	
(i)	Implement the basis reduction algorithm in a programming language of your choice. Hand in the source code. Hint: Try to work bottom up. Implement the vector arithmetic first, afterwards scalar products and the $\mu_{i,j}$. Build from that the GSO, which in turn is used by the size-reduction and the exchange-step. Once you have all this, start writing the basis reduction algorithm. It is helpful to employ a computer algebra system for that task!	20
If you did not succeed in making the algorithm run, use your brain or a built in function of a computer algebra system like Maple or MuPAD. Let's now try our nice example from the last sheet:		
(ii)	Test the algorithm! Compute $a,b\in\mathbb{Z}$ with $a^2+b^2=1034353$ using your basis reduction algorithm.	3
(iii)	For which parameters δ do you obtain a solution? Note that in the Maple and MuPAD implementations the parameter δ is fixed and cannot be changed.	+2
Let u	s now consider the lattice $L=\mathcal{L}\left(B\right)$ spanned by the basis $B=\begin{bmatrix}2&1&5&8\\7&2&5&5\\2&3&1&1\\5&8&9&9\end{bmatrix}$	
(iv)	Minkowski's theorem states that for any lattice we have $\lambda(L) \leq \sqrt{n} \det(L)^{1/n}$. What is the value of this bound in our example?	2
(v)	What is the length of the shortest vector in the output of the basis reduction algorithm?	1
(vi)	What is the value of the integer $\mathcal{D}=\prod_{i=1}^4\det(\mathcal{L}(b_1,\ldots,b_i))^2$ for the input basis?	2
(vii)	What is the number of iterations predicted by the running time analysis from the lecture?	1
(viii)	What is the value of \mathcal{D} upon finding a reduced basis?	1
(ix)	Give an upper bound on the number of iterations based on the initial and final value of \mathcal{D} .	2
(x)	What is the number of iterations actually executed?	+1