The Art of Cryptography: Integral Lattices, summer 2010
 Prof. Dr. Joachim von zur Gathen, Daniel Loebenberger

8. Exercise sheet
 Hand in solutions until Sunday, 13 June 2010, 23:59h.

Exercise 8.1 (Key exchange).
(13+5 points)

As a preliminary step for the Diffie-Hellman key exchange protocol, Alice and Bob have to agree on a cyclic group G and a generator g.

Protocol 8.2. Diffie-Hellman key exchange.

1. Alice chooses $a \in \mathbb{N}_{<\# G}$ and computes g^{a}.
2. Bob chooses $b \in \mathbb{N}_{<\# G}$ and computes g^{b}.

3. Alice computes $\left(g^{b}\right)^{a}=g^{a b}$.
4. Bob computes $\left(g^{a}\right)^{b}=g^{a b}$.

There are three central topics to be dealt with: correctness, efficiency, and security. The first one is evident from the definition of the protocol. The latter two depend on the choice of the group.
(i) First a note on the efficiency: For the protocol Alice needs to compute g^{a}. Sketch an efficient algorithm that computes g^{a} that runs with at most $2 \log (a)$ group operations.
(ii) Can you do better? Justify.
(iii) Name a group G and a generator g for which security may not be ensured. Hint: Extended Euclidean algorithm.
(iv) Consider $G=\mathbb{Z}_{p}^{\times}$with p and $\frac{1}{2}(p-1)$ prime, $n:=\left\lfloor\log _{2} p\right\rfloor+1$. The most efficient known algorithms for computing discrete logarithms in these groups have a running time of $c \cdot \exp ((1+o(1)) \sqrt{n \log n})$. (The algorithm implemented in MAPLE, numtheory [mlog], is a combination of Pohlig-Hellman and baby step - giant step and thus has a running time of $c^{\prime} 2^{n / 2}$.) During an experiment with prime numbers p as above in the range of 2^{45} the running time for the computation of a discrete logarithm was about 3 seconds. (Even MAPLE can do this!) [Suggestion: Conduct your own experiment ...]

How big should n be so that the key exchange is secure for 100,1000 or 10000 years, respectively? [You are to assume $o(1)=0$.]
(v) How long would MAPLE take for the value found for n that would take 100 years for the faster algorithms?

Exercise 8.3 (Close vectors).

In the lecture we have seen the following algorithm for computing an approximation to the closest vector problem:

Algorithm. Nearest plane.

Input: A reduced basis $B=\left(b_{1}, \ldots, b_{n}\right)$ of an n-dimensional lattice L in \mathbb{R}^{n}, and $z \in \mathbb{R}^{n}$.
Output: $x \in L$ with $\|z-x\| \leq 2^{n / 2} d(z, L)$.

1. Compute the GSO $\left(b_{1}^{*}, \ldots, b_{n}^{*}\right)$ of $\left(b_{1}, \ldots, b_{n}\right)$.
2. Compute the representation $z=\sum_{1 \leq i \leq n} a_{i} b_{i}^{*}$ of z in the GSO basis, with $a_{1}, \ldots, a_{n} \in \mathbb{R}$.
3. $a_{n}^{\prime} \longleftarrow\left\lceil a_{n}\right\rfloor$,
$y \longleftarrow z-\left(a_{n}-a_{n}^{\prime}\right) b_{n}^{*}$,
$v \longleftarrow a_{n}^{\prime} b_{n}$.
4. If $n=1$, then return $x=v$. Else let M be the lattice generated by b_{1}, \ldots, b_{n-1}. Call the algorithm recursively to return $w \in M$ close to $y-v$.
5. Return $x=v+w$.
(i) Consider the reduced basis $B:=\left[\begin{array}{ccc}3 & 2 & 1 \\ -2 & 1 & 4 \\ -2 & 2 & -2\end{array}\right]$ and the vector $z=(8,9,10)$.

Trace the values of the above algorithm by hand and give the approximate solution to the CVP.
(ii) Implement the algorithm in a programming language of your choice. Hand in the source code.

Exercise 8.4 (The embedding technique).

There is yet another way to solve the CVP approximately. The technique is called the embedding technique and works as follows. Suppose you are given an n-dimensional lattice $L=\mathcal{L}(B)$ and a vector $z \in \mathbb{R}^{n}$. A solution to the CVP corresponds to integers $a_{1}, \ldots, a_{n} \in \mathbb{Z}$ wuch that $z \approx \sum_{1 \leq i \leq n} a_{i} b_{i}$. The crucial observation is now that the length of $v:=z-\sum_{1 \leq i \leq n} a_{i} b_{i}$ is small. The idea is now to construct out of L a lattice L^{\prime} that contains v as a short vector.
(i) Show that the lattice L^{\prime} spanned by the vectors $\left(b_{1}, 0\right), \ldots,\left(b_{n}, 0\right),(z, M)$, where $M \in \mathbb{R}_{>1}$ is some real number contains the vector (v, M).
(ii) You are now given the basis

$$
B:=\left[\begin{array}{ccc}
72 & 13 & 5 \\
38 & 99 & 57 \\
60 & 19 & 9
\end{array}\right]
$$

and the vector $z=(98,99,100)$ and $M=1$. Use the above technique to compute a vector in L that is close to z.
(iii) Perform some experiments with different values of M. For which do you obtain a solution?

