The Art of Cryptography: Integral Lattices, summer 2010 Prof. Dr. Joachim von zur Gathen, Daniel Loebenberger

6. Exercise sheet Hand in solutions until Sunday, 30 May 2010, 23:59h.

Exercise 6.1 (Breaking truncated linear congruential generators). (14+15 points)

We consider the truncated homogenous linear congruential generators with $x_i = ax_{i-1} \operatorname{rem} m$. We are given that m = 1009, $s = \lceil \log(2, m)/2 \rceil = 5$ and a = 25. The sequence y is defined as $y_i := x_i \operatorname{div} 2^s$ which you intercepted as

 $0, 10, 21, 25, 30, 8, 13, 13, 24, 14, 7, 6, 15, 28, 10, 3, 17, 25, 0, 15, 12, \ldots$

Our task is to break this generator completely. To do so, we will recover the sequence z_i with $x_i = y_i 2^s + z_i$.

(i) Write down the matrix (over \mathbb{Z} !)

	m	0	0	0	0	0
	-a	1	0	0	0	0 0
	$-a^{2}$	0	1	0	0	0
A =	$-a^3$	0	0	1	0	0
	$-a^4$	0		0	1	0
	$-a^5$	0	0	0	0	1

(ii) Compute the sequence $c_i := (a^{i-1}y_1 - y_i)2^s$ over \mathbb{Z} for $i = 1, \dots, 6$.

- (iii) Using lattice basis reduction compute a reduced basis V and a unimodular transformation U such that V = UA.
- (iv) Compute Uc and take the balanced system of representatives modulo m of 2 your result.

(v) Nov	w solve $Vz = Uc$ using Gaussian elimination, obtaining the z_i .	2
(vi) Fini	ish by writing down the sequence x_i .	2
(vii) Cor	mpute the next 10 values of the above sequence of y 's.	2
(viii) Arg	gue that you have broken the generator.	2
(ix) Exp	plain in detail why we had to use basis reduction at all.	+5

(x) Play a bit around with your algorithms. Try different values of m, a and $s \pm 10$ and report on the successes and failures of your algorithm.

1

1

Exercise 6.2 (Dual lattices).

(14 points)

Let $B \in \mathbb{R}^{n \times n}$ and let $L = \mathcal{L}(B)$ be a full-rank lattice. Consider its *dual* $L^* := \mathcal{L}(B)^* := \{v \in \mathbb{R}^n \mid \forall u \in L : uv \in \mathbb{Z}\}.$

- (i) We now first show that L^* is indeed a lattice. In particular we will show that $D := (B^T)^{-1}$ is a basis of L^* .
 - (a) Show that *D* is contained in $\mathcal{L}(B)^*$.
 - (b) Conclude that $\mathcal{L}(D)$ is contained in $\mathcal{L}(B)^*$.
 - (c) Show that also $\mathcal{L}(B)^*$ is contained in $\mathcal{L}(D)$. Hint: Use that span(B) = span(D).
- (ii) Show that we have $(L^*)^* = L$.
- (iii) Prove that we have $det(L^*) = 1/det(L)$.
- (iv) Show that $\lambda(L)\lambda(L^*) \leq n$. Hint: Use Minkowski's bound $\lambda(L) \leq \sqrt{n} \det(L)^{1/n}$.
- (v) We finish with some examples of dual lattices:
 - (a) Compute the dual of the lattice $2\mathbb{Z}^n$.
 - (b) Compute the dual of the lattice spanned by the basis

 $\left[\begin{array}{rrr}1&2\\3&4\end{array}\right].$