The Art of Cryptography: Integral Lattices, summer 2010
 Prof. Dr. Joachim von zur Gathen, Daniel Loebenberger

10. Exercise sheet

Hand in solutions until Sunday, 27 June 2010, 23:59h.

Exercise 10.1 (The security of leading Diffie Hellman bits). ($6+15$ points)

In the lecture we discussed a reduction from computing a solution to the computational Diffie-Hellman problem over \mathbb{Z}_{p}^{\times}to the problem of computing ℓ highest order bits of the solution to the problem.
(i) Compute bounds on ℓ when the prime p has $512,1024,2048$ or 4096 bits.
(ii) What is in each cases a lower bound on the probability that your reduction worked? Use here the bound $1 / 2$ on the success probability of the hidden number algorithm given uniformly selected inputs.
(iii) Give better bounds.
(iv) On the website you find a Diffie-Hellman challenge. It contains several pa- rameter choices as well as an instance of the computational Diffie-Hellman problem. Additionally there is a routine (which should serve as a black box) which implements the leading bit algorithm employed in the reduction from the lecture. As a reminder: The reduction algorithm from the lecture works as follows:

Algorithm. Reduction from DH to leading bits of DH .
Input: A prime p, a generator g of \mathbb{Z}_{p}^{\times}, and $A, B \in \mathbb{Z}_{p}^{\times}$.
Output: Some $w \in \mathbb{Z}_{p}^{\times}$, likely to solve the DH problem for A, B.

1. $\lambda \longleftarrow\left(\log _{2} p\right)^{1 / 2}$,
$\ell \longleftarrow\lceil 5 \lambda\rceil$,
$n \longleftarrow\lfloor\lambda / 2\rfloor$.
2. $\quad r \stackrel{\mathbb{Z}_{p-1}}{\leftrightarrows}$,
$C \longleftarrow A g^{r}$.
3. For $1 \leq i \leq n$ do steps 4 and 5 .
4. $d_{i} \stackrel{\mathbb{Z}_{p-1}}{\leftrightarrows}$,
$D_{i} \longleftarrow B g^{d_{i}}$,
$t_{i} \longleftarrow C^{d_{i}}$.
5. Call a leading bit algorithm for C and D_{i}, to return $v_{i} \in V_{\ell}\left(\varrho\left(y_{i}\right)\right)$, where $\left(C, D_{i}, y_{i}\right)$ is a DH triple.
6. Call the algorithm for the hidden number problem with input $t=$ $\left(t_{1}, \ldots, t_{n}\right)$ and $v=\left(v_{1}, \ldots, v_{n}\right)$ to return $u \in \mathbb{Z}_{p}^{\times}$or "failure". In the latter case Return "failure".
7. Return $w=u B^{-r} \in \mathbb{Z}_{p}^{\times}$.

Solve the challenge. Remark: A major problem might be the efficiency of your basis reduction. It would be better if you use floating-point arithmetic. But beware: You need to set the floating-point accuracy properly such that no fatal rounding errors occur!

Exercise 10.2.

Let $p \neq q$ be prime numbers, $N=p \cdot q, f=x \in \mathbb{Z}_{N}[x]$.
(i) Show that $p^{2}+q^{2}$ is a unit in \mathbb{Z}_{N}^{\times}, i.e. $\operatorname{gcd}\left(p^{2}+q^{2}, p q\right)=1$.
(ii) Let $u \in \mathbb{Z}_{N}$ be the inverse of $p^{2}+q^{2}$. Show that $f=u(p x+q)(q x+p)$.
(iii) Prove that the two linear factors in (ii) are irreducible in $\mathbb{Z}_{N}[x]$. Hint: Consider the situation in \mathbb{Z}_{p} and and \mathbb{Z}_{q} separately.
(iv) Conclude that factoring N is polynomial-time reducible to factoring polynomials in $\mathbb{Z}_{N}[x]$.

Exercise 10.3 (An inequality of norms).
(4 points)
Let $f \in \mathbb{Z}[t]$ be a polynomial of degree n. Define $\|f\|_{1}:=\sum_{1 \leq i \leq n}\left|f_{i}\right|$ and $\|f\|_{2}:=$ $\left(\sum_{1 \leq i \leq n} f_{i}^{2}\right)^{1 / 2}$. Let $\sigma(f):=\#\left\{i \mid f_{i} \neq 1\right\}$ be the sparsity of f. Show that we have $\|f\|_{1} \leq \sqrt{\sigma(f)}\|f\|_{2}$. Hint: Use the Cauchy-Schwarz inequality $\langle f, g\rangle \leq\|f\| \cdot\|g\|$, where f and g are the coefficient vectors of two polynomials of degree n.

