The Art of Cryptography: Integral Lattices, summer 2010
PROF. DR. JOACHIM VON ZUR GATHEN, DANIEL LOEBENBERGER

6. Exercise sheet
Hand in solutions until Sunday, 30 May 2010, 23:59h.

Exercise 6.1 (Breaking truncated linear congruential generators). (14+15 points)

We consider the truncated homogenous linear congruential generators with \(x_i = ax_{i-1} \mod m \). We are given that \(m = 1009 \), \(s = \lceil \log(2, m)/2 \rceil = 5 \) and \(a = 25 \). The sequence \(y \) is defined as \(y_i := x_i \div 2^s \) which you intercepted as

\[
0, 10, 21, 25, 30, 8, 13, 13, 24, 14, 7, 6, 15, 28, 10, 3, 17, 25, 0, 15, 12, \ldots
\]

Our task is to break this generator completely. To do so, we will recover the sequence \(z_i \) with \(x_i = y_i 2^s + z_i \).

(i) Write down the matrix (over \(\mathbb{Z}/m \))

\[
A = \begin{bmatrix}
 m & 0 & 0 & 0 & 0 \\
 -a & 1 & 0 & 0 & 0 \\
 -a^2 & 0 & 1 & 0 & 0 \\
 -a^3 & 0 & 0 & 1 & 0 \\
 -a^4 & 0 & 0 & 0 & 1 \\
 -a^5 & 0 & 0 & 0 & 0
\end{bmatrix}
\]

(ii) Compute the sequence \(c_i := (a^{-1} y_1 - y_i) 2^s \) over \(\mathbb{Z} \) for \(i = 1, \ldots, 6 \).

(iii) Using lattice basis reduction compute a reduced basis \(V \) and a unimodular transformation \(U \) such that \(V = UA \).

(iv) Compute \(Uc \) and take the balanced system of representatives modulo \(m \) of your result.

(v) Now solve \(Vz = Uc \) using Gaussian elimination, obtaining the \(z_i \).

(vi) Finish by writing down the sequence \(x_i \).

(vii) Compute the next 10 values of the above sequence of \(y \)'s.

(viii) Argue that you have broken the generator.

(ix) Explain in detail why we had to use basis reduction at all.

(x) Play a bit around with your algorithms. Try different values of \(m, a \) and \(s \) and report on the successes and failures of your algorithm.
Exercise 6.2 (Dual lattices). (14 points)

Let $B \in \mathbb{R}^{n \times n}$ and let $L = \mathcal{L}(B)$ be a full-rank lattice. Consider its dual $L^* := \mathcal{L}(B)^* := \{v \in \mathbb{R}^n \mid \forall u \in L : uv \in \mathbb{Z}\}$.

(i) We now first show that L^* is indeed a lattice. In particular we will show that $D := (B^T)^{-1}$ is a basis of L^*.

 (a) Show that D is contained in $\mathcal{L}(B)^*$.
 (b) Conclude that $\mathcal{L}(D)$ is contained in $\mathcal{L}(B)^*$.
 (c) Show that also $\mathcal{L}(B)^*$ is contained in $\mathcal{L}(D)$. Hint: Use that $\text{span}(B) = \text{span}(D)$.

(ii) Show that we have $(L^*)^* = L$.

(iii) Prove that we have $\det(L^*) = 1/\det(L)$.

(iv) Show that $\lambda(L)\lambda(L^*) \leq n$. Hint: Use Minkowski’s bound $\lambda(L) \leq \sqrt{n} \det(L)^{1/n}$.

(v) We finish with some examples of dual lattices:

 (a) Compute the dual of the lattice $2\mathbb{Z}^n$.
 (b) Compute the dual of the lattice spanned by the basis $\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$.