The Art of Cryptography: Integral Lattices, summer 2010
 Prof. Dr. Joachim von zur Gathen, Daniel Loebenberger

5. Exercise sheet
 Hand in solutions until Sunday, 16 May 2010, 23:59h.

Exercise 5.1 (GCD revisited).
Assume you are given two integers $a, b \in \mathbb{N}$ and consider the lattice $L=\mathcal{L}(B)$ spanned by the basis (in row notation)

$$
B=\left[\begin{array}{ccc}
1 & 0 & \gamma a \\
0 & 1 & \gamma b
\end{array}\right]
$$

where $\gamma \in \mathbb{R}_{>1}$ is some large constant.
(i) Do some experiments with the lattice L : Select, say, 100 pairs (a, b) randomly, where a and b are at most $C=100$ and check for which values of γ the basis reduction algorithm yields always a basis of the form

$$
B=\left[\begin{array}{ccc}
x_{1} & x_{2} & 0 \\
s & t & \pm \gamma \operatorname{gcd}(a, b)
\end{array}\right]
$$

with $s a+t b= \pm \operatorname{gcd}(a, b)$.
(ii) Try also the values $C=500, C=1000$ and $C=5000$. Hand in a table of values of γ for which your experiment succeeded.
(iii) We are now going to prove that for $\gamma>2 C$, the above basis reductions will always compute the correct solution.
(a) Show that every vector $v \in L$ is of the form $\left(v_{1}, v_{2}, \gamma\left(v_{1} a+v_{2} b\right)\right)$.
(b) Take any such vector with $v_{1} a+v_{2} b \neq 0$. Show that then $\|v\|^{2} \geq \gamma^{2}$.
(c) Now consider a reduced basis \bar{B}. We know from the lecture that we have $\left\|\bar{b}_{1}\right\| \leq \sqrt{2} \lambda_{1}(L)$, where $\lambda_{1}(L)$ is the length of a nonzero shortest vector in L. In particular it follows that $\left\|\bar{b}_{1}\right\| \leq \sqrt{2}\|v\|$ for any nonzero vector $v \in L$. Show that from that it follows that $\left\|\bar{b}_{1}\right\| \leq 2 C$. Hint: Consider the vector $(-b, a, 0)$.
(d) Conclude that for $\gamma>2 C$ the vector \bar{b}_{1} is of the form $\left(x_{1}, x_{2}, 0\right)$.

We now know that we have a reduced basis $\bar{B}=\left[\begin{array}{ccc}x_{1} & x_{2} & 0 \\ s & t & \pm \gamma g\end{array}\right]$. Further we know from the lecture that there is a unimodular transformation U with $\bar{B}=U B$ with $U=\left[\begin{array}{cc}x_{1} & x_{2} \\ s & t\end{array}\right]$ such that $x_{1} t-x_{2} s= \pm 1$. The inverse is given as $U^{-1}=\left[\begin{array}{cc}t & x_{2} \\ s & x_{1}\end{array}\right]$.
(e) Argue that we have $U[\gamma a, \gamma b]^{T}=[0, \gamma g]^{T}$ and conclude from it that $g=$ $\pm \operatorname{gcd}(a, b)$.
(iv) Compare your result to the experiments you were doing in the beginning.

Exercise 5.2 (Linear congruential generators).
(7+5 points)
We consider the linear congruential generators with $x_{i}=\left(a x_{i-1}+b\right)$ rem m.
(i) Compute the pseudorandom sequence of numbers resulting from
(ii) You observe the sequence of numbers

$$
13,223,793,483,213,623,593, \ldots
$$

generated by a linear congruential generator. Find matching values of m, a and b.
How do you do this?
(iii) Consider $m=100, a=3, b=2, x_{0}=1$. Compute the result of the truncated linear congruential generator, which outputs the top half of the bits.
(iv) Implement the truncated linear congruential generator in a programming language of your choice. Also implement the non-truncated generator together with the algorithm breaking it.

