The Art of Cryptography: Integral Lattices, summer 2010 PROF. DR. JOACHIM VON ZUR GATHEN, DANIEL LOEBENBERGER

8. Exercise sheet Hand in solutions until Sunday, 13 June 2010, 23:59h.

Exercise 8.1 (Key exchange).

(13+5 points)

 g^{a}

As a preliminary step for the Diffie-Hellman key exchange protocol, Alice and Bob have to agree on a cyclic group *G* and a generator *g*.

Protocol 8.2. Diffie-Hellman key exchange.

- 1. Alice chooses $a \in \mathbb{N}_{<\#G}$ and computes g^a .
- 2. Bob chooses $b \in \mathbb{N}_{\leq \#G}$ and computes g^b .
- 3. Alice computes $(g^b)^a = g^{ab}$
- 4. Bob computes $(g^a)^b = g^{ab}$.

There are three central topics to be dealt with: correctness, efficiency, and security. The first one is evident from the definition of the protocol. The latter two depend on the choice of the group.

- (i) First a note on the efficiency: For the protocol Alice needs to compute g^a . 3 Sketch an efficient algorithm that computes g^a that runs with at most $2 \log(a)$ group operations.
- (ii) Can you do better? Justify.
- (iii) Name a group G and a generator g for which security may not be ensured. 3 Hint: Extended Euclidean algorithm.
- (iv) Consider $G = \mathbb{Z}_p^{\times}$ with p and $\frac{1}{2}(p-1)$ prime, $n := \lfloor \log_2 p \rfloor + 1$. The most efficient known algorithms for computing discrete logarithms in these groups have a running time of $c \cdot \exp((1 + o(1))\sqrt{n \log n})$. (The algorithm implemented in MAPLE, numtheory[mlog], is a combination of Pohlig-Hellman and baby step giant step and thus has a running time of $c'2^{n/2}$.) During an experiment with prime numbers p as above in the range of 2^{45} the running time for the computation of a discrete logarithm was about 3 seconds. (Even MAPLE can do this!) [Suggestion: Conduct your own experiment ...]

How big should *n* be so that the key exchange is secure for 100, 1 000 or 10 000 years, respectively? [You are to assume o(1) = 0.]

(v) How long would MAPLE take for the value found for n that would take 100 3 years for the faster algorithms?

Exercise 8.3 (Close vectors).

(5+7 points)

In the lecture we have seen the following algorithm for computing an approximation to the closest vector problem:

Algorithm. Nearest plane.

Input: A reduced basis $B = (b_1, ..., b_n)$ of an *n*-dimensional lattice L in \mathbb{R}^n , and $z \in \mathbb{R}^n$.

Output: $x \in L$ with $||z - x|| \leq 2^{n/2} d(z, L)$.

- 1. Compute the GSO $(b_1^*, ..., b_n^*)$ of $(b_1, ..., b_n)$.
- 2. Compute the representation $z = \sum_{1 \le i \le n} a_i b_i^*$ of z in the GSO basis, with $a_1, \ldots, a_n \in \mathbb{R}$.
- 3. $a'_n \leftarrow \lceil a_n \rfloor$, $y \leftarrow z - (a_n - a'_n)b_n^*$, $v \leftarrow a'_n b_n$.
- 4. If n = 1, then return x = v. Else let M be the lattice generated by b_1, \ldots, b_{n-1} . Call the algorithm recursively to return $w \in M$ close to y - v.
- 5. Return x = v + w.

+5

2

4

+5

(i) Consider the reduced basis $B := \begin{bmatrix} 3 & 2 & 1 \\ -2 & 1 & 4 \\ -2 & 2 & -2 \end{bmatrix}$ and the vector z = (8, 9, 10).

Trace the values of the above algorithm by hand and give the approximate solution to the CVP.

(ii) Implement the algorithm in a programming language of your choice. Hand in the source code.

Exercise 8.4 (The embedding technique).

(6+5 points)

There is yet another way to solve the CVP approximately. The technique is called the *embedding technique* and works as follows. Suppose you are given an *n*-dimensional lattice $L = \mathcal{L}(B)$ and a vector $z \in \mathbb{R}^n$. A solution to the CVP corresponds to integers $a_1, \ldots, a_n \in \mathbb{Z}$ wuch that $z \approx \sum_{1 \le i \le n} a_i b_i$. The crucial observation is now that the length of $v := z - \sum_{1 \le i \le n} a_i b_i$ is small. The idea is now to construct out of L a lattice L' that contains v as a short vector.

- (i) Show that the lattice L' spanned by the vectors $(b_1, 0), \ldots, (b_n, 0), (z, M)$, where $M \in \mathbb{R}_{>1}$ is some real number contains the vector (v, M).
- (ii) You are now given the basis

 $B := \left[\begin{array}{rrrr} 72 & 13 & 5 \\ 38 & 99 & 57 \\ 60 & 19 & 9 \end{array} \right]$

and the vector z = (98, 99, 100) and M = 1. Use the above technique to compute a vector in *L* that is close to *z*.

(iii) Perform some experiments with different values of *M*. For which do you obtain a solution?