The Art of Cryptography: Integral Lattices, summer 2010 Prof. Dr. Joachim von zur Gathen, Daniel Loebenberger

5. Exercise sheet Hand in solutions until Sunday, 16 May 2010, 23:59h.

Exercise 5.1 (GCD revisited).

(17 points)

Assume you are given two integers $a,b\in\mathbb{N}$ and consider the lattice $L=\mathcal{L}(B)$ spanned by the basis (in row notation)

$$B = \left[\begin{array}{ccc} 1 & 0 & \gamma a \\ 0 & 1 & \gamma b \end{array} \right],$$

where $\gamma \in \mathbb{R}_{>1}$ is some large constant.

(i) Do some experiments with the lattice L: Select, say, 100 pairs (a,b) randomly, where a and b are at most C=100 and check for which values of γ the basis reduction algorithm yields always a basis of the form

$$B = \left[\begin{array}{ccc} x_1 & x_2 & 0 \\ s & t & \pm \gamma \gcd(a, b) \end{array} \right],$$

with $sa + tb = \pm \gcd(a, b)$.

- (ii) Try also the values C=500, C=1000 and C=5000. Hand in a table of values of γ for which your experiment succeeded.
- (iii) We are now going to prove that for $\gamma>2C$, the above basis reductions will always compute the correct solution.
 - (a) Show that every vector $v \in L$ is of the form $(v_1, v_2, \gamma(v_1a + v_2b))$.

1

(b) Take any such vector with $v_1a + v_2b \neq 0$. Show that then $||v||^2 \geq \gamma^2$.

I

- (c) Now consider a reduced basis \bar{B} . We know from the lecture that we have $\|\bar{b}_1\| \leq \sqrt{2}\lambda_1(L)$, where $\lambda_1(L)$ is the length of a nonzero shortest vector in L. In particular it follows that $\|\bar{b}_1\| \leq \sqrt{2}\|v\|$ for any nonzero vector $v \in L$. Show that from that it follows that $\|\bar{b}_1\| \leq 2C$. Hint: Consider the vector (-b, a, 0).
- (d) Conclude that for $\gamma > 2C$ the vector \bar{b}_1 is of the form $(x_1, x_2, 0)$.

1

2

We now know that we have a reduced basis $\bar{B}=\begin{bmatrix}x_1 & x_2 & 0\\ s & t & \pm \gamma g\end{bmatrix}$. Further we know from the lecture that there is a unimodular transformation U with $\bar{B}=UB$ with $U=\begin{bmatrix}x_1 & x_2\\ s & t\end{bmatrix}$ such that $x_1t-x_2s=\pm 1$. The inverse is given as $U^{-1}=\begin{bmatrix}t & x_2\\ s & x_1\end{bmatrix}$.

- (e) Argue that we have $U[\gamma a, \gamma b]^T = [0, \gamma g]^T$ and conclude from it that $g = \pm \gcd(a, b)$.
- (iv) Compare your result to the experiments you were doing in the beginning.

3

+5

Exercise 5.2 (Linear congruential generators).

(7+5 points)

We consider the linear congruential generators with $x_i = (ax_{i-1} + b) \operatorname{rem} m$.

(i) Compute the pseudorandom sequence of numbers resulting from

(a)
$$m = 10$$
, $a = 3$, $b = 2$, $x_0 = 1$ and

(b)
$$m = 10, a = 8, b = 7, x_0 = 1.$$

What do you observe?

(ii) You observe the sequence of numbers

$$13, 223, 793, 483, 213, 623, 593, \dots$$

generated by a linear congruential generator. Find matching values of m, a and b.

How do you do this?

- (iii) Consider m=100, a=3, b=2, $x_0=1$. Compute the result of the truncated linear congruential generator, which outputs the top half of the bits.
- (iv) Implement the truncated linear congruential generator in a programming language of your choice. Also implement the non-truncated generator together with the algorithm breaking it.