The Art of Cryptography: Integral Lattices, summer 2010
 Prof. Dr. Joachim von zur Gathen, Daniel Loebenberger

6. Exercise sheet
 Hand in solutions until Sunday, 30 May 2010, 23:59h.

Exercise 6.1 (Breaking truncated linear congruential generators). ($14+15$ points)
We consider the truncated homogenous linear congruential generators with $x_{i}=$ $a x_{i-1}$ rem m. We are given that $m=1009, s=\lceil\log (2, m) / 2\rceil=5$ and $a=25$. The sequence y is defined as $y_{i}:=x_{i} \operatorname{div} 2^{s}$ which you intercepted as

$$
0,10,21,25,30,8,13,13,24,14,7,6,15,28,10,3,17,25,0,15,12, \ldots
$$

Our task is to break this generator completely. To do so, we will recover the sequence z_{i} with $x_{i}=y_{i} 2^{s}+z_{i}$.
(i) Write down the matrix (over \mathbb{Z} !)

$$
A=\left[\begin{array}{cccccc}
m & 0 & 0 & 0 & 0 & 0 \\
-a & 1 & 0 & 0 & 0 & 0 \\
-a^{2} & 0 & 1 & 0 & 0 & 0 \\
-a^{3} & 0 & 0 & 1 & 0 & 0 \\
-a^{4} & 0 & 0 & 0 & 1 & 0 \\
-a^{5} & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

(ii) Compute the sequence $c_{i}:=\left(a^{i-1} y_{1}-y_{i}\right) 2^{s}$ over \mathbb{Z} for $i=1, \ldots, 6$.
(iii) Using lattice basis reduction compute a reduced basis V and a unimodular transformation U such that $V=U A$.
(iv) Compute $U c$ and take the balanced system of representatives modulo m of your result.
(v) Now solve $V z=U c$ using Gaussian elimination, obtaining the z_{i}.
(vi) Finish by writing down the sequence x_{i}.
(vii) Compute the next 10 values of the above sequence of y^{\prime} s.
(viii) Argue that you have broken the generator.
(ix) Explain in detail why we had to use basis reduction at all.
(x) Play a bit around with your algorithms. Try different values of m, a and s and report on the successes and failures of your algorithm.

Exercise 6.2 (Dual lattices).
Let $B \in \mathbb{R}^{n \times n}$ and let $L=\mathcal{L}(B)$ be a full-rank lattice. Consider its dual $L^{*}:=$ $\mathcal{L}(B)^{*}:=\left\{v \in \mathbb{R}^{n} \mid \forall u \in L: u v \in \mathbb{Z}\right\}$.
(i) We now first show that L^{*} is indeed a lattice. In particular we will show that $D:=\left(B^{T}\right)^{-1}$ is a basis of L^{*}.
(a) Show that D is contained in $\mathcal{L}(B)^{*}$.
(b) Conclude that $\mathcal{L}(D)$ is contained in $\mathcal{L}(B)^{*}$.
(c) Show that also $\mathcal{L}(B)^{*}$ is contained in $\mathcal{L}(D)$. Hint: Use that $\operatorname{span}(B)=$ $\operatorname{span}(D)$.
(iv) Show that $\lambda(L) \lambda\left(L^{*}\right) \leq n$. Hint: Use Minkowski's bound $\lambda(L) \leq \sqrt{n} \operatorname{det}(L)^{1 / n}$.
(v) We finish with some examples of dual lattices:
(a) Compute the dual of the lattice $2 \mathbb{Z}^{n}$.
(b) Compute the dual of the lattice spanned by the basis
$\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$.

